1
|
Huang Y, Li Z, Ranaweera CD, Jayathilaka PB, Islam MS, Ajam A, Silberstein MN, Kilian KA, Kruzic JJ. Stretch activated molecule immobilization in disulfide linked double network hydrogels. Acta Biomater 2025; 198:174-187. [PMID: 40189118 DOI: 10.1016/j.actbio.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Inspired by how forces facilitate molecule immobilization in biological tissues to provide localized functionalization, tough hydrogel networks with stretch activated mechanochemistry are developed by utilizing disulfide bonds as dynamic covalent crosslinks. Specifically, disulfide linked polyethylene glycol hydrogels are reinforced with a second ionically bonded sodium alginate network to simultaneously achieve stretchability and mechanochemical functionalization. To demonstrate and quantify the mechanochemical response, thiols produced by disulfide bond rupture are sensed during stretching using a reaction activated fluorophore dissolved in the hydrating solution. By monitoring the increase in fluorescence intensity upon stretching, it is determined that disulfide bond breakage in the double network hydrogels becomes more activated in hydrogels with high stretchability under low stress. Such results provide guidance regarding how the molecular weights and mass fractions of the monomers must be chosen to design double network hydrogels that balance favorable mechanical properties and mechanochemical responsiveness. Finally, for the most mechanochemically active hydrogel, we demonstrate how the stretch-activated immobilization of a maleimide containing peptide can functionalize the gels to promote the growth of human fibroblasts. Results of this work are anticipated to encourage further research into the development of stretchable and multifunctionalizable hydrogels for biotechnology and biomedical applications. STATEMENT OF SIGNIFICANCE: Inspired by the mechanochemical dynamics in biological tissues, this work demonstrates the development of hydrogel-based biomaterials that can achieve stretch activated functionalization by molecule immobilization in multiple distinct ways. Using disulfide linked polyethylene glycol hydrogels reinforced with a second alginate network, we have elucidated the structure-property relationships of our hydrogels by functionalizing them with fluorophore to ensure a robust combination of stretchability and mechanochemical responsiveness. We also have demonstrated the capability for using stretch activated immobilization of functional peptides to guide human fibroblasts activity. By demonstrating how hydrogel network properties impact both mechanical and functional performance, this work opens pathways for designing multifunctionalizable hydrogels that adapt to mechanical forces, potentially broadening the application of hydrogels in biotechnology and biomedical applications.
Collapse
Affiliation(s)
- Yuwan Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Zihao Li
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Chavinya D Ranaweera
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Pavithra B Jayathilaka
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Kristopher A Kilian
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Kothari A, Oram BK, Bandyopadhyay B. Matrix Isolation IR Spectroscopic Investigation of S-H···S-S H-Bond in H 2S-Diethyl Disulfide Complex. J Phys Chem A 2025; 129:3780-3789. [PMID: 40257406 DOI: 10.1021/acs.jpca.4c07359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
S-H···S-S H-bonded 1:1 diethyl disulfide (DEDS)-H2S complexes have been investigated by using FTIR spectroscopy in cold, solid argon (Ar) and nitrogen (N2) matrices. H2S was found to form one or two S-H···S-S H-bonds with the DEDS molecule, while H2O is known to form only a single O-H···S-S H-bond. A total of five distinct H-bonded complexes have been identified for the two lowest energy rotamers of DEDS: three with the most stable GGG conformer and two with GGG'. Their binding energies varied from 2.43 to 3.05 kcal mol-1. All five binary complexes were observed in the N2 matrix, while only three complexes of GGG conformer could be identified in the Ar matrix as relative energy of GGG' is known to increase significantly in the presence of Ar. Activation barriers for interconversion of the five binary complexes were calculated and were found to vary from 0.08 to 2.65 kcal mol-1. S-S linkage in DEDS has been found to be a more efficient acceptor for S-H H-bond donor than the S atom in H2S. Dispersion interaction plays a major role toward overall stabilization of the H-bonded complexes and was found to be on the higher side among all sulfur-centered H-bonds studied until now.
Collapse
Affiliation(s)
- Ankita Kothari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, J L N Marg, Jaipur 302017, India
| | - Binod Kumar Oram
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, J L N Marg, Jaipur 302017, India
- School of Chemical Sciences, National Institute of Science Education and Research, P.O. Bhimpur Padanpur Via-Jatni, Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, J L N Marg, Jaipur 302017, India
| |
Collapse
|
3
|
Wang W, Zhang Y, Zhu B, Shi M, Han R, Luo X. Ir-S Bonding Is Superior to Au-S Bonding for the Construction of Robust Antifouling Biosensors through Self-Assembly. Anal Chem 2025; 97:7221-7230. [PMID: 40162518 DOI: 10.1021/acs.analchem.4c06742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The formation of Au-S bonding is commonly used for the fabrication of biosensors through self-assembly, but the stability of the Au-S bonding is not always satisfying in complex biological systems, as they contain biothiols like glutathione that may displace the self-assembled thiolated molecules. To address this issue, we explored the utilization of iridium-thiol interaction to form highly stable Ir-S bonding through self-assembly, and an electrochemical biosensor was developed by immobilizing antifouling thiol-peptides onto an electrode modified with Ir nanoparticles. The Ir-S bond was verified to be more robust than the Au-S bond, which ensured effective peptide immobilization and reduced displacement by biothiols. Additionally, we integrated functionalized peptides specifically designed for murine double minute 2 (MDM2) biological assays, resulting in a highly stable and sensitive platform for quantifying MDM2 in biological matrices. The explored Ir-S binding offers a new avenue for the self-assembly of thiolated molecules to develop ultrarobust biosensors and bioelectronics with enhanced reliability in complex biological environments.
Collapse
Affiliation(s)
- Wenqing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanyuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Baoping Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingjun Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Li J, Qin Y, Li M, Shang J, Chen H, Liu Y, Liu B, Zhou P, Zhao T, Wang G, Ge C, Zhang Y, Jia H, Ren F. Bio-SS-TS as a Targeted Antitumor Drug Exerts an Anti-Liver Cancer Effect by Enhancing Mitochondria-Dependent Apoptosis. Biol Proced Online 2025; 27:11. [PMID: 40155811 PMCID: PMC11951608 DOI: 10.1186/s12575-025-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
Developing targeted therapeutic drugs for liver cancer remains a significant scientific and clinical challenge. Previous research by the authors showed that taraxasterol (TS) can enhance the antitumor immune response of T-lymphocytes, inhibiting the growth of liver cancer cells both in vivo and in vitro. To improve the targeting ability and efficacy of TS, the authors synthesized a novel compound, Bio-SS-TS, which utilizes the high expression of biotin receptors on tumor cell membranes to link biotin to TS for increased targeting to hepatocellular carcinoma cells, and its disulfide bond can be specifically hydrolyzed by high - level glutathione (GSH) in tumor cells to release the active component TS. In vitro, Bio-SS-TS reduced liver cancer cell (HepG2 and Huh7) proliferation, impaired mitochondrial membrane potential, decreased intracellular GSH content in tumor cells, increased the reactive oxygen species level, and promoted the release of cytochrome c. Endogenous GSH in cancer cells reduced the disulfide bond in Bio-SS-TS, releasing active TS components. In vivo, treatment with Bio-SS-TS caused no significant change in mouse body weight and no toxicity to the main organs. The present study comprehensively demonstrates that Bio-SS-TS exerts a potent anti - liver cancer effect by enhancing mitochondria-dependent apoptosis, which may provide a new candidate for targeted liver cancer therapy.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yuanhua Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Mengjuan Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jingli Shang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hang Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yadi Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bingjie Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Pingxin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Chunpo Ge
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yu Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Huijie Jia
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Research Center for Engineering Technology in Digestive Tract Tumor Immune Digital Decoding and Cell Therapy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
6
|
Nestoros E, Sharma A, Kim E, Kim JS, Vendrell M. Smart molecular designs and applications of activatable organic photosensitizers. Nat Rev Chem 2025; 9:46-60. [PMID: 39506088 DOI: 10.1038/s41570-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Photodynamic therapy (PDT) - which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species - has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules - from small biomolecules to large enzymes - in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Eleni Nestoros
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, India
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Korea.
| | - Marc Vendrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Milelli A, Catanzaro E, Greco G, Calcabrini C, Turrini E, Maffei F, Burattini S, Guardigni M, Sissi C, Schnekenburger M, Diederich M, Sestili P, Fimognari C. New rhodol-sulforaphane conjugates as innovative isothiocyanate-based cytotoxic agents for cancer cells. Eur J Med Chem 2024; 280:116936. [PMID: 39395301 DOI: 10.1016/j.ejmech.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
In search of semisynthetic derivatives with increased antitumor activity, we condensed sulforaphane (SFR) with rhodol, a fluorophore platform capable of modifying the intracellular trafficking and pharmacokinetics of the linked molecules. The two tested derivatives, namely MG28 and MG46, showed a far higher, as compared to SFR, cytotoxicity toward cancer cells. Apoptotic cell death was preceded by the extensive generation of DNA lesions, which were repaired relatively slowly and caused formation of micronuclei. Unlike SFR, rhodol-SFR conjugates' DNA lesions resulted from direct interactions with nuclear DNA. Overall, MG28 and MG46 exhibit a remarkable cytotoxic effect, which is the likely consequence of their direct and intense DNA damaging activity, i.e., a novel and peculiar mechanism arising from the conjugation of the parental rhodol and SFR. Considering that a wide number of clinically used drugs kill cancer cells by inducing DNA damage, MG could represent a new and promising chance in antitumor chemotherapy.
Collapse
Affiliation(s)
- Andrea Milelli
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Giulia Greco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Cinzia Calcabrini
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Ca' Le Suore, 2/4, 61029, Urbino, Italy
| | - Melissa Guardigni
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Via Marzolo 5, 35131, Padua, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire Du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Ca' Le Suore, 2/4, 61029, Urbino, Italy.
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy.
| |
Collapse
|
8
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Ji Y, Qu S, Shi G, Fan L, Qian J, Sun Z, Lu F, Han X. Triggered Cascade-Activation Nanoplatform to Alleviate Hypoxia for Effective Tumor Immunotherapy Guided by NIR-II Imaging. ACS NANO 2024; 18:31421-31434. [PMID: 39494467 DOI: 10.1021/acsnano.4c11334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Hypoxia is one of the most typical features among various types of solid tumors, which creates an immunosuppressive tumor microenvironment (TME) and limits the efficacy of cancer treatment. Alleviating hypoxia becomes a key strategy to reshape hypoxic TME which improves cancer immunotherapy. However, it remains challenging to perform tumor precision therapy with controllable switches through hypoxia-activated gene editing and prodrugs to alleviate hypoxia. In this study, silica-coated second near-infrared window (NIR-II) emitting silver sulfide quantum dots are used as the carrier to load the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) system to target hypoxia-inducible factor-1 (HIF-1α) and guide tumor-targeted imaging. To reduce the off-target effects in nontumor cells and better control safety risks, a TME-triggered cascade-activation nanodiagnostic and therapeutic platform (AA@Cas-H@HTS) is designed, which achieves the hypoxia activation of prodrug tirapazamine (TPZ) and spatiotemporal release of CRISPR/Cas9 ribonucleoprotein. Tumor hypoxia is greatly alleviated by the synergistic function of HIF-1α depletion by gene editing and TPZ activation. Importantly, targeting HIF-1α disrupts the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) signaling pathway, which effectively reshapes the immune-suppressive TME and activates T cell-mediated antitumor immunity. Taken together, we have provided a TME-triggered cascade-activation nanoplatform to alleviate hypoxia for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Ji
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suchen Qu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaoyu Shi
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liansheng Fan
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Qian
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xin Han
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
11
|
Sun Q, Kong N, Zhao H, Zhang X, Tao Q, Jiang H, Xuan A, Li X. pH-sensitive and redox-responsive poly(tetraethylene glycol) nanoparticle-based platform for cancer treatment. NANOTECHNOLOGY 2024; 35:495707. [PMID: 39293467 DOI: 10.1088/1361-6528/ad7c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Effective drug delivery with precise tumour targeting is crucial for cancer treatment. To address the challenges posed by the specificity and complexity of the tumour microenvironment, we developed a poly(tetraethylene glycol)-based disulfide nanoparticle (NP) platform and explored its potential in cancer treatment, focusing on drug loading and controlled release performance. Poly(tetraethylene glycol) NPs were characterised using nuclear magnetic resonance spectroscopy, mass spectrometry, and ultraviolet-visible spectroscopy. Additionally, we evaluated physicochemical properties, including dynamic light scattering, zeta potential analysis, drug loading capacity (DLC), and drug loading efficiency (DLE). The impact of NPs on the mouse colorectal cancer cell line (CT26) and NIH3T3 cells was assessed using a cytotoxicity assay, live/dead staining assay, flow cytometry, and confocal fluorescence microscopy. The experimental results align with the expected chemical structure and physicochemical properties of poly(tetraethylene glycol) NPs. These NPs exhibit high DLE (78.7%) and DLC (12%), with minimal changes in particle size over time in different media.In vitroexperiments revealed that the NPs can induce significant cytotoxicity and apoptosis in CT26 cells. Cellular uptake notably increases with increasing concentration and exposure time. The confocal microscopic analysis confirmed the effective distribution and accumulation of NPs within cells. In conclusion, poly(tetraethylene glycol) NPs hold promise for improving drug-delivery efficiency, offering potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Qian Sun
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Nuocheng Kong
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hanqing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Qimeng Tao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Aili Xuan
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, People's Republic of China
| | - Xianming Li
- Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
- Department of Radiation Oncology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024; 10:440. [PMID: 39057463 PMCID: PMC11275390 DOI: 10.3390/gels10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| |
Collapse
|
13
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Nayak S, Das K, Sivagnanam S, Baskar S, Stewart A, Kumar D, Maity B, Das P. Cystine-cored diphenylalanine appended peptide-based self-assembled fluorescent nanostructures direct redox-responsive drug delivery. iScience 2024; 27:109523. [PMID: 38577103 PMCID: PMC10993133 DOI: 10.1016/j.isci.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Fabrication of stimuli-responsive superstructure capable of delivering chemotherapeutics directly to the cancer cell by sparing healthy cells is crucial. Herein, we developed redox-responsive hollow spherical assemblies through self-assembly of disulfide-linked cysteine-diphenylalanine (SN). These fluorescent hollow spheres display intrinsic green fluorescence, are proteolytically stable and biocompatible, and allow for real-time monitoring of their intracellular entry. The disulfide bond facilitates selective degradation in the presence of high glutathione (GSH) concentrations, prevalent in cancer cells. We achieved efficient encapsulation (68.72%) of the anticancer drug doxorubicin (Dox) and demonstrated GSH-dependent, redox-responsive drug release within cancerous cells. SN-Dox exhibited a 20-fold lower effective concentration (2.5 μM) for compromising breast cancer cell viability compared to non-malignant cells (50 μM). The ability of SN-Dox to initiate DNA damage signaling and trigger apoptosis was comparable to that of the unencapsulated drug. Our findings highlight the potential of SN for creating site-specific drug delivery vehicles for sustained therapeutic release.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Shyamvarnan Baskar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
15
|
Li X, Cai J, Zhang H, Sun S, Zhao S, Wang Z, Nie X, Xu C, Zhang Y, Xiao H. A Trisulfide Bond Containing Biodegradable Polymer Delivering Pt(IV) Prodrugs to Deplete Glutathione and Donate H 2S to Boost Chemotherapy and Antitumor Immunity. ACS NANO 2024; 18:7852-7867. [PMID: 38437513 DOI: 10.1021/acsnano.3c06194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Wang L, Hobson AD, Fitzgibbons J, Hernandez A, Jia Y, Xu Z, Wang Z, Yu Y, Li X. Impact of dipeptide on ADC physicochemical properties and efficacy identifies Ala-Ala as the optimal dipeptide. RSC Med Chem 2024; 15:355-365. [PMID: 38283215 PMCID: PMC10809321 DOI: 10.1039/d3md00473b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Side chains of natural occurring amino acids vary greatly in terms of charge state, polarity, size and hydrophobicity. Using a linear synthetic route, two amino acids were sequentially coupled to a potent glucocorticoid receptor modulator (GRM) to afford a library of dipeptide-GRM linker payloads with a range of in silico properties. The linker payloads were conjugated to a mouse anti-TNF antibody through interchain disulfide Cys. Impact of various dipeptide linkers on ADC physical properties, including solubility, hydrophobicity, and aggregation were evaluated and the in silico properties pI, Log P and tPSA of the linker drugs used to correlate with these properties. ADCs were screened in a GRE luciferase reporter assay to compare their in vitro efficacy. Data identified Ala-Ala as a superior dipeptide linker that allowed a maximum drug load of 10 while affording ADCs with low aggregation.
Collapse
Affiliation(s)
- Lu Wang
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Axel Hernandez
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Ying Jia
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Zhou Xu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Yajie Yu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Xiang Li
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| |
Collapse
|
18
|
Đorđević S, Medel M, Hillaert J, Masiá E, Conejos-Sánchez I, Vicent MJ. Critical Design Strategies Supporting Optimized Drug Release from Polymer-Drug Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303157. [PMID: 37752780 DOI: 10.1002/smll.202303157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The importance of an adequate linking moiety design that allows controlled drug(s) release at the desired site of action is extensively studied for polymer-drug conjugates (PDCs). Redox-responsive self-immolative linkers bearing disulfide moieties (SS-SIL) represent a powerful strategy for intracellular drug delivery; however, the influence of drug structural features and linker-associated spacers on release kinetics remains relatively unexplored. The influence of drug/spacer chemical structure and the chemical group available for conjugation on drug release and the biological effect of resultant PDCs is evaluated. A "design of experiments" tool is implemented to develop a liquid chromatography-mass spectrometry method to perform the comprehensive characterization required for this systematic study. The obtained fit-for-purpose analytical protocol enables the quantification of low drug concentrations in drug release studies and the elucidation of metabolite presence. and provides the first data that clarifies how drug structural features influence the drug release from SS-SIL and demonstrates the non-universal nature of the SS-SIL. The importance of rigorous linker characterization in understanding structure-function correlations between linkers, drug chemical functionalities, and in vitro release kinetics from a rationally-designed polymer-drug nanoconjugate, a critical strategic crafting methodology that should remain under consideration when using a reductive environment as an endogenous drug release trigger.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - María Medel
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Justine Hillaert
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Esther Masiá
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Screening Platform, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center (CIPF) and CIBERONC, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Screening Platform, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| |
Collapse
|
19
|
Bhadran A, Polara H, Calubaquib EL, Wang H, Babanyinah GK, Shah T, Anderson PA, Saleh M, Biewer MC, Stefan MC. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023; 24:5823-5835. [PMID: 37963215 DOI: 10.1021/acs.biomac.3c00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Thermoresponsive amphiphilic poly(ε-caprolactone)s (PCL)s are excellent candidates for drug delivery due to their biodegradability, biocompatibility, and controlled release. However, the thermoresponsivity of modified PCL can often lead to premature drug release because their lower critical solution temperature (LCST) is close to physiological temperature conditions. To address this issue, we developed a novel approach that involves functionalizing redox-responsive lipoic acid to the hydrophobic block of PCL. Lipoic acid has disulfide bonds that undergo reversible cross-linking after encapsulating the drug. Herein, we synthesized an ether-linked propargyl-substituted PCL as the hydrophobic block of an amphiphilic copolymer along with unsubstituted PCL. The propargyl group was used to attach lipoic acid through a postpolymerization modification reaction. The hydrophilic block is composed of an ether-linked, thermoresponsive tri(ethylene glycol)-substituted PCL. Anticancer drug doxorubicin (DOX) was encapsulated within the core of the micelles and induced cross-linking in the presence of a reducing agent, dithiothreitol. The developed micelles are thermodynamically stable and demonstrated thermoresponsivity with an LCST value of 37.5 °C but shifted to 40.5 °C after cross-linking. The stability and release of both uncross-linked (LA-PCL) and cross-linked (CLA-PCL) micelles were studied at physiological temperatures. The results indicated that CLA-PCL was stable, and only 35% release was observed after 46 h at 37 °C while LA-PCL released more than 70% drug at the same condition. Furthermore, CLA-PCL was able to release a higher amount of DOX in the presence of glutathione and above the LCST condition (42 °C). Cytotoxicity experiments revealed that CLA-PCL micelles are more toxic toward MDA-MB-231 breast cancer cells at 42 °C than at 37 °C, which supported the thermoresponsive release of the drug. These results indicate that the use of reversible cross-linking is a great approach toward synthesizing stable thermoresponsive micelles with reduced premature drug leakage.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erika L Calubaquib
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paul Alexander Anderson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammad Saleh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
20
|
Xu GX, Lee LCC, Leung PKK, Mak ECL, Shum J, Zhang KY, Zhao Q, Lo KKW. Bioorthogonal dissociative rhenium(i) photosensitisers for controlled immunogenic cell death induction. Chem Sci 2023; 14:13508-13517. [PMID: 38033895 PMCID: PMC10686031 DOI: 10.1039/d3sc04903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
Photosensitisers for photoimmunotherapy with high spatiotemporal controllability are rare. In this work, we designed rhenium(i) polypyridine complexes modified with a tetrazine unit via a bioorthogonally activatable carbamate linker as bioorthogonally dissociative photosensitisers for the controlled induction of immunogenic cell death (ICD). The complexes displayed increased emission intensities and singlet oxygen (1O2) generation efficiencies upon reaction with trans-cyclooct-4-enol (TCO-OH) due to the separation of the quenching tetrazine unit from the rhenium(i) polypyridine core. One of the complexes containing a poly(ethylene glycol) (PEG) group exhibited negligible dark cytotoxicity but showed greatly enhanced (photo)cytotoxic activity towards TCO-OH-pretreated cells upon light irradiation. The reason is that TCO-OH allowed the synergistic release of the more cytotoxic rhenium(i) aminomethylpyridine complex and increased 1O2 generation. Importantly, the treatment induced a cascade of events, including lysosomal dysfunction, autophagy suppression and ICD. To the best of our knowledge, this is the very first example of using bioorthogonal dissociation reactions as a trigger to realise photoinduced ICD, opening up new avenues for the development of innovative photoimmunotherapeutic agents.
Collapse
Affiliation(s)
- Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park New Territories Hong Kong P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| |
Collapse
|
21
|
Liu J, Zhang Y, Liu C, Jiang Y, Wang Z, Li X. Paclitaxel prodrug-encapsulated polypeptide micelles with redox/pH dual responsiveness for cancer chemotherapy. Int J Pharm 2023; 645:123398. [PMID: 37690658 DOI: 10.1016/j.ijpharm.2023.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Polypeptides are a highly promising carrier for delivering hydrophobic drugs, due to their excellent biocompatibility, non-toxicity, and non-immunogenicity. Herein, a redox and pH dual-responsive poly(ethylene glycol)-SS-b-polypeptide micelles encapsulated with disulfide bridged paclitaxel-pentadecanoic acid prodrug was developed for cancer chemotherapy. First of all, disulfide bridged paclitaxel-pentadecanoic acid prodrug (PTX-SS-COOH) and poly(ethylene glycol)-SS-b-polylysine-b-polyphenylalanine (mPEG-SS-b-PLys-b-PPhe, ESLP) were synthesized and confirmed via NMR, MS, FT-IR or GPC. After that, PTX-SS-COOH (PSH) embedded mPEG-SS-b-PLys-b-PPhe (ESLP/PSH) micelles were prepared by mixing method based on electrostatic interactions and hydrophobic forces. For comparison, mPEG-b-PLys-b-PPhe (ELP) was mixed with PTX-SS-COOH to generate another kind of micelles (ELP/PSH). The characterization of ESLP/PSH micelles through dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed a spherical structure with a diameter of approximately 170 nm. It is noteworthy that ESLP/PSH micelles displayed a high drug-loading rate of 22.84%, and excellent stability, which can be attributed to the specific interactions between the prodrug and copolymer. Drug release analysis demonstrated that the micelles exhibited a substantial release of PTX in the presence of GSH at pH 5.0, indicating a pH and redox dual responsiveness. In vivo pharmacokinetic study revealed the ESLP/PSH micelles had increased bioavailability and an extended circulation time. Ultimately, antitumor efficacy and systemic toxicity evaluation in 4 T1 tumor-bearing mice confirmed that ESLP/PSH micelles achieved the highest level of tumor growth inhibition (ca. 83%) and the lowest systemic toxicity in comparison with ELP/PSH micelles and commercialized Taxol®. Taken together, the dual responsive micelles represent a promising PTX formulation with potential clinical application in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
22
|
Ma Z, Wang H, Shi Z, Yan F, Li Q, Chen J, Cui ZK, Zhang Y, Jin X, Jia YG, Wang L. Inhalable GSH-Triggered Nanoparticles to Treat Commensal Bacterial Infection in In Situ Lung Tumors. ACS NANO 2023; 17:5740-5756. [PMID: 36884352 DOI: 10.1021/acsnano.2c12165] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial infection has been considered one of the primary reasons for low survival rate of lung cancer patients. Herein, we demonstrated that a kind of mesoporous silica nanoparticles loaded with anticancer drug doxorubicin (DOX) and antimicrobial peptide HHC36 (AMP) (MSN@DOX-AMP) can kill both commensal bacteria and tumor cells under GSH-triggering, modulating the immunosuppressive tumor microenvironment, significantly treating commensal bacterial infection, and eliminating in situ lung tumors in a commensal model. Meanwhile, MSN@DOX-AMP encapsulated DOX and AMP highly efficiently via a combined strategy of physical adsorption and click chemistry and exhibited excellent hemocompatibility and biocompatibility. Importantly, MSN@DOX-AMP could be inhaled and accumulate in lung by a needle-free nebulization, achieving a better therapeutic effect. This system is expected to serve as a straightforward platform to treat commensal bacterial infections in tumors and promote the translation of such inhaled GSH-triggered MSN@DOX-AMP to clinical treatments of lung cancer.
Collapse
Affiliation(s)
- Zunwei Ma
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huaiming Wang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Fengying Yan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Lin Wang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Zhang Y, Wang J, Liu C, Xing H, Jiang Y, Li X. Novel disulfide bond bridged 7-ethyl-10-hydroxyl camptothecin-undecanoic acid conjugate/human serum albumin nanoparticles for breast cancer therapy. J Mater Chem B 2023; 11:2478-2489. [PMID: 36843543 DOI: 10.1039/d2tb02506j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
7-Ethyl-10-hydroxyl camptothecin (SN38), a semisynthetic derivative of camptothecin, exhibited extreme pharmacological activities in treating a range of cancers. However, its poor aqueous solubility and low stability hinder its clinical applications. Hence, a redox-responsive SN38 prodrug encapsulated human serum albumin (HSA) nanoparticle is developed to realize its potential in the clinic. First, a disulfide bond bridged 7-ethyl-10-hydroxyl camptothecin-undecanoic acid conjugate (SN38-SS-COOH) was synthesized and characterized structurally. After that, SN38-SS-COOH/HSA nanoparticles (SNH NPs) were prepared by the desolvation method. The SNH NPs with a feed molar ratio of 9 : 1 of SN38-SS-COOH : HSA showed a spherical structure with a diameter range of approximately 120-150 nm revealed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fluorescence quenching confirmed the formation of SNH NP complexes by dual hydrophobic force and electrostatic interaction. The SNH NPs have a high drug loading of 10.44% and an encapsulation efficiency of 89.59% with good stability. Moreover, the redox responsiveness was validated by glutathione (GSH)-triggered accelerated release of parent drug SN38. In an in vivo pharmacokinetic study, the SNH NPs exhibited a significantly prolonged circulation time (t1/2, 3.77-fold) compared with free SN38. Finally, the in vivo antitumor efficacy and systemic toxicity of SNH NPs in a breast xenograft model were thoroughly evaluated. The inhibition rate of tumor growth induced by the SNH NPs reached 70.1%, while only 50.1% was achieved for irinotecan at an equivalent SN38 dosage of 10 mg kg-1. More importantly, the SNH NPs achieved a higher level of tumor growth inhibition (85.3%) by increasing the dosage to 60 mg kg-1 SN38 without obvious adverse effects. Taken together, the use of redox-responsive SN38 prodrug/HSA NPs could be a promising strategy to deliver highly active SN38 for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hanlei Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
24
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, Jiang L, Wu J, Zhao M. A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy. ACS NANO 2023; 17:3334-3345. [PMID: 36752654 DOI: 10.1021/acsnano.2c06313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ferroptosis is an alternative strategy to overcome chemoresistance, but effective therapeutic approaches to induce ferroptosis for acute myeloid leukemia (AML) treatment are limited. Here, we developed glutathione (GSH)-responsive cysteine polymer-based ferroptosis-inducing nanomedicine (GCFN) as an efficient ferroptosis inducer and chemotherapeutic drug nanocarrier for AML treatment. GCFN depleted intracellular GSH and inhibited glutathione peroxidase 4, a GSH-dependent hydroperoxidase, to cause lipid peroxidation and ferroptosis in AML cells. Furthermore, GCFN-loaded paclitaxel (PTX@GCFN) targeted AML cells and spared normal hematopoietic cells to limit the myeloablation side effects caused by paclitaxel. PTX@GCFN treatment extended the survival of AML mice by specifically releasing paclitaxel and simultaneously inducing ferroptosis in AML cells with restricted myeloablation and tissue damage side effects. Overall, the dual-functional GCFN acts as an effective ferroptosis inducer and a chemotherapeutic drug carrier for AML treatment.
Collapse
Affiliation(s)
- Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Hematology, People's Hospital of Zhangzi, Changzhi, Shanxi 046000,China
| | - Yabin Meng
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tong Tong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kaitao Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wenwen Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
| | - Jun Wu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
26
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
27
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zou Y, Huang D, He S, Song X, Liu W, Sun W, Du J, Fan J, Peng X. Cooperatively enhanced photothermal-chemotherapy via simultaneously downregulating HSPs and promoting DNA alkylation in cancer cells. Chem Sci 2023; 14:1010-1017. [PMID: 36755714 PMCID: PMC9890646 DOI: 10.1039/d2sc06143k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Photothermal therapy (PTT) has emerged as one of the important strategies for cancer treatment due to its precision and no drug resistance. However, upregulation of heat shock protein (HSP) expression during PTT severely limits its overall therapeutic effect. Accordingly, in this study, we developed a new anticancer strategy based on an l-glutathione (GSH)-activated prodrug (Cy-S-S-Cbl), which consisted of an alkylating reagent (Cbl) covalently linked to a photothermal photosensitizer (Cy7), to achieve cooperatively enhanced photothermal-chemotherapy. In the presence of overexpressed GSH in cancer cells, Cy-S-S-Cbl was converted into Cy-NH2 to achieve photothermal effect enhancement by the photo-induced electron transfer (PET) effect and release the alkylation reagent. Meanwhile, the photothermal effect of Cy-NH2 enhanced the DNA alkylation of chemotherapy drugs. Surprisingly, we first found that the therapeutic efficacy of PTT was improved owing to the down-regulation of heat shock protein 70 (HSP70) by chemotherapy. The two treatments had a synergistic promotion effect achieving higher cancer cell killing efficiency. Under 808 nm light irradiation, Cy-S-S-Cbl could effectively realize selective killing of cancer cells and tumor growth inhibition. Therefore, we strongly believe that this efficient cooperative design strategy will provide a new idea to improve the treatment efficiency of prodrugs.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Daipeng Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics, Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xuefang Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Research Institute of Dalian University of Technology in Shenzhen Shenzhen 518057 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Research Institute of Dalian University of Technology in Shenzhen Shenzhen 518057 China
| |
Collapse
|
29
|
Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater Sci 2023; 11:472-480. [PMID: 36472245 DOI: 10.1039/d2bm01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phototheranostics that integrate diagnosis and treatment modalities have shown great promise in personalized cancer therapy. However, the "always on" characteristics often lead to suboptimal imaging quality and severe side effects. Herein, we report the construction of a perylenemonoimide based nanodrug CPMI NP with multi-functional activatable theranostic capability. The nanodrug is facilely co-assembled from a prodrug CPMI and DSPE-mPEG2000. In a tumor microenvironment (TME) with excessive glutathione (GSH), CPMI undergoes a cascade reaction to generate the phototheranostic molecule NPMI and the chemodrug chlorambucil, simultaneously switching on the near-infrared (NIR) fluorescence, photothermal effect, and drug release. The photothermal conversion efficiency is as high as 52.2%. Moreover, NPMI exhibits an enhanced intermolecular π-π stacking effect, leading to significant size-enlargement of the nanodrug and prolonged tumor retention. Due to TME-activation, the strong in vivo fluorescence signal of the tumor can be observed 144 h post injection with a high signal-to-noise ratio of up to 17. The enhanced tumor inhibition efficiency of the nanodrug is confirmed through activatable chemo-photothermal therapy. This work paves the way for the design of activatable phototheranostic agents for accurate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
30
|
Pavlova MA, Panchenko PA, Alekhina EA, Ignatova AA, Plyutinskaya AD, Pankratov AA, Pritmov DA, Grin MA, Feofanov AV, Fedorova OA. A New Glutathione-Cleavable Theranostic for Photodynamic Therapy Based on Bacteriochlorin e and Styrylnaphthalimide Derivatives. BIOSENSORS 2022; 12:1149. [PMID: 36551116 PMCID: PMC9775103 DOI: 10.3390/bios12121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin e6 (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment. It was shown that the conjugate is cleaved by GSH in solution, which eliminates the possibility of energy transfer and restores the fluorescence of 4-styrylnaphthalimide. The photoinduced activity of the conjugate and its imaging properties were investigated on the mouse soft tissue sarcoma cell line S37. Phototoxicity studies in vitro show that the BChl-S-S-NI conjugate has insignificant dark cytotoxicity in the concentration range from 15 to 20,000 nM. At the same time, upon photoexcitation, it exhibits high photoinduced activity.
Collapse
Affiliation(s)
- Marina A. Pavlova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel A. Panchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Ekaterina A. Alekhina
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna D. Plyutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A. Pankratov
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Dmitriy A. Pritmov
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Mikhail A. Grin
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alexey V. Feofanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga A. Fedorova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
31
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
32
|
Zhang F, Xia B, Sun J, Wang Y, Wang J, Xu F, Chen J, Lu M, Yao X, Timashev P, Zhang Y, Chen M, Che J, Li F, Liang XJ. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9808429. [PMID: 36452433 PMCID: PMC9680525 DOI: 10.34133/2022/9808429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/20/2024]
Abstract
Intelligent drug delivery system based on "stimulus-response" mode emerging a promising perspective in next generation lipid-based nanoparticle. Here, we classify signal sources into physical and physiological stimulation according to their origin. The physical signals include temperature, ultrasound, and electromagnetic wave, while physiological signals involve pH, redox condition, and associated proteins. We first summarize external physical response from three main points about efficiency, particle state, and on-demand release. Afterwards, we describe how to design drug delivery using the physiological environment in vivo and present different current application methods. Lastly, we draw a vision of possible future development.
Collapse
Affiliation(s)
- Fuxue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabei Sun
- China National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junge Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Mei Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jing Che
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Sung YS, Kerimoglu B, Ooi A, Tomat E. Aroylhydrazone Glycoconjugate Prochelators Exploit Glucose Transporter 1 (GLUT1) to Target Iron in Cancer Cells. ACS Med Chem Lett 2022; 13:1452-1458. [PMID: 36105345 PMCID: PMC9465708 DOI: 10.1021/acsmedchemlett.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Glycoconjugation strategies in anticancer drug discovery exploit the high expression of glucose transporters in malignant cells to achieve preferential uptake and hence attractive pharmacological characteristics of increased therapeutic windows and decreased unwanted toxicity. Here we present the design of glycoconjugated prochelators of aroylhydrazone AH1, an antiproliferative scavenger that targets the increased iron demand of rapidly proliferating malignant cells. The constructs feature a monosaccharide (d-glucose, d-glucosamine, or glycolytic inhibitor 2-deoxy-d-glucose) connected at the C2 or C6 position via a short linker, which masks the chelator through a disulfide bond susceptible to intracellular reduction. Cellular assays showed that the glycoconjugates rely on the GLUT1 transporter for uptake, lead to intracellular iron deprivation, and present antiproliferative activity. Ectopic overexpression of GLUT1 in malignant and normal cells increased the uptake and toxicity of the glycoconjugated prochelators, demonstrating that these compounds are well suited for targeting cells overexpressing glucose transporters and therefore for selective iron sequestration in malignant cells.
Collapse
Affiliation(s)
- Yu-Shien Sung
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| | - Baris Kerimoglu
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E. Mabel St., Tucson, Arizona 85721, United
States
| | - Aikseng Ooi
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E. Mabel St., Tucson, Arizona 85721, United
States
| | - Elisa Tomat
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| |
Collapse
|
34
|
Xing J, Gong Q, Zou R, Yao J, Xiang L, Wu A. GSH responsive traditional clinical drugs probe for cancer cell fluorescence imaging and therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Wang Y, Zeng S, Cui H, Li H, Li Z, Wang J, Chen Q. Reversible Chemical Protein Modification to Endogenous Glutathione and Its Utilities in the Manufacture of Transcellular Pro-Enzymes. Biomacromolecules 2022; 23:2138-2149. [PMID: 35471918 DOI: 10.1021/acs.biomac.2c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins have been perceived as being an intriguing modality of therapeutics for the treatment of intractable diseases in view of their superlative precision and versatility. Nonetheless, proteins' intrinsic characters, particularly their being hydrophilic macromolecules with unmethodical charges, have imposed the exceeding challenge of seeking transcellular trafficking into cells' interiors. To circumvent this drawback, we have attempted to employ triple-functional amine-reactive 4-(2-((2-(((4-nitrophenoxy)carbonyl)oxy)ethyl)disulfaneyl)ethoxy)-4-oxobutanoic acid for the efficient incorporation of the anionic carboxyl moiety into amine-enriched enzymes, resulting in overall negatively charged pro-enzymes. The resulting pro-enzymes could be readily electrostatically assembled with cationic species [for instance: block copolymers of poly(ethylene glycol)-polylysine] into core-shell architectural delivery nanoparticles for their facilitated endocytosis into cells. Noteworthy is the aforementioned carboxylation chemistry designed to allow facile reversal of the pro-enzymes to the original amine groups due to the thiolysis of intermediate disulfide linkage for subsequent cascade reactions in response to the cytosol-enriched glutathione. Therefore, cytosol-selective structural disassembly for the liberation and activation of the pro-enzymes was accomplished. Our subsequent investigations utilizing ribonuclease A and catalase as the model enzymes demonstrated appreciable transcellular transportation of the active enzymes to the cell interiors, exerting overwhelming cytotoxic potencies and H2O2 scavenging capacities, respectively. Hence, we reported an unprecedented redox-stimulated charge reversal strategy in engineering cytosol-activatable pro-enzymes, manifesting a simple and efficient approach in the manufacture of transcellular proteinic therapeutics, which should be highlighted to promote their wide availability for use with diverse functional proteins as molecular biological tools and precision therapeutics.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Shuang Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Hongyan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Qixian Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
36
|
Zhao L, Qu Y, Zhang F, Ma D, Gao H, Gan L, Zhang H, Zhang S, Fang J. Baylis–Hillman Adducts as a Versatile Module for Constructing Fluorogenic Release System. J Med Chem 2022; 65:6056-6069. [DOI: 10.1021/acs.jmedchem.1c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuan Qu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Di Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
37
|
Kyu Shim M, Yang S, Sun IC, Kim K. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery. Adv Drug Deliv Rev 2022; 183:114177. [PMID: 35245568 DOI: 10.1016/j.addr.2022.114177] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
As immunogenic cell death (ICD) inducers initiating antitumor immune responses, certain chemotherapeutic drugs have shown considerable potential to reverse the immunosuppressive tumor microenvironment (ITM) into immune-responsive tumors. The application of these drugs in nanomedicine provides a more enhanced therapeutic index by improving unfavorable pharmacokinetic (PK) profiles and inefficient tumor targeting. However, the clinical translation of conventional nanoparticles is restricted by fundamental problems, such as risks of immunogenicity and potential toxicity by carrier materials, premature drug leakage in off-target sites during circulation, low drug loading contents, and complex structure and synthetic processes that hinder quality control (QC) and scale-up industrial production. To address these limitations, tumor-activated carrier-free prodrug nanoparticles (PDNPs), constructed only by the self-assembly of prodrugs without any additional carrier materials, have been widely investigated with distinct advantages for safe and more effective drug delivery. In addition, combination immunotherapy based on PDNPs with other diverse modalities has efficiently reversed the ITM to immune-responsive tumors, potentiating the response to immune checkpoint blockade (ICB) therapy. In this review, the trends and advances in PDNPs are outlined, and each self-assembly mechanism is discussed. In addition, various combination immunotherapies based on PDNPs are reviewed. Finally, a physical tumor microenvironment remodeling strategy to maximize the potential of PDNPs, and key considerations for clinical translation are highlighted.
Collapse
|
38
|
Küng R, Göstl R, Schmidt BM. Release of Molecular Cargo from Polymer Systems by Mechanochemistry. Chemistry 2022; 28:e202103860. [PMID: 34878679 PMCID: PMC9306765 DOI: 10.1002/chem.202103860] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/15/2022]
Abstract
The design and manipulation of (multi)functional materials at the nanoscale holds the promise of fuelling tomorrow's major technological advances. In the realm of macromolecular nanosystems, the incorporation of force-responsive groups, so called mechanophores, has resulted in unprecedented access to responsive behaviours and enabled sophisticated functions of the resulting structures and advanced materials. Among the diverse force-activated motifs, the on-demand release or activation of compounds, such as catalysts, drugs, or monomers for self-healing, are sought-after since they enable triggering pristine small molecule function from macromolecular frameworks. Here, we highlight examples of molecular cargo release systems from polymer-based architectures in solution by means of sonochemical activation by ultrasound (ultrasound-induced mechanochemistry). Important design concepts of these advanced materials are discussed, as well as their syntheses and applications.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
39
|
Zhan MM, Wang R, Liu Z, Liu N, Ye Y, Liang M, Zhang Y, Jiang C, Yin F, Li Z. Chemo-Selective Cys-Pen Disulfide for Proximity-Induced Cysteine Cross-Linking. ACS Chem Biol 2022; 17:521-528. [PMID: 35225603 DOI: 10.1021/acschembio.2c00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich architectures are valuable pharmacological tools or therapeutics. Besides, a ligand-induced conjugate strategy offers potential advantages in potency, selectivity, and duration of action for novel covalent drugs. Combining the plentiful disulfide-rich architecture library and ligand-induced conjugate via thiol-disulfide interchange would supply great benefits for developing site specific covalent inhibitors. Cysteine-cysteine (Cys-Cys) disulfide bonds are intrinsically unstable in endogenous reductive environment, while cysteine-penicillamine (Cys-Pen) disulfide bonds show satisfactory stability. We envisioned the Cys-Pen disulfide as a potential ligand-induced covalent bonding warhead, and this disulfide could reconstruct with the protein cysteine in the vicinity of the peptide binding site to form a new disulfide. To evaluate our design, protein PLCγ1-c src homology 2 domain and RGS3-PDZ domain were tested as models. Both proteins were successfully modified by Cys-Pen disulfide and formed new disulfides between proteins and peptides. The new disulfide was then analyzed to confirm it was a newly formed disulfide bond between Pen of the ligand and a protein Cys near the ligand binding site. HDAC4 was then chosen as a model by utilizing its "CXXC" domain near its catalytic pocket. The designed Cys-Pen cyclic peptide inhibitor of HDAC4 showed satisfactory selectivity and inhibitory effect.
Collapse
Affiliation(s)
- Mei-miao Zhan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
40
|
Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chem Soc Rev 2022; 51:1795-1835. [PMID: 35142301 DOI: 10.1039/d1cs00307k] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of a near-infrared (NIR, 650-900 nm) fluorescent chromophore hemicyanine dye with high structural tailorability is of great significance in the field of detection, bioimaging, and medical therapeutic applications. It exhibits many outstanding advantages including absorption and emission in the NIR region, tunable spectral properties, high photostability as well as a large Stokes shift. These properties are superior to those of conventional fluorogens, such as coumarin, fluorescein, naphthalimides, rhodamine, and cyanine. Researchers have made remarkable progress in developing activity-based multifunctional fluorescent probes based on hemicyanine skeletons for monitoring vital biomolecules in living systems through the output of fluorescence/photoacoustic signals, and integration of diagnosis and treatment of diseases using chemotherapy or photothermal/photodynamic therapy or combination therapy. These achievements prompted researchers to develop more smart fluorescent probes using a hemicyanine fluorogen as a template. In this review, we begin by describing the brief history of the discovery of hemicyanine dyes, synthetic approaches, and design strategies for activity-based functional fluorescent probes. Then, many selected hemicyanine-based probes that can detect ions, small biomolecules, overexpressed enzymes and diagnostic reagents for diseases are systematically highlighted. Finally, potential drawbacks and the outlook for future investigation and clinical medicine transformation of hemicyanine-based activatable functional probes are also discussed.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,Research Institute of Dalian University of Technology in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
41
|
Singh N, Gupta A, Prasad P, Sah RK, Singh A, Kumar S, Singh S, Gupta S, Sasmal PK. Mitochondria-Targeted Photoactivatable Real-Time Monitoring of a Controlled Drug Delivery Platform. J Med Chem 2021; 64:17813-17823. [PMID: 34886661 DOI: 10.1021/acs.jmedchem.1c00956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current anticancer therapies are limited by their lack of controlled spatiotemporal release at the target site of action. We report a novel drug delivery platform that provides on-demand, real-time, organelle-specific drug release and monitoring upon photoactivation. The system is comprised of a model anticancer drug doxorubicin, an alkyltriphenylphosphonium moiety to target mitochondria in cancer cells, and a hydroxycinnamate photoactivatable linker that is covalently attached to the drug and mitochondria-targeting moieties such that it can be phototriggered by either UV (one-photon) or NIR (two-photon) light to form a fluorescent coumarin product and facilitate the release of drug payload. The extent of drug release is quantified by the fluorescence intensity of the coumarin formed. Further, the photoactivatable prodrug accumulates in the mitochondria and shows light-triggered temporally controlled cell death. In the future, our platform can be tuned for any biological application of interest, offering immense value in biomedicine.
Collapse
Affiliation(s)
- Neelu Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arvind Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
42
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
43
|
Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound-controlled drug release and drug activation for cancer therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:20210023. [PMID: 37323693 PMCID: PMC10190934 DOI: 10.1002/exp.20210023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
Traditional chemotherapy suffers from severe toxicity and side effects that limit its maximum application in cancer therapy. To overcome this challenge, an ideal treatment strategy would be to selectively control the release or regulate the activity of drugs to minimize the undesirable toxicity. Recently, ultrasound (US)-responsive drug delivery systems (DDSs) have attracted significant attention due to the non-invasiveness, high tissue penetration depth, and spatiotemporal controllability of US. Moreover, the US-induced mechanical force has been proven to be a robust method to site-selectively rearrange or cleave bonds in mechanochemistry. This review describes the US-activated DDSs from the fundamental basics and aims to present a comprehensive summary of the current understanding of US-responsive DDSs for controlled drug release and drug activation. First, we summarize the typical mechanisms for US-responsive drug release and drug activation. Second, the main factors affecting the ultrasonic responsiveness of drug carriers are outlined. Furthermore, representative examples of US-controlled drug release and drug activation are discussed, emphasizing their novelty and design principles. Finally, the challenges and an outlook on this promising therapeutic strategy are discussed.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsAachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| |
Collapse
|
44
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 803] [Impact Index Per Article: 200.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
45
|
Molecular bottlebrush with pH-responsive cleavable bonds as a unimolecular vehicle for anticancer drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112439. [PMID: 34702524 DOI: 10.1016/j.msec.2021.112439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Drug delivery systems with targeted and smart properties have emerged as an efficient strategy to overcome the challenges of cancer chemotherapy such as toxic side effects and the development of multidrug resistance. In this study, a biocompatible bottlebrush polymer poly((3-(2-bromo-2-methylpropionate)propyldimethylsilyloxy)ethyl methacrylate)-graft-poly(2-methacryloyloxyethyl phosphorylcholine) P(BIBS-EMA)-g-PMPC with pH-responsive silanol cleavable bond was designed and developed for delivery of doxorubicin. A549 cell line of human lung carcinoma was tested. The synthesized bottlebrush polymer was analyzed and characterized via Fourier transform infrared spectroscopy, FTIR, nuclear magnetic resonance spectroscopy, 1H NMR, gel permeation chromatography, GPC, dynamic laser light scattering, DLS, and static laser light scattering, SLS, techniques. The cleavage process was also precisely studied to confirm the pH-responsiveness of such bottlebrush polymers. In vitro loading and release studies of doxorubicin as a model drug were examined and the results showed a pH-dependent release manner with a twice higher release rate under cancerous tissue conditions compared to standard physiological conditions. MTT cytotoxicity assay was also performed to prove the biocompatibility of the designed polymeric platform on healthy human cells. Due to the presence of bio-inspired poly(2-methacryloyloxyethyl phosphorylcholine) side chains in the prepared bottlebrush polymer, the formed polymer-drug complex could also exhibit effective internalization into tumor cells. These facts further support the potential use of this carrier in drug delivery applications and for further in vivo studies.
Collapse
|
46
|
Sun Y, Chen Y, Dai X, Liu Y. Butyrylcholinesterase Responsive Supramolecular Prodrug with Targeted Near‐infrared Cellular Imaging Property. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yonghui Sun
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xianyin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
47
|
Ye YX, Wu SY, Chen XY, Yu YW, Zeng SMZ, Wang ZC, Jiao QC, Zhu HL. Glutathione-responsive prodrug conjugates for image-guided combination in cancer therapy. Eur J Med Chem 2021; 225:113746. [PMID: 34388382 DOI: 10.1016/j.ejmech.2021.113746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Theranostic prodrug was highly desirable for precise diagnosis and anti-cancer therapy to decrease side effects. However, it is difficult to conjugate chemo-drug and molecular probe for combined therapy due to the complex pharmacokinetics of different molecules. Here, a novel anticancer theranostic prodrug (BTMP-SS-PTX) had been designed and synthesized by conjugating paclitaxel (PTX) with 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (BTMP) through a disulphide (-S-S-) linkage, which was redox-sensitive to the high concentration of glutathione in tumors. Upon activation with glutathione in weakly acid media, the BTMP-SS-PTX can be dissociated to release free PTX and visible BTMP, which realized the visual tracking of free drug. The cytotoxicity study demonstrated that soluble prodrug BTMP-SS-PTX displayed more outstanding anticancer activity in HepG2, MCF-7 and HeLa cells, lower toxicity to non-cancer cells (293 T) than free drugs. Furthermore, BTMP-SS-PTX was still able to induce apoptosis of HeLa cells and significantly inhibited tumor growth in HeLa-xenograft mouse model. On the basis of these findings, BTMP-SS-PTX could play a potential role in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Song-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Xin-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Ya-Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Shang-Ming-Zhu Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
48
|
Wu X, Lu Y, Liu B, Chen Y, Zhang J, Zhou Y. A H2S-triggered two-photon ratiometric fluorescent theranostic prodrug for bio-imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|