1
|
Yoo BK, Lambry JC, Negrerie M. Controlling the trans effect induced by nitric oxide and carbon monoxide: H93C myoglobin versus H-NOX sensors and soluble guanylate cyclase. Protein Sci 2024; 33:e5231. [PMID: 39576123 PMCID: PMC11583245 DOI: 10.1002/pro.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Myoglobin (Mb) has been engineered to replace the proximal histidine (His93) with a cysteine in order to investigate the trans effect induced by diatomic ligands using time-resolved electronic absorption spectroscopy. This single mutation induces a change of heme coordination state and bonding character which change carbon monoxide (CO) and nitric oxide (NO) dynamics. In H93C Mb the increased Fe2+-S distance weakens this bond which is replaced with a distal Fe2+-His64 ligation. We measured dynamics very different from wild type Mb but similar with those measured in soluble guanylate cyclase (sGC). Whereas NO induces a direct negative trans effect, the strain on His64 ligation is sufficient to counteract the positive trans effect due to CO. After photodissociation, geminate recombination of NO to the transient 4-coordinate heme of H93C occurred with a fast time constant (6.9 ps) identical to that in sGC. Remarkably, we also observed picosecond geminate rebinding of CO to H93C Mb, similarly with sGC in the simultaneous presence of CO and an allosteric stimulator. This CO rebinding dynamics to the 4c-heme in H93C Mb was never measured in other Mb mutants and demonstrates the existence of 5-coordinate heme with CO, explaining the synergistic activation of sGC in presence of CO and a stimulator.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
2
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Sharma VK, Saini A, Fridman N, Gray HB, Gross Z. Reversible Reactions of Nitric Oxide with a Binuclear Iron(III) Nitrophorin Mimic. Chemistry 2024; 30:e202302860. [PMID: 37953366 PMCID: PMC11410176 DOI: 10.1002/chem.202302860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Construction of functional synthetic systems that can reversibly bind and transport the most biologically important gaseous molecules, oxygen and nitric oxide (NO), remains a contemporary challenge. Myoglobin and nitrophorin perform these respective tasks employing a protein-embedded heme center where one axial iron site is occupied by a histidine residue and the other is available for small molecule ligation, structural features that are extremely difficult to mimic in protein-free environments. Indeed, the hitherto reported designs rely on sophisticated multistep syntheses for limiting access to one of the two axial coordination sites in small molecules. We have shown previously that binuclear Ga(III) and Al(III) corroles have available axial sites, and now report a redox-active binuclear Fe(III) corrole, (1-Fe)2 , in which each (corrolato)Fe(III) center is 5-coordinate, with one axial site occupied by an imidazole from the other corrole. The binuclear structure is further stabilized by attractive forces between the corrole π systems. Reaction of NO with (1-Fe)2 affords mononuclear iron nitrosyls, and of functional relevance, the reaction is reversible: nitric oxide is released upon purging the nitrosyls with inert gases, thereby restoring (1-Fe)2 in solutions or films.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Institution, Haifa, 32000, Israel
| | - Azad Saini
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Institution, Haifa, 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Institution, Haifa, 32000, Israel
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, 91125, USA
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Institution, Haifa, 32000, Israel
| |
Collapse
|
4
|
C S AK, Das S, Kulbir, Bhardwaj P, Sk MP, Kumar P. Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} 5 and {CoNO} 8. Dalton Trans 2023; 52:16492-16499. [PMID: 37874255 DOI: 10.1039/d3dt03177b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Here, we report the nitric oxide oxygenation (NOO) reactions of two distinct metal nitrosyls {Co-nitrosyl (S = 0) vs. Cr-nitrosyl (S = 1/2)}. In this regard, we synthesized and characterized [(BPMEN)Co(NO)]2+ ({CoNO}8, 1) to compare its NOO reaction with that of [(BPMEN)Cr(NO)(Cl-)]+ ({CrNO}5, 2), having a similar ligand framework. Kinetic measurements showed that {CrNO}5 is thermally more stable than {CoNO}8. Complexes 1 and 2, upon reaction with the superoxide anion (O2˙-), generate [(BPMEN)CoII(NO2-)2] (CoII-NO2-, 3) and [(BPMEN)CrIII(NO2-)Cl-]+ (CrIII-NO2-, 4), respectively, with O2 evolution. Furthermore, analysis of these NOO reactions and tracking of the N-atom using 15N-labeled NO (15NO) revealed that the N-atoms of 3 (CoII-15NO2-) and 4 (CrIII-15NO2-) derive from the nitrosyl (15NO) moieties of 1 and 2, respectively. This work represents a comparative study of oxidation reactions of {CoNO}8vs. {CrNO}5, showing different rates of the NOO reactions due to different thermal stability. To complete the NOM cycle, we reacted 3 and 4 with NO, and surprisingly, only 3 generated {CoNO}8 species, while 4 was unreactive towards NO. Furthermore, the phenol ring nitration test, performed using 2,4-di-tert-butylphenol (2,4-DTBP), suggested the presence of a proposed peroxynitrite (PN) intermediate in the NOO reactions of 1 and 2.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University (AMU) Aligarh, Uttar Pradesh 202001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
5
|
Coates MR, Banerjee A, Odelius M. Simulations of the Aqueous "Brown-Ring" Complex Reveal Fluctuations in Electronic Character. Inorg Chem 2023; 62:16854-16866. [PMID: 37782031 PMCID: PMC10583216 DOI: 10.1021/acs.inorgchem.3c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 10/03/2023]
Abstract
Ab initio molecular dynamics (AIMD) simulations of the aqueous [Fe(H2O)5(NO)]2+ "brown-ring" complex in different spin states, in combination with multiconfigurational quantum chemical calculations, show a structural dependence on the electronic character of the complex. Sampling in the quartet and sextet ground states show that the multiplicity is correlated with the Fe-N distance. This provides a motivation for a rigid Fe-N scan in the isolated "brown-ring" complex to investigate how the multiconfigurational wave function and the electron density change around the FeNO moiety. Our results show that subtle changes in the Fe-N distance produce a large response in the electronic configurations underlying the quartet wave function. However, while changes in spin density and potential energy are pronounced, variations in charge are negligible. These trends within the FeNO moiety are preserved in structural sampling of the AIMD simulations, despite distortions present in other degrees of freedom in the bulk solution.
Collapse
Affiliation(s)
- Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Ambar Banerjee
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
7
|
Shino S, Nasuno R, Takagi H. S-glutathionylation of fructose-1,6-bisphosphate aldolase confers nitrosative stress tolerance on yeast cells via a metabolic switch. Free Radic Biol Med 2022; 193:319-329. [PMID: 36272668 DOI: 10.1016/j.freeradbiomed.2022.10.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells. Our proteomic and immunochemical analyses demonstrated that the fructose-1,6-bisphosphate aldolase Fba1 underwent S-glutathionylation at Cys112 in response to nitrosative stress. The enzyme assay using a recombinant Fba1 demonstrated that S-glutathionylation at Cys112 inhibited the Fba1 activity. Moreover, we revealed that the cytosolic glutaredoxin Grx1 reduced S-glutathionylation of Fba1 and then recovered its activity. The intracellular contents of fructose-1,6-bisphosphate and 6-phosphogluconate, which are a substrate of Fba1 and an intermediate of the pentose phosphate pathway (PPP), respectively, were increased in response to nitrosative stress, suggesting that the metabolic flow was switched from glycolysis to PPP. The cellular level of NADPH, which is produced in PPP and functions as a reducing force for nitric oxide detoxifying enzymes, was also elevated under nitrosative stress conditions, but this increase was canceled by the amino acid substitution of Cys112 to Ser in Fba1. Furthermore, the viability of yeast cells expressing Cys112Ser-Fba1 was significantly lower than that of the wild-type cells under nitrosative stress conditions. These results indicate that the inhibition of Fba1 by its S-glutathionylation changes metabolism from glycolysis to PPP to increase NADPH production, leading to nitrosative stress tolerance in yeast cells.
Collapse
Affiliation(s)
- Seiya Shino
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
8
|
Cordier BA, Sawaya NPD, Guerreschi GG, McWeeney SK. Biology and medicine in the landscape of quantum advantages. J R Soc Interface 2022; 19:20220541. [PMID: 36448288 PMCID: PMC9709576 DOI: 10.1098/rsif.2022.0541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Quantum computing holds substantial potential for applications in biology and medicine, spanning from the simulation of biomolecules to machine learning methods for subtyping cancers on the basis of clinical features. This potential is encapsulated by the concept of a quantum advantage, which is contingent on a reduction in the consumption of a computational resource, such as time, space or data. Here, we distill the concept of a quantum advantage into a simple framework to aid researchers in biology and medicine pursuing the development of quantum applications. We then apply this framework to a wide variety of computational problems relevant to these domains in an effort to (i) assess the potential of practical advantages in specific application areas and (ii) identify gaps that may be addressed with novel quantum approaches. In doing so, we provide an extensive survey of the intersection of biology and medicine with the current landscape of quantum algorithms and their potential advantages. While we endeavour to identify specific computational problems that may admit practical advantages throughout this work, the rapid pace of change in the fields of quantum computing, classical algorithms and biological research implies that this intersection will remain highly dynamic for the foreseeable future.
Collapse
Affiliation(s)
- Benjamin A. Cordier
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97202, USA
| | | | | | - Shannon K. McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97202, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97202, USA
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97202, USA
| |
Collapse
|
9
|
Structural, spectral, and photoreactivity properties of mono and polymetallated-2,2′-bipyridine ruthenium(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Nasuno R, Suzuki S, Oiki S, Hagiwara D, Takagi H. Identification and Functional Analysis of GTP Cyclohydrolase II in Candida glabrata in Response to Nitrosative Stress. Front Microbiol 2022; 13:825121. [PMID: 35308400 PMCID: PMC8924521 DOI: 10.3389/fmicb.2022.825121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reactive nitrogen species (RNS) are signal molecules involved in various biological events; however, excess levels of RNS cause nitrosative stress, leading to cell death and/or cellular dysfunction. During the process of infection, pathogens are exposed to nitrosative stress induced by host-derived RNS. Therefore, the nitrosative stress resistance mechanisms of pathogenic microorganisms are important for their infection and pathogenicity, and could be promising targets for antibiotics. Previously, we demonstrated that the RIB1 gene encoding GTP cyclohydrolase II (GCH2), which catalyzes the first step of the riboflavin biosynthesis pathway, is important for nitrosative stress resistance in the yeast Saccharomyces cerevisiae. Here, we identified and characterized the RIB1 gene in the opportunistic pathogenic yeast Candida glabrata. Our genetic and biochemical analyses indicated that the open reading frame of CAGL0F04279g functions as RIB1 in C. glabrata (CgRIB1). Subsequently, we analyzed the effect of CgRIB1 on nitrosative stress resistance by a growth test in the presence of RNS. Overexpression or deletion of CgRIB1 increased or decreased the nitrosative stress resistance of C. glabrata, respectively, indicating that GCH2 confers nitrosative stress resistance on yeast cells. Moreover, we showed that the proliferation of C. glabrata in cultures of macrophage-like cells required the GCH2-dependent nitrosative stress detoxifying mechanism. Additionally, an infection assay using silkworms as model host organisms indicated that CgRIB1 is indispensable for the virulence of C. glabrata. Our findings suggest that the GCH2-dependent nitrosative stress detoxifying mechanism is a promising target for the development of novel antibiotics.
Collapse
Affiliation(s)
- Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Soma Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Sayoko Oiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
11
|
Fateminasab F, de la Lande A, Omidyan R. Insights into the effect of distal histidine and water hydrogen bonding on NO ligation to ferrous and ferric heme: a DFT study. RSC Adv 2022; 12:4703-4713. [PMID: 35425484 PMCID: PMC8981399 DOI: 10.1039/d1ra08398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method. It has been predicted that the distal histidine significantly stabilizes the interaction of NO ferrous-heme (by −2.70 kcal mol−1). Also, water hydrogen bonding is quite effective in strengthening the Fe–NO bond in ferrous heme. In contrast in ferric heme, due to the large distance between the H2O and O(NO) and lack of hydrogen bonding, the distal histidine exhibits only a slight effect on the binding of NO to the ferric analogue. Concerning the bond nature of FeII–NO and FeIII–NO in heme, a QTAIM analysis predicts a partially covalent and ionic bond nature in both systems. The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method.![]()
Collapse
Affiliation(s)
- Fatemeh Fateminasab
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| | - Aurelien de la Lande
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 91405 Orsay France
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| |
Collapse
|
12
|
Das S, Ray S, Devi T, Ghosh S, Harmalkar SS, Dhuri SN, Mondal P, Kumar P. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction. Chem Sci 2022; 13:1706-1714. [PMID: 35282634 PMCID: PMC8827119 DOI: 10.1039/d1sc06803b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Small molecule activation & their transfer reactions in biological or catalytic reactions are greatly influenced by the metal-centers and the ligand frameworks. Here, we report the metal-directed nitric oxide (NO)...
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Soumyadip Ray
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Sunder N Dhuri
- School of Chemical Sciences, Goa University Goa-403206 India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
13
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
14
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
15
|
Tung CY, Tseng YT, Lu TT, Liaw WF. Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorg Chem 2021; 60:15846-15873. [PMID: 34009960 DOI: 10.1021/acs.inorgchem.1c00566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(μ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(μ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.
Collapse
Affiliation(s)
- Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| |
Collapse
|
16
|
Guadalupe Hernández J, Thangarasu P. A critical evaluation of [ML(ONO)]+ (M = Fe, Ru, Os) as nitric oxide precursor influenced by spin multiplicity and geometrical parameters (M-O-NO and MO-N-O) for the NO release: A theoretical study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
18
|
Pal N, Jana M, Majumdar A. Reduction of NO by diiron complexes in relation to flavodiiron nitric oxide reductases. Chem Commun (Camb) 2021; 57:8682-8698. [PMID: 34373873 DOI: 10.1039/d1cc03149j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of nitric oxide (NO) to nitrous oxide (N2O) is associated with immense biological and health implications. Flavodiiron nitric oxide reductases (FNORs) are diiron containing enzymes that catalyze the two electron reduction of NO to N2O and help certain pathogenic bacteria to survive under "nitrosative stress" in anaerobic growth conditions. Consequently, invading bacteria can proliferate inside the body of mammals by bypassing the immune defense mechanism involving NO and may thus lead to harmful infections. Various mechanisms, namely the direct reduction, semireduction, superreduction and hyponitrite mechanisms, have been proposed over time for catalytic NO reduction by FNORs. Model studies in relation to the diiron active site of FNORs have immensely helped to replicate the minimal structure-reactivity relationship and to understand the mechanism of NO reduction. A brief overview of the FNOR activity and the proposed reaction mechanisms followed by a systematic description and detailed analysis of the model studies is presented, which describes the development in the area of NO reduction by diiron complexes and its implications. A great deal of successful modeling chemistry as well as the shortcomings related to the synthesis and reactivity studies is discussed in detail. Finally, future prospects in this particular area of research are proposed, which in due course may bring more clarity in the understanding of this important redox reaction.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
19
|
Investigation of the interaction of the cationic nitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]+ with molecular oxygen. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Shahid S, Ali M, Legaspi-Humiston D, Wilcoxen J, Pacheco AA. A Kinetic Investigation of the Early Steps in Cytochrome c Nitrite Reductase (ccNiR)-Catalyzed Reduction of Nitrite. Biochemistry 2021; 60:2098-2115. [PMID: 34143605 DOI: 10.1021/acs.biochem.1c00172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decaheme enzyme cytochrome c nitrite reductase (ccNiR) catalyzes reduction of nitrite to ammonium in a six-electron, eight-proton process. With a strong reductant as the electron source, ammonium is the sole product. However, intermediates accumulate when weaker reductants are employed, facilitating study of the ccNiR mechanism. Herein, the early stages of Shewanella oneidensis ccNiR-catalyzed nitrite reduction were investigated by using the weak reductants N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and ferrocyanide. In stopped-flow experiments, reduction of nitrite-loaded ccNiR by TMPD generated a transient intermediate, identified as FeH1II(NO2-), where FeH1 represents the ccNiR active site. FeH1II(NO2-) accumulated rapidly and was then more slowly converted to the two-electron-reduced moiety {FeH1NO}7; ccNiR was not reduced beyond the {FeH1NO}7 state. The midpoint potentials for sequential reduction of FeH1III(NO2-) to FeH1II(NO2-) and then to {FeH1NO}7 were estimated to be 130 and 370 mV versus the standard hydrogen electrode, respectively. FeH1II(NO2-) does not accumulate at equilibrium because its reduction to {FeH1NO}7 is so much easier than the reduction of FeH1III(NO2-) to FeH1II(NO2-). With weak reductants, free NO• was released from nitrite-loaded ccNiR. The release of NO• from {FeH1NO}7 is exceedingly slow (k ∼ 0.001 s-1), but it is somewhat faster (k ∼ 0.050 s-1) while FeH1III(NO2-) is being reduced to {FeH1NO}7; then, the release of NO• from the undetectable transient {FeH1NO}6 can compete with reduction of {FeH1NO}6 to {FeH1NO}7. CcNiR appears to be optimized to capture nitrite and minimize the release of free NO•. Nitrite capture is achieved by reducing bound nitrite with even weak electron donors, while NO• release is minimized by stabilizing the substitutionally inert {FeH1NO}7 over the more labile {FeH1NO}6.
Collapse
Affiliation(s)
- Shahid Shahid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mahbbat Ali
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Desiree Legaspi-Humiston
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - A Andrew Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
21
|
Xin H, Wang F, Luo R, Lei J. Parallel Lipid Peroxide Accumulation Strategy Based on Bimetal-Organic Frameworks for Enhanced Ferrotherapy. Chemistry 2021; 27:4307-4311. [PMID: 33377225 DOI: 10.1002/chem.202005114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Ferroptosis, a nonapoptotic cell-death pathway, is commonly regulated by ether lipid peroxide generation or glutathione consumption. In this work, a parallel lipid peroxide accumulation strategy was designed based on catalytic metal-organic frameworks (MOFs) for enhanced ferrotherapy. The bimetallic MOF was synthesized with iron porphyrin as a linker and cupric ion as a metal node, and erastin, a ferroptosis inducer, was sandwiched between the MOF layers with 4,4'-dipyridyl disulfide as spacers. In a tumor microenvironment, erastin was released from the layered MOFs through glutathione-responsive cleavage. The exfoliated MOFs served as a dual Fenton reaction inducer to generate numerous hydroxyl radicals for the accumulation of lipid peroxide, while erastin-aggravated glutathione depletion down-regulated glutathione peroxidase 4; this then inhibited the consumption of lipid peroxide. Therefore, a parallel lipid peroxide accumulation strategy was established for enhanced ferrotherapy that effectively inhibited tumor growth in live mice, opening up new opportunities to treat apoptosis-insensitive tumors.
Collapse
Affiliation(s)
- Hao Xin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Fang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
22
|
Understanding of [RuL(ONO)] n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. J Inorg Biochem 2021; 218:111406. [PMID: 33773324 DOI: 10.1016/j.jinorgbio.2021.111406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Generation of nitric oxide has been a great interest in cell biology as it involves a wide range of physiological functions including the blood pressure control; thus the exploitation of ruthenium chemistry has been motivated in biochemical and clinical points of view. Herein, the structural and electronic properties of ruthenium(II) complexes of 1,4,8,11-tetraazacyclotetradecane containing pyridyl, imidazole and benzimidazole (L1, L2, L3) were analyzed theoretically in the context of how spin multiplicity plays a crucial role influencing the NO release from the LRu-ONO moiety. The results show that β-cleavage of nitrito in the complex motivates the release of NO as it depends highly on total spin multiplicity of metal ion altering significantly the geometrical parameters; particularly, a decrease of bond length of Ru-ONO is highly associated with an increase of RuO-NO bond distance that correlates with the decrease of the Ru-O-NO bond angle ultimately leading to the release of NO; apparently, the bending nature of Ru-O-NO defines its release from the complex. This is consistent with orbital energy (dx2-y2) where the stabilization of axial Ru-O bond in the complex was observed, and proved by molecular orbital studies. In the excitation of the complex (singlet to triplet or singlet to quintet), the NO release has been facilitated, agreeing with the Gibbs free energy data where a lower energy for NO release was obtained compared to other types of excitations. In the calculated electronic spectra, a visible broad band with relatively high intensity for [RuL1ONO]+ was observed, agreeing approximately with reported experimental results.
Collapse
|
23
|
Cerrone J, Lee CM, Mi T, Morgan ET. Nitric Oxide Mediated Degradation of CYP2A6 via the Ubiquitin-Proteasome Pathway in Human Hepatoma Cells. Drug Metab Dispos 2020; 48:544-552. [PMID: 32350062 PMCID: PMC7289052 DOI: 10.1124/dmd.119.089961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Several cytochrome P450 enzymes are known to be down-regulated by nitric oxide (NO). CYP2A6 is responsible for the metabolism of nicotine and several other xenobiotics, but its susceptibility to down-regulation by NO has not been reported. To address this question, we used Huh7 human hepatoma cell lines to express CYP2A6 with a C-terminal V5 tag (CYP2A6V5). NO donor treatment [dipropylenetriamine NONOate (DPTA)] down-regulated CYP2A6 protein to approximately 40% of control levels in 4 hours. An NO scavenging agent protected CYP2A6 from down-regulation by DPTA in a concentration-dependent manner, demonstrating that the down-regulation is NO-dependent. Experiments with the protein synthesis inhibitor cycloheximide showed that CYP2A6 protein down-regulation occurs posttranslationally. In the presence of proteasome inhibitors MG132 or bortezomib, NO-treated cells showed an accumulation of a high molecular mass signal, whereas autophagy inhibitors chloroquine and 3-methyladenine and the lysosomal and calpain inhibitor E64d had no effect. Immunoprecipitation of CYP2A6 followed by Western blotting with an antiubiquitin antibody showed that the high molecular mass species contain polyubiquitinated CYP2A6 protein. This suggests that NO led to the degradation of protein via the ubiquitin-proteasome pathway. The down-regulation by NO was blocked by the reversible CYP2A6 inhibitor pilocarpine but not by the suicide inhibitor methoxsalen, demonstrating that down-regulation requires NO access to the active site but does not require catalytic activity of the enzyme. These findings provide novel insights toward the regulation of CYP2A6 in a human cell line and can influence our understanding of CYP2A6-related drug metabolism. SIGNIFICANCE STATEMENT: This study demonstrates that the nicotine metabolizing enzyme CYP2A6 is down-regulated by nitric oxide, a molecule produced in large amounts in the context of inflammation and that is also inhaled from cigarette smoke. This occurs via ubiquitination and proteasomal degradation, and does not require catalytic activity of the enzyme. This work adds to the growing knowledge of the selective effect and mechanism of action of nitric oxide (NO) on cytochrome P450 enzymes and suggests a possible novel mode of interaction between nicotine and NO in cigarette smokers.
Collapse
Affiliation(s)
- John Cerrone
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia
| | - Tian Mi
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia
| | - Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Amanullah S, Dey A. The role of porphyrin peripheral substituents in determining the reactivities of ferrous nitrosyl species. Chem Sci 2020; 11:5909-5921. [PMID: 32832056 PMCID: PMC7407271 DOI: 10.1039/d0sc01625j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes.
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes. The former reduces NO2– to NO in the denitrification pathway while the latter reduces NO2– to NH4+ in a dissimilatory nitrite reduction. With very similar electron transfer partners and heme based active sites, the origin of this difference in reactivity has remained unexplained. Differences in the structure of the heme d1 (Cd1NiR), which bears electron-withdrawing groups and has saturated pyrroles, relative to heme c (CcNiR) are often invoked to explain these reactivities. A series of iron porphyrinoids, designed to model the electron-withdrawing peripheral substitution as well as the saturation present in heme d1 in Cd1NiR, and their NO adducts were synthesized and their properties were investigated. The data clearly show that the presence of electron-withdrawing groups (EWGs) and saturated pyrroles together in a synthetic porphyrinoid (FeDEsC) weakens the Fe–NO bond in {FeNO}7 adducts along with decreasing the bond dissociation free energies (BDFENH) of the {FeHNO}8 species. The EWG raises the E° of the {FeNO}7/8 process, making the electron transfer (ET) facile, but decreases the pKa of {FeNO}8 species, making protonation (PT) difficult, while saturation has the opposite effect. The weakening of the Fe–NO bonding biases the {FeNO}7 species of FeDEsC for NO dissociation, as in Cd1NiR, which is otherwise set-up for a proton-coupled electron transfer (PCET) to form an {FeHNO}8 species eventually leading to its further reduction to NH4+.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| |
Collapse
|
25
|
Coleman RE, Vilbert AC, Lancaster KM. The Heme-Lys Cross-Link in Cytochrome P460 Promotes Catalysis by Enforcing Secondary Coordination Sphere Architecture. Biochemistry 2020; 59:2289-2298. [PMID: 32525655 DOI: 10.1021/acs.biochem.0c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome (cyt) P460 is a c-type monoheme enzyme found in ammonia-oxidizing bacteria (AOB) and methanotrophs; additionally, genes encoding it have been found in some pathogenic bacteria. Cyt P460 is defined by a unique post-translational modification to the heme macrocycle, where a lysine (Lys) residue covalently attaches to the 13' meso carbon of the porphyrin, modifying this heme macrocycle into the enzyme's eponymous P460 cofactor, similar to the cofactor found in the enzyme hydroxylamine oxidoreductase. This cross-link imbues the protein with unique spectroscopic properties, the most obvious of which is the enzyme's green color in solution. Cyt P460 from the AOB Nitrosomonas europaea is a homodimeric redox enzyme that produces nitrous oxide (N2O) from 2 equiv of hydroxylamine. Mutation of the Lys cross-link results in spectroscopic features that are more similar to those of standard cyt c' proteins and renders the enzyme catalytically incompetent for NH2OH oxidation. Recently, the necessity of a second-sphere glutamate (Glu) residue for redox catalysis was established; it plausibly serves as proton relay during the first oxidative half of the catalytic cycle. Herein, we report the first crystal structure of a cross-link deficient cyt P460. This structure shows that the positioning of the catalytically essential Glu changes by approximately 0.8 Å when compared to a cross-linked, catalytically competent cyt P460. It appears that the heme-Lys cross-link affects the relative position of the P460 cofactor with respect to the second-sphere Glu residue, therefore dictating the catalytic competency of the enzyme.
Collapse
Affiliation(s)
- Rachael E Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Avery C Vilbert
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
27
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
28
|
Anam K, Nasuno R, Takagi H. A Novel Mechanism for Nitrosative Stress Tolerance Dependent on GTP Cyclohydrolase II Activity Involved in Riboflavin Synthesis of Yeast. Sci Rep 2020; 10:6015. [PMID: 32265460 PMCID: PMC7138843 DOI: 10.1038/s41598-020-62890-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/20/2020] [Indexed: 11/23/2022] Open
Abstract
The biological functions of nitric oxide (NO) depend on its concentration, and excessive levels of NO induce various harmful situations known as nitrosative stress. Therefore, organisms possess many kinds of strategies to regulate the intracellular NO concentration and/or to detoxify excess NO. Here, we used genetic screening to identify a novel nitrosative stress tolerance gene, RIB1, encoding GTP cyclohydrolase II (GTPCH2), which catalyzes the first step in riboflavin biosynthesis. Our further analyses demonstrated that the GTPCH2 enzymatic activity of Rib1 is essential for RIB1-dependent nitrosative stress tolerance, but that riboflavin itself is not required for this tolerance. Furthermore, the reaction mixture of a recombinant purified Rib1 was shown to quench NO or its derivatives, even though formate or pyrophosphate, which are byproducts of the Rib1 reaction, did not, suggesting that the reaction product of Rib1, 2,5-diamino-6-(5-phospo-d-ribosylamino)-pyrimidin-4(3 H)-one (DARP), scavenges NO or its derivatives. Finally, it was revealed that 2,4,5-triamino-1H-pyrimidin-6-one, which is identical to a pyrimidine moiety of DARP, scavenged NO or its derivatives, suggesting that DARP reacts with N2O3 generated via its pyrimidine moiety.
Collapse
Affiliation(s)
- Khairul Anam
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46, Cibinong, 16911, Bogor, West Java, Indonesia
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
29
|
Theoretical Study on Electronic Structural Properties of Catalytically Reactive Metalloporphyrin Intermediates. Catalysts 2020. [DOI: 10.3390/catal10020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metalloporphyrins have attracted great attention in the potential application of biomimetic catalysis. Especially, they were widely investigated as green catalysts in the chemical oxidation of various hydrocarbons through the catalytic activation of molecular oxygen. The structural properties of active central metal ions were reported to play a decisive role in catalytic activity. However, those delicate structural changes are difficult to be experimentally captured or elucidated in detail. Herein, we explored the electronic structural properties of metalloporphyrins (metal porphyrin (PMII, PMIIICl)) and their corresponding catalytically active intermediates (metal(III)-peroxo(PMIII-O2), metal(III)-hydroperoxo(PMIII-OH), and metal(IV)-oxo(PMIV=O), (M=Fe, Mn, and Co)) through the density functional theory method. The ground states of these intermediates were determined based on the assessment of relative energy and the corresponding geometric structures of ground states also further confirmed the stability of energy. Furthermore, our analyses of Mulliken charges and frontier molecular orbitals revealed the potential catalytic behavior of reactive metalloporphyrin intermediates.
Collapse
|
30
|
Rahman MH, Ryan MD, Vazquez-Lima H, Alemayehu A, Ghosh A. Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence. Inorg Chem 2020; 59:3232-3238. [PMID: 32053351 PMCID: PMC7997370 DOI: 10.1021/acs.inorgchem.9b03613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recent DFT calculations
have suggested that iron nitrosyl triarylcorrole
complexes have substantial {FeNO}7–corrole•2– character. With this formulation, reduction of Fe(C)(NO) complexes,
where C = triarylcorrole, should be centered on the corrole macrocycle
rather than on the {FeNO}7 moiety. To verify this proposition,
visible and infrared spectroelectrochemical studies of Fe(C)(NO) were
carried out and the results were interpreted using DFT (B3LYP/STO-TZP)
calculations. The first reduction of Fe(C)(NO) led to significant
changes in the Soret and Q-band regions of the visible spectrum as
well as to a significant downshift in the νNO and
changes in the corrole vibrational frequencies. DFT calculations,
which showed that the electron was mostly added to the corrole ligand
(85%), were also able to predict the observed shifts in the νNO and corrole bands upon reduction. These results underscore
the importance of monitoring both the corrole and nitrosyl vibrations
in ascertaining the site of reduction. By contrast, the visible spectroelectrochemistry
of the second reduction revealed only minor changes in the Soret band
upon reduction, consistent with the reduction of the FeNO moiety. For the reduction of FeNO moiety or corrole,
infrared spectroelectrochemistry
and DFT calculations were performed and experimental evidence was
obtained for the noninnocence of the corrole in Fe(triphenylcorrole)(NO).
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | - Michael D Ryan
- Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | - Hugo Vazquez-Lima
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway.,Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. IC9, CU, San Manuel, 72570 Puebla, Puebla, Mexico
| | - Abraham Alemayehu
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
31
|
Galinato MGI, Brocious EP, Paulat F, Martin S, Skodack J, Harland JB, Lehnert N. Elucidating the Electronic Structure of High-Spin [MnIII(TPP)Cl] Using Magnetic Circular Dichroism Spectroscopy. Inorg Chem 2020; 59:2144-2162. [DOI: 10.1021/acs.inorgchem.9b02599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mary Grace I. Galinato
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- School of Science-Chemistry, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Emily P. Brocious
- School of Science-Chemistry, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Florian Paulat
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Sherri Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Joshua Skodack
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B. Harland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
32
|
Yenuganti M, Das S, Kulbir, Ghosh S, Bhardwaj P, Pawar SS, Sahoo SC, Kumar P. Nitric oxide dioxygenation (NOD) reactions of CoIII-peroxo and NiIII-peroxo complexes: NODversusNO activation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01023e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A comparative study of “nitric oxide dioxygenationversusdioxygen or nitric oxide activation”.
Collapse
Affiliation(s)
- Mahesh Yenuganti
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Sandip Das
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Kulbir
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Somnath Ghosh
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Prabhakar Bhardwaj
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Sonali Shivaji Pawar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | | | - Pankaj Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| |
Collapse
|
33
|
Marcolongo JP, Venâncio MF, Rocha WR, Doctorovich F, Olabe JA. NO/H2S “Crosstalk” Reactions. The Role of Thionitrites (SNO–) and Perthionitrites (SSNO–). Inorg Chem 2019; 58:14981-14997. [DOI: 10.1021/acs.inorgchem.9b01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan P. Marcolongo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Mateus F. Venâncio
- Laboratório de Estudos Computacionais em Sistemas Moleculares, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Willian R. Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Aarabi M, Soorkia S, Grégoire G, Broquier M, de la Lande A, Soep B, Omidyan R, Shafizadeh N. Water binding to Fe III hemes studied in a cooled ion trap: characterization of a strong 'weak' ligand. Phys Chem Chem Phys 2019; 21:21329-21340. [PMID: 31531442 DOI: 10.1039/c9cp03608c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of a water molecule with ferric heme-iron protoporphyrin ([PP FeIII]+) has been investigated in the gas phase in an ion trap and studied theoretically by density functional theory. It is found that the interaction of water with ferric heme leads to a stable [PP-FeIII-H2O]+ complex in the intermediate spin state (S = 3/2), in the same state as its unligated [PP-FeIII]+ homologue, without spin crossing during water attachment. Using the Van't Hoff equation, the reaction enthalpy for the formation of a Fe-OH2 bond has been determined for [PP-FeIII-H2O]+ and [PP-FeIII-(H2O)2]+. The corrected binding energy for a single Fe-H2O bond is -12.2 ± 0.6 kcal mol-1, while DFT calculations at the OPBE level yield -11.7 kcal mol-1. The binding energy of the second ligation yielding a six coordinated FeIII atom is decreased with a bond energy of -9 ± 0.9 kcal mol-1, well reproduced by calculations as -7.1 kcal mol-1. However, calculations reveal features of a weaker bond type, such as a rather long Fe-O bond with 2.28 Å for the [PP-FeIII-H2O]+ complex and the absence of a spin change by complexation. Thus despite a strong bond with H2O, the FeIII atom does not show, through theoretical modelling, a strong acceptor character in its half filled 3dz2 orbital. It is also observed that the binding properties of H2O to hemes seem strikingly specific to ferric heme and we have shown, experimentally and theoretically, that the affinity of H2O for protonated heme [H PP-Fe]+, an intermediate between FeIII and FeII, is strongly reduced compared to that for ferric heme.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Satchin Soorkia
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| | - Gilles Grégoire
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| | - Michel Broquier
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France. and Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Aurélien de la Lande
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000, 15, rue Jean Perrin, 91405 Orsay Cedex, France
| | - Benoît Soep
- LIDYL, CEA, CNRS, Université Paris-Saclay, UMR 9222 CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Niloufar Shafizadeh
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| |
Collapse
|
35
|
Puthiyaveetil Yoosaf MA, Ghosh S, Narayan Y, Yadav M, Sahoo SC, Kumar P. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide. Dalton Trans 2019; 48:13916-13920. [PMID: 31498351 DOI: 10.1039/c9dt02834j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we report a new pathway for nitrite reduction chemistry, formation of cobalt-nitrosyl ({CoII-NO}8) with H2O2 in the reaction of a CoII-nitrito complex with a one-fold acid (H+) via the formation of a CoII-nitrous acid intermediate ({CoII-ONOH}). Mechanistic investigations using 15N-labeled-15NO2- revealed that the N-atom in the {CoII-NO}8 complex is derived from the nitrito ligand, and H2O2 came from the homolysis of the ON-OH moiety. Spectral evidence supporting the formation of the CoII-ONOH intermediate and the generation of H2O2 is also presented.
Collapse
Affiliation(s)
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Yatheesh Narayan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Munendra Yadav
- Department of Chemistry, Punjab University, Punjab, Chandigarh, India
| | - Subash Chandra Sahoo
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
36
|
Lehnert N, Fujisawa K, Camarena S, Dong HT, White CJ. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Stephanie Camarena
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Corey J. White
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
37
|
Chen YJ, Wu SC, Wang HC, Wu TH, Yuan SSF, Lu TT, Liaw WF, Wang YM. Activation of Angiogenesis and Wound Healing in Diabetic Mice Using NO-Delivery Dinitrosyl Iron Complexes. Mol Pharm 2019; 16:4241-4251. [PMID: 31436106 DOI: 10.1021/acs.molpharmaceut.9b00586] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In diabetes, abnormal angiogenesis due to hyperglycemia and endothelial dysfunction impairs wound healing and results in high risks of diabetic foot ulcers and mortality. Alternative therapeutic methods were attempted to prevent diabetic complications through the activation of endothelial nitric oxide synthase. In this study, direct application of nitric oxide using dinitrosyl iron complexes (DNICs) to promote angiogenesis and wound healing under physiological conditions and in diabetic mice is investigated. Based on in vitro and in vivo studies, DNIC [Fe2(μ-SCH2CH2OH)2(NO)4] (DNIC-1) with a sustainable NO-release reactivity (t1/2 = 27.4 ± 0.5 h at 25 °C and 16.8 ± 1.8 h at 37 °C) activates the NO-sGC-cGMP pathway and displays the best pro-angiogenesis activity overwhelming other NO donors and the vascular endothelial growth factor. Moreover, this pro-angiogenesis effect of DNIC-1 restores the impaired angiogenesis in the ischemic hind limb and accelerates the recovery rate of wound closure in diabetic mice. This study translates synthetic DNIC-1 into a novel therapeutic agent for the treatment of diabetes and highlights its sustainable •NO-release reactivity on the activation of angiogenesis and wound healing.
Collapse
Affiliation(s)
| | | | - Hsiang-Ching Wang
- Biomedical Technology and Device Research Laboratories , Industrial Technology Research Institute , Hsinchu 310 , Taiwan
| | - Tung-Ho Wu
- Division of Cardiovascular Surgery, Department of Surgery and Division of Surgical Critical Care, Department of Critical Care Medicine , Veterans General Hospital , Kaohsiung 813 , Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center and Department of Obstetrics and Gynecology , Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | | | | | - Yun-Ming Wang
- Department of Biomedical Science and Environmental Biology , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
38
|
Ali M, Stein N, Mao Y, Shahid S, Schmidt M, Bennett B, Pacheco AA. Trapping of a Putative Intermediate in the Cytochrome c Nitrite Reductase (ccNiR)-Catalyzed Reduction of Nitrite: Implications for the ccNiR Reaction Mechanism. J Am Chem Soc 2019; 141:13358-13371. [DOI: 10.1021/jacs.9b03036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahbbat Ali
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Natalia Stein
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Yingxi Mao
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Shahid Shahid
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Marius Schmidt
- Department of Physics, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - A. Andrew Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
39
|
Discovery of a Nitric Oxide-Responsive Protein in Arabidopsis thaliana. Molecules 2019; 24:molecules24152691. [PMID: 31344907 PMCID: PMC6696476 DOI: 10.3390/molecules24152691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
In plants, much like in animals, nitric oxide (NO) has been established as an important gaseous signaling molecule. However, contrary to animal systems, NO-sensitive or NO-responsive proteins that bind NO in the form of a sensor or participating in redox reactions have remained elusive. Here, we applied a search term constructed based on conserved and functionally annotated amino acids at the centers of Heme Nitric Oxide/Oxygen (H-NOX) domains in annotated and experimentally-tested gas-binding proteins from lower and higher eukaryotes, in order to identify candidate NO-binding proteins in Arabidopsis thaliana. The selection of candidate NO-binding proteins identified from the motif search was supported by structural modeling. This approach identified AtLRB3 (At4g01160), a member of the Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family, as a candidate NO-binding protein. AtLRB3 was heterologously expressed and purified, and then tested for NO-response. Spectroscopic data confirmed that AtLRB3 contains a histidine-ligated heme cofactor and importantly, the addition of NO to AtLRB3 yielded absorption characteristics reminiscent of canonical H-NOX proteins. Furthermore, substitution of the heme iron-coordinating histidine at the H-NOX center with a leucine strongly impaired the NO-response. Our finding therefore established AtLRB3 as a NO-interacting protein and future characterizations will focus on resolving the nature of this response.
Collapse
|
40
|
Rahman MH, Ryan MD. Investigation of solvation and solvent coordination effects in iron porphyrin nitrosyls by infrared spectroelectrochemistry and DFT calculations. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Visible and infrared spectroelectrochemistry of Fe(OEPone)(NO) (H2OEPone = octaethylporphinone) were examined in methylene chloride and THF. The visible spectra of Fe(OEPone)(NO) were similar in both solvents. Unlike other ferrous porphyrin nitrosyls, a six-coordinate complex was formed with THF as a ligand. This led to two nitrosyl bands in the infrared spectrum. The absorbance of these bands depended on the concentration of THF in the solution. Solvation and coordination effects on the carbonyl and nitrosyl bands were observed for both the nitrosyl and reduced-nitrosyl complexes. DFT calculations were carried out to interpret the spectral changes. Marquette University, Raynor Memorial Libraries, Chemistry Research Data: https://epublications.marquette.edu/chem_data/1/
Collapse
Affiliation(s)
- Md. Hafizur Rahman
- Chemistry Department, P.O. Box 1881, Marquette University, Milwaukee, WI 53201, USA
| | - Michael D. Ryan
- Chemistry Department, P.O. Box 1881, Marquette University, Milwaukee, WI 53201, USA
| |
Collapse
|
41
|
Ghosh A, Conradie J. Stereochemistry of Transition-Metal Dinitrosyl Complexes. A Molecular Orbital Rationale for the Attracto and Repulso Conformations. Inorg Chem 2019; 58:5943-5948. [DOI: 10.1021/acs.inorgchem.9b00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| |
Collapse
|
42
|
Pecak J, Stöger B, Mastalir M, Veiros LF, Ferreira LP, Pignitter M, Linert W, Kirchner K. Five-Coordinate Low-Spin {FeNO} 7 PNP Pincer Complexes. Inorg Chem 2019; 58:4641-4646. [PMID: 30880390 DOI: 10.1021/acs.inorgchem.9b00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and characterization of air-stable cationic mono nitrosonium Fe(I) PNP pincer complexes of the type [Fe(PNP)(NO)Cl]+ are described. These complexes are obtained via direct nitroslyation of [Fe(PNP)Cl2] with nitric oxide at ambient pressure. On the basis of magnetic and EPR measurements as well as DFT calculations, these compounds were found to adopt a low-spin d7 configuration and feature a nearly linear bound NO ligand suggesting FeINO+ rather than FeIINO• character. X-ray structures of all nitrosonium Fe(I) PNP complexes are presented. Preliminary investigations reveal that [Fe(PNPNH- iPr)(NO)(Cl)]+ efficiently catalyzes the conversion of primary alcohols and aromatic and benzylic amines to yield mono N-alkylated amines in good isolated yields.
Collapse
Affiliation(s)
- Jan Pecak
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9 , A-1060 Vienna , Austria
| | - Berthold Stöger
- X-Ray Center , Vienna University of Technology , Getreidemarkt 9 , A-1060 Vienna , Austria
| | - Matthias Mastalir
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9 , A-1060 Vienna , Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais No. 1 , 1049-001 Lisboa , Portugal
| | - Liliana P Ferreira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências , Universidade de Lisboa , 1749-016 Lisboa , Portugal.,Department of Physics , University of Coimbra , 3004-516 Coimbra , Portugal
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry , University of Vienna , Althanstrasse 14 , 1090 Vienna , Austria
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9 , A-1060 Vienna , Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9 , A-1060 Vienna , Austria
| |
Collapse
|
43
|
Jia JG, Feng JS, Huang XD, Bao SS, Zheng LM. Homochiral iron(ii)-based metal-organic nanotubes: metamagnetism and selective nitric oxide adsorption in a confined channel. Chem Commun (Camb) 2019; 55:2825-2828. [PMID: 30766989 DOI: 10.1039/c9cc00506d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homochiral iron(ii)-based nanotubular metal phosphonates (R)- and (S)-[Fe(pemp)(H2O)2] [pemp2- = (R)- or (S)-(1-phenylethylamino)methylphosphonate] are reported showing metamagnetism at low temperature. The dehydrated product features coordinatively unsaturated and redox-active metal ion sites that enable it to strongly bind nitric oxide at room temperature.
Collapse
Affiliation(s)
- Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Wu Z, Chen C, Liu J, Lu Y, Xu J, Liu X, Cui G, Trabelsi T, Francisco JS, Mardyukov A, Eckhardt AK, Schreiner PR, Zeng X. Caged Nitric Oxide-Thiyl Radical Pairs. J Am Chem Soc 2019; 141:3361-3365. [PMID: 30758958 DOI: 10.1021/jacs.8b12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
S-Nitrosothiols (RSNO) are exogenous and endogenous sources of nitric oxide in biological systems due to facile homolytic cleavage of the S-N bonds. By following the photolytic decomposition of prototypical RSNO (R = Me and Et) in Ne, Ar, and N2 matrixes (<10 K), elusive caged radical pairs consisting of nitric oxide (NO•) and thiyl radicals (RS•), bridged by O···S and H···N connections, were identified with IR and UV/vis spectroscopy. Upon red-light irradiation, both caged radical pairs (RS•···•ON) vanish and reform RSNO. According to the calculation at the CASPT2(10,8)/cc-pVDZ level (298.15 K), the dissociation energy of MeS•···•ON amounts to 4.7 kcal mol-1.
Collapse
Affiliation(s)
- Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Changyun Chen
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yan Lu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xiangyang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Tarek Trabelsi
- Department of Earth and Environmental Science and Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Artur Mardyukov
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
46
|
Aarabi M, Omidyan R, Soorkia S, Grégoire G, Broquier M, Crestoni ME, de la Lande A, Soep B, Shafizadeh N. The dramatic effect of N-methylimidazole on trans axial ligand binding to ferric heme: experiment and theory. Phys Chem Chem Phys 2019; 21:1750-1760. [PMID: 30623949 DOI: 10.1039/c8cp06210b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The binding energy of CO, O2 and NO to isolated ferric heme, [FeIIIP]+, was studied in the presence and absence of a σ donor (N-methylimidazole and histidine) as the trans axial ligand. This study combines the experimental determination of binding enthalpies by equilibrium measurements in a low temperature ion trap using the van't Hoff equation and high level DFT calculations. It was found that the presence of N-methylimidazole as the axial ligand on the [FeIIIP]+ porphyrin dramatically weakens the [FeIIIP-ligand]+ bond with an up to sevenfold decrease in binding energy owing to the σ donation by N-methylimidazole to the FeIII(3d) orbitals. This trans σ donor effect is characteristic of ligation to iron in hemes in both ferrous and ferric redox forms; however, to date, this has not been observed for ferric heme.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
48
|
Alvarez MA, García ME, García-Vivó D, Ramos A, Ruiz MA, Toyos A. N-O Bond Activation and Cleavage Reactions of the Nitrosyl-Bridged Complexes [M 2Cp 2(μ-PCy 2)(μ-NO)(NO) 2] (M = Mo, W). Inorg Chem 2018; 57:15314-15329. [PMID: 30461277 DOI: 10.1021/acs.inorgchem.8b02647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The title complexes (1a,b) were prepared in two steps by first reacting the hydrides [M2Cp2(μ-H)(μ-PCy2)(CO)4] with [NO](BF4) in the presence of Na2CO3 to give dinitrosyls [M2Cp2(μ-PCy2)(CO)2(NO)2](BF4), which were then fully decarbonylated upon reaction with NaNO2 at 323 K. An isomer of the Mo2 complex having a cisoid arrangement of the terminal ligands ( cis-1a) was prepared upon irradiation of toluene solutions of 1a with visible-UV light at 288 K. The structure of these trinitrosyl complexes was investigated using X-ray diffraction and density functional theory (DFT) calculations, these revealing a genuine pyramidalization of the bridging NO that might be associated in part to an increase of charge at the N atom and anticipated a weakening of the N-O bond upon reaction with bases or reducing reagents. Complexes 1a,b reacted with [FeCp2](BF4) to give first the radicals [M2Cp2(μ-PCy2)(μ-NO)(NO)2](BF4) according to CV experiments, which then underwent H-abstraction to yield the nitroxyl-bridged complexes [M2Cp2(μ-PCy2)(μ-κ1:η2-HNO)(NO)2](BF4), alternatively prepared upon protonation with HBF4·OEt2. The novel coordination mode of the nitroxyl ligand in these products was thermodynamically favored over its tautomeric hydroximido form, according to DFT calculations, and similar nitrosomethane-bridged cations [M2Cp2(μ-PCy2)( μ-κ1:η2-MeNO)(NO)2]+ were prepared by reacting 1a,b with CF3SO3Me or [Me3O]BF4. Complexes 1 reacted with M(Hg) (M = Zn, Na) in tetrahydrofuran to give the amido-bridged derivatives [M2Cp2(μ-PCy2)(μ-NH2)(NO)2] with retention of stereochemistry, a transformation also induced by using mild O atom scavengers such as CO and phosphites in the presence of water. In the absence of water, phosphites accomplished a deoxygenation of the bridging NO of the Mo2 complexes to yield the phosphoraniminato-bridged derivatives [Mo2Cp2(μ-PCy2){μ-NP(OR)3}(NO)2] (R = Et, Ph), also with retention of stereochemistry.
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - M Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Alberto Ramos
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Miguel A Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Adrián Toyos
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| |
Collapse
|
49
|
Zhang L, Zhou J, Ma F, Wang Q, Xu H, Ju H, Lei J. Single‐Sided Competitive Axial Coordination of G‐Quadruplex/Hemin as Molecular Switch for Imaging Intracellular Nitric Oxide. Chemistry 2018; 25:490-494. [DOI: 10.1002/chem.201804897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
- School of Chemistry and Molecular Engineering, Institute of, Advanced SynthesisJiangsu National Synergetic Innovation Center for, Advanced MaterialsNanjing Tech University Nanjing 211816 P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Fengjiao Ma
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Quanbo Wang
- Laboratory of Immunology for Environment and HealthShandong Analysis and Test CenterShandong Academy of Sciences Jinan 250014 P.R. China
| | - Hui Xu
- School of Chemistry and Molecular Engineering, Institute of, Advanced SynthesisJiangsu National Synergetic Innovation Center for, Advanced MaterialsNanjing Tech University Nanjing 211816 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| |
Collapse
|
50
|
Nagao H, Misawa-Suzuki T, Tomioka N, Ohno H, Rikukawa M. Nitrosylruthenium Complexes as Polymerization Catalysts for Acrylonitrile in DMF. Chem Asian J 2018; 13:3014-3017. [PMID: 30230689 DOI: 10.1002/asia.201801095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/18/2018] [Indexed: 01/26/2023]
Abstract
Nitrosylruthenium complexes bearing two 2,2'-bipyridine (bpy) or 2-pyridinecarboxylate (pyc) ligands, [Ru(NO)X(bpy)2 ]3+ (X=CH3 CN, CH2 =CHCN, H2 O, Cl, ONO2 ) and [Ru(NO)(OH2 )(pyc)2 ]+ , were used as catalysts for the polymerization of acrylonitrile in N,N-dimethylformamide (DMF) under air without initiators to obtain polyacrylonitrile (PAN) with a high molecular weight and a narrow molecular weight distribution.
Collapse
Affiliation(s)
- Hirotaka Nagao
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Nozomi Tomioka
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Haruna Ohno
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|