1
|
Padmanabhan S, Prakash J. Deep tissue sensing of chiral molecules using polarization-enhanced photoacoustics. SCIENCE ADVANCES 2025; 11:eado8012. [PMID: 40106566 PMCID: PMC11922051 DOI: 10.1126/sciadv.ado8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Chiral molecule sensing is typically performed using techniques like chromatography, electrophoresis, enzymatic assays, mass spectrometry, and chiroptical methods. While polarimetry allows for in vivo sensing up to 1 mm depth using ultraviolet-visible light, it is limited by dominant light scattering beyond this depth. We propose that photoacoustic sensing in the near-infrared II (NIR-II) window can enable deep tissue sensing as acoustic waves scatter less than light. To achieve this, we developed a photoacoustic polarization-enhanced optical rotation sensing (PAPEORS) system, capable of estimating optical rotation from photoacoustic signals and correlating it with chiral molecular concentration for depths up to 3.5 mm. Experiments were conducted using aqueous glucose solutions, naproxen, serum-based glucose samples, and ex vivo chicken tissue. PAPEORS achieved a detection limit of 80 mg/dl while using circularly polarized light with serum samples, demonstrating the potential for deep-tissue chiral molecular sensing. PAPEORS holds promise for in vivo sensing and easy miniaturization using single wavelength.
Collapse
Affiliation(s)
- Swathi Padmanabhan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Jaya Prakash
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
2
|
Qi X, Pérez LA, Mendoza-Carreño J, Garriga M, Alonso MI, Mihi A. Chiral plasmonic superlattices from template-assisted assembly of achiral nanoparticles. Nat Commun 2025; 16:1687. [PMID: 39956827 PMCID: PMC11830766 DOI: 10.1038/s41467-025-56999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
The creation of chiral plasmonic architectures combining templates with achiral plasmonic particles leads to strong chiroptical responses that can be finely tuned via the characteristics of the colloidal building blocks. Here we show how elastomeric molds, pre-patterned with a hexagonal array of triskelia motifs, can guide the assembly of ordinary noble metal colloids into chiral plasmonic architectures with strong dichroism values. Under normal incidence, the chiral arrays made with gold and silver colloids showed g-factors of 0.18 and 0.4, respectively. In all cases, increasing the size of the colloid allows tuning the optical properties of the structure in the VIS-NIR range. When a superstrate layer is deposited onto the structures, the extrinsic chirality response of the 2D superlattice is revealed and strongly amplified by the chiral motifs under oblique inspection, leading to g-factors of ± 1.2 at ± 14°. Finally, these chiral plasmonic resonances sustained by the triskelion array are used to produce circularly polarized photoluminescence from achiral organic dyes placed on top with up to 20% of dissymmetry.
Collapse
Affiliation(s)
| | - Luis Alberto Pérez
- Institute of Materials Science of Barcelona ICMAB-CSIC; Campus UAB, Bellaterra, Spain.
| | - Jose Mendoza-Carreño
- Institute of Materials Science of Barcelona ICMAB-CSIC; Campus UAB, Bellaterra, Spain
| | - Miquel Garriga
- Institute of Materials Science of Barcelona ICMAB-CSIC; Campus UAB, Bellaterra, Spain
| | - Maria Isabel Alonso
- Institute of Materials Science of Barcelona ICMAB-CSIC; Campus UAB, Bellaterra, Spain
| | - Agustín Mihi
- Institute of Materials Science of Barcelona ICMAB-CSIC; Campus UAB, Bellaterra, Spain.
| |
Collapse
|
3
|
Dong H, Li H, Tian E, Zhang Y, Kong J, Li Y. White circularly polarized luminescence from a dual-component emitter induced by FRET between tetraphenylene and PDI derivatives. NANOSCALE 2025; 17:3086-3094. [PMID: 39711081 DOI: 10.1039/d4nr03598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A chiral agent, TPE-ASP, incorporating aspartic acid as the chiral source and tetraphenylene derivatives as chromophores, was designed and synthesized. The chiral agent was self-assembled into regular spherical nanoparticles with a maximum luminescence asymmetry factor of |2.41 × 10-2| at 460 nm which is attributed to TPE-ASP. These nanoparticles can be co-assembled with a perylenediimide (PDI) derivative through electrostatic interactions, enabling the successful construction of a chiral light-harvesting system (C-LHS). The maximum Förster resonance energy transfer (FRET) efficiency (ΦET) of 94.7% was achieved at the optimal molar ratio of TPE-ASP to PDI. Fortunately, multicolour circularly polarized luminescence (CPL), spanning from blue to red, was successfully achieved with a two-component co-assembly system, and bright white CPL with CIE coordinates of (0.33, 0.32) was also obtained. Meanwhile, the average glum is |7.1 × 10-3| in the wavelength range of 400-700 nm. This discovery demonstrates the potential for spectral regulation through the two-component co-assembly strategy. It is significant for developing CPL devices with white light emission via the FRET process and also expands the functional range of chiral light-harvesting systems.
Collapse
Affiliation(s)
- Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Enquan Tian
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071, PR China
| | - Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Jian Kong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
4
|
Zhang R, Gao J, Li N, Gao C, Zhang C, Wang H, Sun F, Yang T. Circularly Polarized Organic Light-Emitting Diode Based on Device Functional Layer Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409541. [PMID: 39887943 DOI: 10.1002/smll.202409541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Circularly polarized light-emitting devices have found extensive application prospects in 3D displays and optoelectronic information. Among them, circularly polarized organic light-emitting diodes (CP-OLED), as a rising star of circularly polarized light-emitting devices, achieved good research results. However, the preparation of CP-OLED with a high electroluminescence asymmetry factor and high external quantum efficiency is a hot and difficult research topic. At present, the approaches for achieving circularly polarized electroluminescence via CP-OLED are: 1) Using chiral materials as luminescent materials, 2) Utilizing chiral functional materials. This review summarizes recent methodologies used for manufacturing CP-OLED. It focuses on the construction strategies and applications of chiral functional materials (chiral host materials, chiral hole transport materials, and chiral electron transport materials) in CP-OLED. While challenges such as complex chiral design and material interactions persist, advancements in material design and device architecture propel CP-OLED forward. These developments promise to elevate CP-OLED as a focal point in optoelectronic research, facilitating high-performance, circularly polarized luminescence (CPL)-capable devices for practical applications.
Collapse
Affiliation(s)
- Rong Zhang
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
- Army Medical University, Chongqing, 400038, P. R. China
| | - Jing Gao
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Nuomin Li
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Caiyun Gao
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Chunliang Zhang
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Hongjiang Wang
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Feiyi Sun
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| | - Tianyu Yang
- The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, P. R. China
| |
Collapse
|
5
|
Tian Y, Luan X, Lv X, Wu F, Xu G, Niu W. Patternable chiral Au nanocrystal-doped composite films for information encryption: the role of optical rotation. NANOSCALE 2025; 17:1119-1128. [PMID: 39620284 DOI: 10.1039/d4nr04338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Optical information encryption technology has garnered significant attention in currency security, information protection, and personal identification. While optical metasurfaces are considered ideal platforms for information encryption, their high cost and time-intensive fabrication processes have limited their widespread applications. To address this, emergent chiroptical nanomaterials offer new opportunities for information encryption through their polarization capabilities. In this study, composite films consisting of chiral Au nanocrystals embedded in curable polymers are utilized as a patternable platform for information encryption. Theoretical simulations demonstrate that chiral Au nanocrystals can rotate linearly polarized light of different wavelengths in various directions. Notably, Au nanocrystals with opposite chirality show reversed optical rotation effects for linearly polarized light while exhibiting the same extinction properties for non-polarized light. Based on these investigations, patternable composite films with embedded chiral Au nanocrystals are fabricated, showcasing their potential to encode information via optical rotation. This work establishes the feasibility of chiral Au nanocrystals as a patternable platform for information encryption and presents a simple, convenient, and cost-effective approach for optical information security.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Aisawa S, Horiguchi N, Chida C, Sang J, Hirahara H, Yamagishi A, Sato H. Nanoscale chirality generated in zinc(II) orthophosphate clusters: evidence by vibrational circular dichroism. NANOSCALE 2024; 16:20589-20595. [PMID: 39435732 DOI: 10.1039/d4nr03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Layered zinc(II) hydroxides (LZH) intercalating the deprotonated forms of R-(-) or S-(+)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (denoted as R- or S-BNDHPH, respectively) were prepared from Zn(NO3)2 at pH 5 and 60 °C by the mixing method. The obtained hybrid compounds (denoted as R- or S-BNDHP-/LZH, respectively) were heated from room temperature up to 800 °C under nitrogen atmosphere. According to the thermal gravimetric/differential thermal analysis measurements, hydroxyl groups were dehydrated at 270-400 °C, followed by the decomposition of organic components at 420-600 °C. X-ray diffraction patterns and scanning electron microscopy images indicated that the final products were a mixture of α-Zn3(PO4)2, ZnO crystals and non-crystalline zinc(II) orthophosphates. Vibrational circular dichroism (VCD) spectra were recorded before and after calcination. Before calcination, R- or S-BNDHP-/LZH exhibited VCD peaks assigned to intercalated R- or S-BNDHP-. The calcined products exhibited several VCD peaks in the range of 900-1200 cm-1, maintaining the mirror-image relationship between R-BNDHP-/LZH and S-BNDHP-/LZH used as starting materials. The observed peaks were assigned to the PO (symmetric), -POO-, and PO (asymmetric) stretching vibrations of the PO43- groups. According to theoretical simulations, the observed VCD activity can be rationalised in terms of vibrational coupling between two PO43- groups in a generated chiral zinc(II) orthophosphate cluster.
Collapse
Affiliation(s)
- Sumio Aisawa
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Nami Horiguchi
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Chika Chida
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Jing Sang
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Hidetoshi Hirahara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Akihiko Yamagishi
- Faculty of Medicine, Toho University, 5-21-16 Oomori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hisako Sato
- Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
7
|
Feizi F, Shamsipur M, Gholivand MB, Barati A, Mousavi F, Molaabasi F, Mahlooji M, Sedeghi M. Fluorescence and Circular Dichroism Dual-Mode Probe for Chiral Recognition of Tyrosine and Its Applications in Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48058-48072. [PMID: 39221786 DOI: 10.1021/acsami.4c06957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chiral amino acids (AAs) are essential in metabolism and understanding physiological processes, and they could be used as biomarkers for the diagnosis of different diseases. In this study, chiral Cdots@Van were prepared by postmodifying an achiral Cdots core with vancomycin for recognizing and determining the enantiomeric excess (ee) of tyrosine (Tyr) enantiomers. The fluorescence response of Cdots@Van is based on an "on-off" strategy, with different quenching percentages for d- and l-tyrosine. Interestingly, the circular dichroism (CD) spectrum of Cdots@Van responded to only one form of Tyr enantiomer, specifically d-Tyr, and remained nearly unchanged upon the addition of l-Tyr. Quantum mechanical (QM) calculations were in excellent agreement with the experimental results, confirming the stronger binding affinity of Cdots@Van for d-Tyr compared to l-Tyr. We further investigated the chiral recognition ability of the interconnected vancomycin particles, which was synthesized using the EDC/NHS coupling reaction between vancomycin molecules without a Cdots core. Surprisingly, unlike free vancomycin molecules, interconnected vancomycin displayed an enantiomeric recognition ability by CD spectroscopy, similar to what was observed for Cdots@Van. Crucially, this chiral probe has been successfully utilized for cell imaging applications.
Collapse
Affiliation(s)
- Foroozan Feizi
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | | | - Ali Barati
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | - Farimah Mousavi
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran1517964311, Iran
| | - Maedeh Mahlooji
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran1517964311, Iran
| | - Mosslim Sedeghi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran 1411713116, Iran
| |
Collapse
|
8
|
Chen JN, Huang KX, Cheng PM, Qi MQ, Xu H, Chen J, Duan Y, Kong XJ, Zheng LS, Long LS. Strong NIR-II Magneto-Optical Activity of a Chiral Sm 15Cu 54 Cage. J Am Chem Soc 2024; 146:22913-22917. [PMID: 39110062 DOI: 10.1021/jacs.4c07346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The magneto-optical response of chiral materials holds significant potential for applications in physics, chemistry, and biology. However, exploration of the near-infrared (NIR) magneto-optical response remains limited. Herein, we report the synthesis and strong NIR-II magneto-optical activity of three pairs of chiral 3d-4f clusters of R/S-Ln15Cu54 (Ln = Sm, Gd, and Dy). Structural analysis reveals that R/S-Ln15Cu54 features a triangular prism cage with C3 symmetry. Interestingly, magnetic circular dichroism (MCD) spectra exhibit remarkable magneto-optical response in the NIR-II region, driven by the f-f transition. The maximum g-factor of R/S-Sm15Cu54 reaches 5.5 × 10-3 T-1 around 1300-1450 nm, surpassing values associated with DyIII and CuII ions. This remarkable NIR-II magneto-optical activity may be attributed to strong magnetic-dipole-allowed f-f transitions and helix chirality of the structure. This work not only presents the largest Ln-Cu clusters to date but also demonstrate the key role of magnetic-dipole-allowed transitions on magneto-optical activity.
Collapse
Affiliation(s)
- Jia-Nan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kai-Xin Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Ming Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Qiang Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaye Chen
- School of Chemical Science and Engineering, Tongji University 1239 Siping Road, Shanghai, 200092, China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University 1239 Siping Road, Shanghai, 200092, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Zhu X, Chen S, Xiao TH. Strong coupling of an epsilon-near-zero mode to a chiral plasmon. OPTICS LETTERS 2024; 49:4593-4596. [PMID: 39146111 DOI: 10.1364/ol.533057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
The reconfigurable chiroptical effect is highly desirable for spin photonics, chiral spectroscopy, and photocatalysis due to its merits for dynamic and broadband applications. The coupling of an epsilon-near-zero (ENZ) mode to a chiral plasmon is expected to enable active and effective manipulation of the chiroptical effect but remains unexplored. Here we, for the first time to our knowledge, propose and demonstrate the strong coupling of an ENZ mode to a chiral plasmon by using a hybrid system composed of two identical vertically placed gold nanorods and an in-between ENZ film. An analytical three-oscillator model combined with numerical simulations is established to study the coupling mechanism, which predicts a Rabi splitting up to 240 meV with an ENZ film thickness of 60 nm in circular dichroism.
Collapse
|
10
|
Kim GY, Kim S, Park KH, Jang H, Kim M, Nam TW, Song KM, Shin H, Park Y, Cho Y, Yeom J, Choi MJ, Jang MS, Jung YS. Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns. Nat Commun 2024; 15:6996. [PMID: 39143052 PMCID: PMC11324731 DOI: 10.1038/s41467-024-51179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Three-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing. Our customizable fabrication platform, directed by tailored interface polarity, enables flexible geometric control over a variety of one-, two-, and three-dimensional quantum dot architectures, achieving tunable and advanced optical features. For example, we demonstrate a two-dimensional quantum dot nanomesh with tuned subwavelength square perforations designed by finite-difference time-domain calculations, achieving an 8-fold enhanced photoluminescence due to the maximized optical resonance. Furthermore, a three-dimensional quantum dot chiral structure is also created via asymmetric stacking of one-dimensional quantum dot layers, realizing a pronounced circular dichroism intensity exceeding 20°.
Collapse
Affiliation(s)
- Geon Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Shinho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyeong Min Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hongjoo Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yeongin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, Pildong-ro 1-gil, Jung-gu, Seoul, Republic of Korea.
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Zhao T, Liu X, Nepal D, Park K, Vaia R, Nealey P, Knappenberger KL. Resolving plasmon-mediated high-order multiphoton excitation pathways in dolmen nanostructures using ultrafast nonlinear optical interferometry. J Chem Phys 2024; 161:054707. [PMID: 39092948 DOI: 10.1063/5.0218363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The multiphoton excitation pathways of plasmonic nanorod assemblies are described. By using dolmen structures formed from the directed assembly of three gold nanorods, plasmon-mediated three-photon excitation is resolved. These high-order multiphoton excitation channels were accessed by resonantly exciting a hybrid mode of the dolmen structure that was resonant with the 800-nm carrier wavelength of an ultrafast laser system. Rotation of the exciting field polarization to a non-resonant configuration did not generate third-order responses. Hence, the multiphoton excitation and resultant non-equilibrium electron distributions were generated by structure- and mode-selective excitation. Correlation between high-order and resonant plasmon excitation was achieved through sub-cycle time-resolved interferometric detection of incoherent nonlinear emission signals. The results illustrate the advantages of nonlinear optical interferometry and Fourier analysis for distinguishing plasmon-mediated processes from those that do not require plasmon excitation.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaoying Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Kyoungyeon Park
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Richard Vaia
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Paul Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth L Knappenberger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Jiang B, Mu M, Zhou Y, Zhang J, Li W. Nanoparticle-Empowered Core-Shell Microcapsules: From Architecture Design to Fabrication and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311897. [PMID: 38456762 DOI: 10.1002/smll.202311897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Compartmentalization is a powerful concept to integrate multiscale components with diverse functionalities into miniature architectures. Inspired by evolution-optimized cell compartments, synthetic core-shell capsules enable storage of actives and on-demand delivery of programmed functions, driving scientific progress across various fields including adaptive materials, sustainable electronics, soft robotics, and precision medicine. To simultaneously maximize structural stability and environmental sensitivity, which are the two most critical characteristics dictating performance, diverse nanoparticles are incorporated into microcapsules with a dense shell and a liquid core. Recent studies have revealed that these nano-additives not only enhance the intrinsic properties of capsules including mechanical robustness, optical behaviors, and thermal conductivity, but also empower dynamic features such as triggered release, deformable structures, and fueled mobility. In this review, the physicochemical principles that govern nanoparticle assembly during microencapsulation are examined in detail and the architecture-controlled functionalities are outlined. Through the analysis of how each primary method implants nanoparticles into microcapsules, their distinct spatial organizations within the core-shell structures are highlighted. Following a detailed discussion of the specialized functions enabled by specific nanoparticles, the vision of the required fundamental insights and experimental studies for this class of microcarriers to fulfill its potential are sketched.
Collapse
Affiliation(s)
- Bo Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Manrui Mu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenle Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
13
|
Liu Q, Liu X, Yu X, Zhang X, Zhu M, Cheng Y. Circularly Polarized Room Temperature Phosphorescence through Twisting-Induced Helical Structures from Polyvinyl Alcohol-Based Fibers Containing Hydrogen-Bonded Dyes. Angew Chem Int Ed Engl 2024; 63:e202403391. [PMID: 38717757 DOI: 10.1002/anie.202403391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 06/16/2024]
Abstract
Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08 s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65 MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
14
|
Liu Y, Hao A, Xing P. Ultrasensitive Solvatochirochromism of Single Benzene Chromophores. Chemistry 2024; 30:e202400059. [PMID: 38409631 DOI: 10.1002/chem.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Solvents influence the structure, aggregation and folding behaviors of solvatochromic compounds. Ultrasensitive solvent mediated chiroptical response is conducive to the fabrication of molecular platform for sensing and recognition, which however, remains great challenges in conceptual or applicable design. Here we report a cysteine-based single benzene chromophore system that shows ultrasensitivity to solvents. Compared to the ratiometrically responsive systems, the chiroptical activities could be triggered or inverted depending on the substituents of chiral entities with an ultralow solvent volume fraction (<1 vol %). One drop of dipolar solvents shall significantly induce the emergence or inversion of chiroptical signals in bulky phases. Based on the experimental and computational studies, the ultrasensitivity is contributed to the intimate interplay between solvents and chiral compounds that anchors the specific chiral conformation. It illustrates that structurally simple organic compounds without aggregation or folding behaviors possess pronounced solvatochiroptical properties, which sheds light on the next-generation of chiroptical sensors and switches.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| |
Collapse
|
15
|
Wang Z, Huang J, Liu W, Xiong C, Hu B. Automatically Aligned and Environment-Friendly Twisted Stacking Terahertz Chiral Metasurface with Giant Circular Dichroism for Rapid Biosensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38491983 DOI: 10.1021/acsami.3c18947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Chiral metasurfaces are capable of generating a huge superchiral field, which has great potential in optoelectronics and biosensing. However, the conventional fabrication process suffers greatly from time consumption, high cost, and difficult multilayer alignment, which hinder its commercial application. Herein, we propose a twisted stacking carbon-based terahertz (THz) chiral metasurface (TCM) based on laser-induced graphene (LIG) technology. By repeating a two-step process of sticking a polyimide film, followed by laser direct writing, the two layers of the TCM are aligned automatically in the fabrication. Laser manufacturing also brings such high processing speed that a TCM with a size of 15 × 15 mm can be prepared in 60 s. In addition, due to the greater dissipation of LIG than that of metals in the THz band, a giant circular dichroism (CD) of +99.5 to -99.6% is experimentally realized. The THz biosensing of bovine serum albumin enhanced by the proposed TCMs is then demonstrated. A wide sensing range (0.5-50 mg mL-1) and a good sensitivity [ΔCD: 2.09% (mg mL-1)-1, Δf: 0.0034 THz (mg mL-1)-1] are proved. This LIG-based TCM provides an environment-friendly platform for chiral research and has great application potential in rapid and low-cost commercial biosensing.
Collapse
Affiliation(s)
- Zongyuan Wang
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jianzhou Huang
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Weiguang Liu
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Chenjie Xiong
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Hu
- Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Kurtina DA, Zaytsev VB, Vasiliev RB. Chirality in Atomically Thin CdSe Nanoplatelets Capped with Thiol-Free Amino Acid Ligands: Circular Dichroism vs. Carboxylate Group Coordination. MATERIALS (BASEL, SWITZERLAND) 2024; 17:237. [PMID: 38204090 PMCID: PMC10779562 DOI: 10.3390/ma17010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Chiral semiconductor nanostructures and nanoparticles are promising materials for applications in biological sensing, enantioselective separation, photonics, and spin-polarized devices. Here, we studied the induction of chirality in atomically thin only two-monolayer-thick CdSe nanoplatelets (NPLs) grown using a colloidal method and exchanged with L-alanine and L-phenylalanine as model thiol-free chiral ligands. We have developed a novel two-step approach to completely exchange the native oleic acid ligands for chiral amino acids at the basal planes of NPLs. We performed an analysis of the optical and chiroptical properties of the chiral CdSe nanoplatelets with amino acids, which was supplemented by an analysis of the composition and coordination of ligands. After the exchange, the nanoplatelets retained heavy-hole, light-hole, and spin-orbit split-off exciton absorbance and bright heavy-hole exciton luminescence. Capping with thiol-free enantiomer amino acid ligands induced the pronounced chirality of excitons in the nanoplatelets, as proven by circular dichroism spectroscopy, with a high dissymmetry g-factor of up to 3.4 × 10-3 achieved for heavy-hole excitons in the case of L-phenylalanine.
Collapse
Affiliation(s)
- Daria A. Kurtina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vladimir B. Zaytsev
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Roman B. Vasiliev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
Kim DS, Kim M, Seo S, Kim JH. Nature-Inspired Chiral Structures: Fabrication Methods and Multifaceted Applications. Biomimetics (Basel) 2023; 8:527. [PMID: 37999168 PMCID: PMC10669407 DOI: 10.3390/biomimetics8070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse chiral structures observed in nature find applications across various domains, including engineering, chemistry, and medicine. Particularly notable is the optical activity inherent in chiral structures, which has emerged prominently in the field of optics. This phenomenon has led to a wide range of applications, encompassing optical components, catalysts, sensors, and therapeutic interventions. This review summarizes the imitations and applications of naturally occurring chiral structures. Methods for replicating chiral architectures found in nature have evolved with specific research goals. This review primarily focuses on a top-down approach and provides a summary of recent research advancements. In the latter part of this review, we will engage in discussions regarding the diverse array of applications resulting from imitating chiral structures, from the optical activity in photonic crystals to applications spanning light-emitting devices. Furthermore, we will delve into the applications of biorecognition and therapeutic methodologies, comprehensively examining and deliberating upon the multifaceted utility of chiral structures.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Myounggun Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Soonmin Seo
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
19
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|