1
|
Klopfenstein M, Emry L, Jain P, Alaei A, Schmelmer B, Chou A, Mandal T, Kim MW, Aydil ES, Chou T, Lee SS. Nanoconfined Metal Halide Perovskite Crystallization within Removable Polymer Scaffolds. CRYSTAL GROWTH & DESIGN 2025; 25:3003-3012. [PMID: 40352752 PMCID: PMC12063054 DOI: 10.1021/acs.cgd.5c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Nanoconfining crystallization to access metastable polymorphs and prescribe crystal orientations typically involves filling inert nanoporous scaffolds with target compounds, resulting in isolated nanocrystals. Such crystal-scaffold composites are unsuitable for optoelectronic devices that require interconnected crystalline pathways for charge transport. Here, we reverse the order of fabricating crystal-scaffold composites by first electrospinning interconnected networks of amorphous methylammonium lead iodide (MAPbI3) precursor nanofibers, then introducing a poly(methyl methacrylate) (PMMA) scaffold by spin coating from an antisolvent for MAPbI3. PMMA suppresses MAPbI3 crystal blooming from the fiber surface during thermal annealing, instead promoting the formation of densely packed polycrystalline networks of MAPbI3 crystals at the fiber/PMMA interface. Near-IR photodetectors comprising densely packed MAPbI3 nanocrystals grown within a PMMA scaffold in a coplanar electrode geometry exhibit photocurrents up to 60 times larger than those comprising fibers annealed without PMMA. These results indicate that MAPbI3 crystals form a percolated network for charge carriers to flow through PMMA-confined fibers, resulting in significantly improved photodetector performance.
Collapse
Affiliation(s)
- Mia Klopfenstein
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lance Emry
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Pulkita Jain
- Department
of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Aida Alaei
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ben Schmelmer
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Andrew Chou
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Trinanjana Mandal
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Min-Woo Kim
- Department
of Semiconductor Engineering, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea
| | - Eray S. Aydil
- Department
of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Tsengming Chou
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Stephanie S. Lee
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Mastej KO, Batnaran B, Reponen APM, VanOrman ZA, Banger K, Hayward MA, Deringer VL, Feldmann S. An experimental data library for the full CsPb(Cl xBr 1-x) 3 compositional series. Chem Commun (Camb) 2025; 61:6146-6149. [PMID: 40159931 DOI: 10.1039/d5cc00735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A complete series of CsPb(ClxBr1-x)3 mixed-halide perovskites with x = 0-1 in small steps is reported, and their structural and optical properties characterised. A comparison of synthetic approaches shows that mechanosynthesis yields the most robust data across the compositions, avoiding solvent inclusion or miscibility gaps. The resulting data library, including some hitherto unreported compositions, can serve as a benchmark for future computational modelling.
Collapse
Affiliation(s)
- Kinga O Mastej
- Rowland Institute, Harvard University, Cambridge, USA
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Bodoo Batnaran
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | | | - Zachary A VanOrman
- Rowland Institute, Harvard University, Cambridge, USA
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Kal Banger
- Rowland Institute, Harvard University, Cambridge, USA
| | - Michael A Hayward
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Volker L Deringer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Sascha Feldmann
- Rowland Institute, Harvard University, Cambridge, USA
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Vandenwijngaerden J, Pradhan B, Van Hout B, Fron E, Araki Y, Zhang X, Shibata Y, Santantonio D, Bresoli-Obach R, Nonell S, Yuan H, Xu J, Van der Auweraer M, Roeffaers M, Hofkens J, Fukumura H, Debroye E. NIR Luminescence from Deep-Level Traps in CsPbBr 3 Microcrystals. J Phys Chem Lett 2025; 16:3491-3500. [PMID: 40162533 PMCID: PMC12053942 DOI: 10.1021/acs.jpclett.5c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
In this study, we report the first observation of a near-infrared (NIR) emission band from all-inorganic CsPbBr3 and CsPb(Br/Cl)3 perovskite microcrystals. By means of temperature- and power-dependent NIR and visible luminescence spectroscopy, we demonstrate that a fraction of the excited states in these materials relax through radiative transitions involving traps located deep within the band gap, leading to broadband NIR emission. The quantum yield of this deep trap emission is quantitatively determined for the first time and amounts to approximately 0.3% at room temperature. Furthermore, by examining the picosecond-to-nanosecond dynamics of the excited states, using time-resolved luminescence spectroscopy, we observe that the population of NIR initial states occurs on a 660 ps time scale, consistent with the capture of free carriers by deep trap sites. Hence, this work deepens our fundamental understanding of previously unexplored recombination channels in metal halide perovskite microcrystals.
Collapse
Affiliation(s)
- Jonathan Vandenwijngaerden
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bapi Pradhan
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bob Van Hout
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Eduard Fron
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yasuyuki Araki
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Japan 980-8577
| | - Xianjun Zhang
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3
Aramaki Aza-Aoba, Aoba-ku, Sendai, Japan 980-0578
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Yutaka Shibata
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3
Aramaki Aza-Aoba, Aoba-ku, Sendai, Japan 980-0578
| | - Dario Santantonio
- AppLightChem,
Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona, Catalunya 08017, Spain
| | - Roger Bresoli-Obach
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- AppLightChem,
Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona, Catalunya 08017, Spain
| | - Santi Nonell
- AppLightChem,
Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona, Catalunya 08017, Spain
| | - Haifeng Yuan
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Yongjiang
Laboratory, 1792 Cihai South Road, Ningbo 315202, China
| | - Jialiang Xu
- School of
Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecular Materials Chemistry, Frontiers Science Center for New
Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, China
| | - Mark Van der Auweraer
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten Roeffaers
- cMACS, Department
of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Johan Hofkens
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hiroshi Fukumura
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3
Aramaki Aza-Aoba, Aoba-ku, Sendai, Japan 980-0578
| | - Elke Debroye
- Molecular
Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Ghasemi M, Lu J, Jia B, Wen X. Steady state and transient absorption spectroscopy in metal halide perovskites. Chem Soc Rev 2025; 54:1644-1683. [PMID: 39801268 DOI: 10.1039/d4cs00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations. In fact, absorption spectroscopy is one of the most important branches of spectroscopic techniques (others including fluorescence and scattering), which plays a critical role in understanding the electronic structure and optoelectrical dynamics of MHPs. In this tutorial, the basic principles of various types of absorption spectroscopy as well as their recent developments and applications in MHP materials and devices are summarized, covering comprehensive advances in steady state and transient absorption spectroscopy. Given the significance of absorption spectroscopy in directing the design of different optoelectronic applications of MHPs, this tutorial will comprehensively discuss absorption spectroscopy, covering wavelengths from optical to terahertz (THz) and microwave, and timescales from femtoseconds to hours, and it specifically focuses on time-dependent steady-state and transient absorption spectroscopy under light illumination bias to study MHP materials and devices, allowing researchers to select suitable characterization techniques.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Junlin Lu
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
5
|
Wang L, Hao W, Peng B, Ren J, Li H. Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414199. [PMID: 39865959 DOI: 10.1002/adma.202414199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Indexed: 01/28/2025]
Abstract
2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling. Here, a nucleation-controlled strategy is employed to grow a novel DJ-phase perovskite [(R/S)-3APr]PbI4 [(R/S)-3APr = (R/S)-3-Aminopyrrolidine] SCTFs with large area, low thickness and hence high aspect ratios. Structural and photoluminescence analyses reveal that introducing the divalent organic cations into the perovskite framework reduce the interlayer distance, resulting in low exciton binding energy. This facilitates charge separation and transport. The resulting SCTF photodetector showcases excellent detection performance with anisotropy factor for photocurrent as high as 0.65, responsivity of 1.97 A W-1, detectivity of 5.3 × 1013 Jones, and 3-dB frequency of 2940 Hz, demonstrating its potential as a promising candidate for CPL-sensitive photodetectors. This novel approach, therefore, provides a framework for the growth of DJ-phase perovskite SCTFs and advances their applications in sensitive CPL photodetection.
Collapse
Affiliation(s)
- Lin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Chen Y, Yu K, Yan Y, Wang GP. Quantitative Complex Refractive Index Changes in Thin Films: A Pump-Probe Spectroscopy Analysis Approach. J Phys Chem Lett 2024; 15:6467-6475. [PMID: 38869188 DOI: 10.1021/acs.jpclett.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photoexcitation induces intricate changes in both the real and imaginary components of the complex refractive index of thin film materials, which is essential for interpreting transient spectral features. Here, we employ a Kramers-Kronig-based analytical approach to elucidate light-induced changes in the complex refractive index from transient transmission spectra of thin films. Using gold-perovskite films as model systems, we conduct experimental measurements of transient transmission spectra for both individual gold and perovskite films, as well as for the bilayer heterostructure. Our analysis reveals significant changes in the refractive index and absorption for these systems. Notably, we observe negligible photocarrier transfer between the gold and perovskite layers based on transient spectroscopic analysis. These findings have implications for the design and optimization of bilayer heterostructures in optoelectronic applications. This work highlights the importance of spectroscopic techniques in studying the photophysical properties of heterostructure films.
Collapse
Affiliation(s)
- Yungao Chen
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Kuai Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Li M, Yang Y, Kuang Z, Hao C, Wang S, Lu F, Liu Z, Liu J, Zeng L, Cai Y, Mao Y, Guo J, Tian H, Xing G, Cao Y, Ma C, Wang N, Peng Q, Zhu L, Huang W, Wang J. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 2024; 630:631-635. [PMID: 38811739 PMCID: PMC11186751 DOI: 10.1038/s41586-024-07460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Chenjie Hao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Saixue Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Feiyue Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Zhongran Liu
- Center of Electron Microscopy, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jinglong Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Lingjiao Zeng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Yuxiao Cai
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Yulin Mao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Jingshu Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - He Tian
- Center of Electron Microscopy, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Yu Cao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China
| | - Chao Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Lin Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, China.
- School of Flexible Electronics (SoFE), Sun Yat-sen University, Shenzhen, China.
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China.
- School of Materials Science and Engineering, Changzhou University, Changzhou, China.
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China.
| |
Collapse
|
8
|
Ravali V, Ghosh T. Charge carrier dynamics and transient spectral evolutions in lead halide perovskites. Chem Commun (Camb) 2023; 59:13939-13950. [PMID: 37934456 DOI: 10.1039/d3cc04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as promising materials for solar cell applications due to their unique photophysical properties. Most of the crucial properties related to solar cell performance such as carrier mobility, diffusion length, recombination rates, etc. have been estimated using ultrafast spectroscopic methods. While various methods have been developed to prepare and fabricate high-quality perovskite films for photovoltaic applications, understanding the charge carrier dynamics is also crucial at each stage of the charge generation, cooling, and recombination processes. Using femtosecond (fs) transient absorption (TA) spectroscopy, various stages of charge carrier dynamics in perovskite materials could be monitored. In this article, we focus on some of the recent experimental developments related to charge carrier dynamics in perovskites and discuss the current understanding of (1) exciton dissociation, (2) charge carrier thermalization, (3) hot carrier cooling, and (4) electron-phonon coupling along with some of the crucial spectral emergence in the pump-probe experiments of LHP materials.
Collapse
Affiliation(s)
- Vanga Ravali
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| | - Tufan Ghosh
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| |
Collapse
|
9
|
Mei L, Zhang K, Cui N, Yu W, Li Y, Gong K, Li H, Fu N, Yuan J, Mu H, Huang Z, Xu Z, Lin S, Zhu L. Ultraviolet-Visible-Short-Wavelength Infrared Broadband and Fast-Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301386. [PMID: 37086119 DOI: 10.1002/smll.202301386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.
Collapse
Affiliation(s)
- Luyao Mei
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Kai Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kaiwen Gong
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nianqing Fu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jian Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zhanfeng Huang
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Zhengji Xu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Lu Zhu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| |
Collapse
|
10
|
Sharif R, Khalid A, Ahmad SW, Rehman A, Qutab HG, Akhtar HH, Mahmood K, Afzal S, Saleem F. A comprehensive review of the current progresses and material advances in perovskite solar cells. NANOSCALE ADVANCES 2023; 5:3803-3833. [PMID: 37496623 PMCID: PMC10367966 DOI: 10.1039/d3na00319a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Recently, perovskite solar cells (PSCs) have attracted ample consideration from the photovoltaic community owing to their continually-increasing power conversion efficiency (PCE), viable solution-processed methods, and inexpensive materials ingredients. Over the past few years, the performance of perovskite-based devices has exceeded 25% due to superior perovskite films achieved using low-temperature synthesis procedures along with evolving appropriate interface and electrode-materials. The current review provides comprehensive knowledge to enhance the performance and materials advances for perovskite solar cells. The latest progress in terms of perovskite crystal structure, device construction, fabrication procedures, and challenges are thoroughly discussed. Also discussed are the different layers such as ETLs and buffer-layers employed in perovskite solar-cells, seeing their transmittance, carrier mobility, and band gap potentials in commercialization. Generally, this review delivers a critical assessment of the improvements, prospects, and trials of PSCs.
Collapse
Affiliation(s)
- Rabia Sharif
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Arshi Khalid
- Department of Humanities & Basic Sciences, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Syed Waqas Ahmad
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Abdul Rehman
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Haji Ghulam Qutab
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Hafiz Husnain Akhtar
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Khalid Mahmood
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Shabana Afzal
- Department of Basic Sciences, Humanities Muhammad Nawaz Shareef University of Engineering and Technology Multan Pakistan
| | - Faisal Saleem
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| |
Collapse
|
11
|
Tsai IH, Narra S, Bhosale SS, Diau EWG. Energy and Charge Transfer Dynamics in Red-Emitting Hybrid Organo-Inorganic Mixed Halide Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:2580-2587. [PMID: 36880907 DOI: 10.1021/acs.jpclett.3c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report time-resolved spectral properties of highly stable and efficient red-emitting hybrid perovskite nanocrystals with the composition FA0.5MA0.5PbBr0.5I2.5 (FAMA PeNC) synthesized by using the hot-addition method. The PL spectrum of the FAMA PeNC shows a broad asymmetric band covering 580 to 760 nm with a peak at 690 nm which can be deconvoluted into two bands corresponding to the MA and FA domains. The interactions between the MA and FA domains are shown to affect the relaxation dynamics of the PeNCs from the subpicosecond to tens of nanoseconds scale. Time-correlated single-photon counting (TCSPC), femtosecond PL optical gating (FOG), and femtosecond transient absorption spectral (TAS) techniques were employed to study the intercrystal energy transfer (photon recycling) and intracrystal charge transfer processes between the MA and the FA domains of the crystals. These two processes are shown to increase the radiative lifetimes for the PLQYs exceeding 80%, which may play a key role in enhancing the performance of PeNC-based solar cells.
Collapse
|
12
|
Kuang Z, Yuan L, Peng Q, Wang J. Sub-Bandgap-Voltage Electroluminescence of Light-Emitting Diodes. J Phys Chem Lett 2022; 13:11925-11927. [PMID: 36579439 DOI: 10.1021/acs.jpclett.2c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sub-bandgap-voltage electroluminescence (EL) has been frequently reported in quantum dot, organic, and perovskite light-emitting diodes. Due to the complex physical process across devices, the underlying mechanism is still under intensive debate. Here, based on thermodynamics, we offer an orthodox explanation of sub-bandgap-voltage EL and discuss the applicability of the previously proposed models.
Collapse
Affiliation(s)
- Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Lingzhi Yuan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou350117, China
| |
Collapse
|
13
|
Landi N, Maurina E, Marongiu D, Simbula A, Borsacchi S, Calucci L, Saba M, Carignani E, Geppi M. Solid-State Nuclear Magnetic Resonance of Triple-Cation Mixed-Halide Perovskites. J Phys Chem Lett 2022; 13:9517-9525. [PMID: 36200785 PMCID: PMC9575147 DOI: 10.1021/acs.jpclett.2c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.
Collapse
Affiliation(s)
- Noemi Landi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Elena Maurina
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Daniela Marongiu
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Angelica Simbula
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Silvia Borsacchi
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Lucia Calucci
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Michele Saba
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Elisa Carignani
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
| | - Marco Geppi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| |
Collapse
|
14
|
Dong H, Ran C, Li W, Liu X, Gao W, Xia Y, Chen Y, Huang W. Reductive ionic liquid-mediated crystallization for enhanced photovoltaic performance of Sn-based perovskite solar cells. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Jin Z, Peng Y, Fang Y, Ye Z, Fan Z, Liu Z, Bao X, Gao H, Ren W, Wu J, Ma G, Chen Q, Zhang C, Balakin AV, Shkurinov AP, Zhu Y, Zhuang S. Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:209. [PMID: 35794097 PMCID: PMC9259629 DOI: 10.1038/s41377-022-00872-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Organic-inorganic hybrid metal halide perovskites (MHPs) have attracted tremendous attention for optoelectronic applications. The long photocarrier lifetime and moderate carrier mobility have been proposed as results of the large polaron formation in MHPs. However, it is challenging to measure the effective mass and carrier scattering parameters of the photogenerated large polarons in the ultrafast carrier recombination dynamics. Here, we show, in a one-step spectroscopic method, that the optical-pump and terahertz-electromagnetic probe (OPTP) technique allows us to access the nature of interplay of photoexcited unbound charge carriers and optical phonons in polycrystalline CH3NH3PbI3 (MAPbI3) of about 10 μm grain size. Firstly, we demonstrate a direct spectral evidence of the large polarons in polycrystalline MAPbI3. Using the Drude-Smith-Lorentz model along with the Frӧhlich-type electron-phonon (e-ph) coupling, we determine the effective mass and scattering parameters of photogenerated polaronic carriers. We discover that the resulting moderate polaronic carrier mobility is mainly influenced by the enhanced carrier scattering, rather than the polaron mass enhancement. While, the formation of large polarons in MAPbI3 polycrystalline grains results in a long charge carrier lifetime at room temperature. Our results provide crucial information about the photo-physics of MAPbI3 and are indispensable for optoelectronic device development with better performance.
Collapse
Affiliation(s)
- Zuanming Jin
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Fang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhijiang Ye
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiyuan Fan
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhilin Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Heng Gao
- Physics Department, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China
| | - Wei Ren
- Physics Department, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China
| | - Jing Wu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, China
| | - Guohong Ma
- Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Qianli Chen
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhang
- School of Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Alexey V Balakin
- Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 19991, Russia
- ILIT RAS-Branch of the FSRC《Crystallography and Photonics》RAS, Svyatoozerskaya 1, 140700, Shatura, Moscow Region, Russia
| | - Alexander P Shkurinov
- Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 19991, Russia
- ILIT RAS-Branch of the FSRC《Crystallography and Photonics》RAS, Svyatoozerskaya 1, 140700, Shatura, Moscow Region, Russia
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Songlin Zhuang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
16
|
Zhang C, Lu G, Zhang Y, Fang Z, He H, Zhu H. Long-range transport and ultrafast interfacial charge transfer in perovskite/monolayer semiconductor heterostructure for enhanced light absorption and photocarrier lifetime. J Chem Phys 2022; 156:244701. [DOI: 10.1063/5.0097617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atomically thin two-dimensional transition metal dichalcogenides (TMDs) have shown great potential for optoelectronic applications, including photodetectors, phototransistors, and spintronic devices. However, the applications of TMD-based optoelectronic devices are severely restricted by their weak light absorption and short exciton lifetime due to their atomically thin nature and strong excitonic effect. To simultaneously enhance the light absorption and photocarrier lifetime of monolayer semiconductors, here, we report 3D/2D perovskite/TMD type II heterostructures by coupling solution processed highly smooth and ligand free CsPbBr3 film with MoS2 and WS2 monolayers. By time-resolved spectroscopy, we show interfacial hole transfer from MoS2 (WS2) to the perovskite layer occurs in an ultrafast time scale (100 and 350 fs) and interfacial electron transfer from ultrathin CsPbBr3 to MoS2 (WS2) in ∼3 (9) ps, forming a long-lived charge separation with a lifetime of >20 ns. With increasing CsPbBr3 thickness, the electron transfer rate from CsPbBr3 to TMD is slower, but the efficiency remains to be near-unity due to coupled long-range diffusion and ultrafast interfacial electron transfer. This study indicates that coupling solution processed lead halide perovskites with strong light absorption and long carrier diffusion length to monolayer semiconductors to form a type II heterostructure is a promising strategy to simultaneously enhance the light harvesting capability and photocarrier lifetime of monolayer semiconductors.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhishan Fang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
17
|
Lu J, Zhou C, Chen W, Wang X, Jia B, Wen X. Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. iScience 2022; 25:104420. [PMID: 35663014 PMCID: PMC9157205 DOI: 10.1016/j.isci.2022.104420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The edge region of two-dimensional (2D) Ruddlesden-Popper (RP) perovskites exhibits anomalous properties from the bulk region, including low energy emission and superior capability of dissociating exciton, which is highly beneficial for the optoelectronic devices like solar cells and photodetectors, denoted as “edge states”. In this review, we introduce the recent progress on the edge states that have been focused on the origin and the optoelectronic properties of edge states in 2D RP perovskites. By providing theoretical frameworks and experimental observations, we elucidate the origin of the edge states from two aspects, intrinsic electronic properties and extrinsic structure distortions. Besides, we introduce the physical properties of the edge states and current debating on this topic. Finally, we present an outlook on future research about the edge states of 2D RP perovskites.
Collapse
Affiliation(s)
- Junlin Lu
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China
| | - Chunhua Zhou
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024 China
| | - Weijian Chen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006 China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| |
Collapse
|
18
|
Zhao F, Ren A, Li P, Li Y, Wu J, Wang ZM. Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS NANO 2022; 16:7116-7143. [PMID: 35511058 DOI: 10.1021/acsnano.1c11539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing high-performance and stable CW pumped perovskite lasers.
Collapse
Affiliation(s)
- Feiyun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Aobo Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yan Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|
19
|
Xu S, Yang L, Wei Y, Jia Y, Hu M, Bai L, Zhang J, Li X, Wei S, Lu J. Monochromatic light-enhanced photocatalytic CO 2 reduction based on exciton properties of two-dimensional lead halide perovskites. Dalton Trans 2022; 51:8036-8045. [PMID: 35552583 DOI: 10.1039/d2dt00972b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Converting CO2 into valuable solar fuels through photocatalysis has been considered a green and sustainable technology that is promising for alleviating global warming and providing energy in an environmentally friendly manner. However, traditional photocatalysts generally suffer from low surface-reactive reaction sites, inefficient light harvesting and rapid recombination of electron-hole pairs. Lead halide perovskite materials have been considered ideal semiconductor photocatalysts for photocatalytic CO2 reduction due to their tunable band gaps, strong light absorption, and low cost. Herein, a series of L2Csn-1PbnX3n+1 (L = ba, ha, oa; X = Cl, Br, I; n = 1, 2) 2D layered perovskites were synthesized by a facile solvothermal method. The effects of alkyl amine chain length, halogen atoms and inorganic layer number on their properties were studied. More importantly, these 2D materials were used as photocatalysts for CO2 reduction without any sacrificial agents. These 2D perovskites exhibited markedly increased performance in comparison with 3D bulk materials, benefitting from the larger surface-area-to-volume ratio and faster and more efficient exciton dissociation, which achieved the highest CO yield of 158.69 μmol g-1 h-1 and CH4 yield of 6.9 μmol g-1 h-1 through the design of the photocatalytic system. In addition, the influence of light source conditions on photocatalysis was studied systematically, including light source intensity and wavelength. The experimental results indicated that an appropriate solvent, high light intensity and monochromatic light source matching the wavelength of exciton absorption can effectively improve the photocatalytic efficiency.
Collapse
Affiliation(s)
- Shengqi Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lu Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yixuan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yiming Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Meiqi Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lianxia Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junzheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xinxin Li
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuo Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
Rakowski R, Fisher W, Calbo J, Mokhtar MZ, Liang X, Ding D, Frost JM, Haque SA, Walsh A, Barnes PRF, Nelson J, van Thor JJ. High Power Irradiance Dependence of Charge Species Dynamics in Hybrid Perovskites and Kinetic Evidence for Transient Vibrational Stark Effect in Formamidinium. NANOMATERIALS 2022; 12:nano12101616. [PMID: 35630839 PMCID: PMC9146680 DOI: 10.3390/nano12101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Hybrid halide perovskites materials have the potential for both photovoltaic and light-emitting devices. Relatively little has been reported on the kinetics of charge relaxation upon intense excitation. In order to evaluate the illumination power density dependence on the charge recombination mechanism, we have applied a femtosecond transient mid-IR absorption spectroscopy with strong excitation to directly measure the charge kinetics via electron absorption. The irradiance-dependent relaxation processes of the excited, photo-generated charge pairs were quantified in polycrystalline MAPbI3, MAPbBr3, and (FAPbI3)0.97(MAPbBr3)0.03 thin films that contain either methylamonium (MA) or formamidinium (FA). This report identifies the laser-generated charge species and provides the kinetics of Auger, bimolecular and excitonic decay components. The inter-band electron-hole (bimolecular) recombination was found to dominate over Auger recombination at very high pump irradiances, up to the damage threshold. The kinetic analysis further provides direct evidence for the carrier field origin of the vibrational Stark effect in a formamidinium containing perovskite material. The results suggest that radiative excitonic and bimolecular recombination in MAPbI3 at high excitation densities could support light-emitting applications.
Collapse
Affiliation(s)
- Rafal Rakowski
- Life Science Department, Imperial College London, London SW7 2AZ, UK;
| | - William Fisher
- Department of Physics, Imperial College London, London SW7 2AZ, UK; (W.F.); (J.M.F.); (P.R.F.B.); (J.N.)
| | - Joaquín Calbo
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.C.); (A.W.)
| | - Muhamad Z. Mokhtar
- School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK;
| | - Xinxing Liang
- Department of Chemistry, Centre for Plastic Electronics, Imperial College London, London W12 0BZ, UK; (X.L.); (D.D.); (S.A.H.)
| | - Dong Ding
- Department of Chemistry, Centre for Plastic Electronics, Imperial College London, London W12 0BZ, UK; (X.L.); (D.D.); (S.A.H.)
| | - Jarvist M. Frost
- Department of Physics, Imperial College London, London SW7 2AZ, UK; (W.F.); (J.M.F.); (P.R.F.B.); (J.N.)
| | - Saif A. Haque
- Department of Chemistry, Centre for Plastic Electronics, Imperial College London, London W12 0BZ, UK; (X.L.); (D.D.); (S.A.H.)
| | - Aron Walsh
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.C.); (A.W.)
| | - Piers R. F. Barnes
- Department of Physics, Imperial College London, London SW7 2AZ, UK; (W.F.); (J.M.F.); (P.R.F.B.); (J.N.)
| | - Jenny Nelson
- Department of Physics, Imperial College London, London SW7 2AZ, UK; (W.F.); (J.M.F.); (P.R.F.B.); (J.N.)
| | - Jasper J. van Thor
- Life Science Department, Imperial College London, London SW7 2AZ, UK;
- Correspondence:
| |
Collapse
|
21
|
McClintock L, Song Z, Travaglini HC, Senger RT, Chandrasekaran V, Htoon H, Yarotski D, Yu D. Highly Mobile Excitons in Single Crystal Methylammonium Lead Tribromide Perovskite Microribbons. J Phys Chem Lett 2022; 13:3698-3705. [PMID: 35439010 DOI: 10.1021/acs.jpclett.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excitons are often given negative connotation in solar energy harvesting in part due to their presumed short diffusion lengths. We investigate exciton transport in single-crystal methylammonium lead tribromide (MAPbBr3) microribbons via spectrally, spatially, and temporally resolved photocurrent and photoluminescence measurements. Distinct peaks in the photocurrent spectra unambiguously confirm exciton formation and allow for accurate extraction of the low temperature exciton binding energy (39 meV). Photocurrent decays within a few μm at room temperature, while a gate-tunable long-range photocurrent component appears at lower temperatures (about 100 μm below 140 K). Carrier lifetimes of 1.2 μs or shorter exclude the possibility of the long decay length arising from slow trapped-carrier hopping. Free carrier diffusion is also an unlikely source of the highly nonlocal photocurrent, due to their small fraction at low temperatures. We attribute the long-distance transport to high-mobility excitons, which may open up new opportunities for novel exciton-based photovoltaic applications.
Collapse
Affiliation(s)
- Luke McClintock
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ziyi Song
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - H Clark Travaglini
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - R Tugrul Senger
- Department of Physics, Izmir Institute of Technology, 35430 Izmir, Turkey
- ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Vigneshwaran Chandrasekaran
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry Yarotski
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dong Yu
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Tao W, Zhang Y, Zhu H. Dynamic Exciton Polaron in Two-Dimensional Lead Halide Perovskites and Implications for Optoelectronic Applications. Acc Chem Res 2022; 55:345-353. [PMID: 35043614 DOI: 10.1021/acs.accounts.1c00626] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusThe past few years have witnessed an exciting revival of the research interest in two-dimensional (2D) lead halide perovskites. The renaissance is strongly motivated by the great success of their three-dimensional (3D) counterparts in optoelectronic applications. Different from 3D lead halide perovskites where free carriers are generated upon photoexcitation, 2D lead halide perovskites experience weaker dielectric screening and stronger quantum confinement effects. Therefore, strongly bound excitons with binding energy of up to a few hundreds of meV are considered to be the main excited-state species responsible for optoelectronic processes in 2D perovskites. In addition to strong excitonic effects, polaronic effects are also inherent in the soft and anharmonic lattice of lead halide perovskites, and polaronic structural relaxation is found to strongly renormalize carrier excited-state behaviors. For example, ferroelectric large polaron formation and liquid-like solvation of band edge carriers are proposed to account for the exceptional properties of 3D lead halide perovskites. As for 2D lead halide perovskites, polaronic characteristics have also been observed in exciton spectral characters, but how the interplay between excitonic effect and polaronic effect redefines the nature of exciton polarons and their excited-state behaviors still remains largely unexplored.In this Account, we discuss our recent experimental findings about the excited-state properties of exciton polarons in 2D lead halide perovskites. We begin our discussion by introducing a conventional view of strongly bound excitons in 2D lead halide perovskites with large exciton binding energy, which is typically estimated from steady-state absorption spectra. However, owing to the soft and anharmonic lattice, excitons in 2D lead halide perovskites exhibit significant polaronic characters and exist as exciton polarons. It is still unclear how polaronic effects would affect the exciton properties in 2D lead halide perovskites, especially in their excited-state dynamics. By probing exchange interaction, we found that both intra- and inter-exciton Coulomb interaction strengths are substantially weakened by the polaronic screening effect, which is manifested as (1) a counterintuitively longer exciton spin lifetime by almost an order of magnitude or a smaller intraexcitonic interaction strength with temperature increasing from 80 to 340 K and (2) an order of magnitude smaller interexcitonic interaction strength compared to another prototypical 2D semiconductor named transition-metal dichalcogenides (TMDCs) with a comparable steady-state exciton binding energy. We further discuss the interplay between the long- and short-range exciton-phonon interaction and conclude that the exciton-phonon interaction strength is in an intermediate regime and the exciton polaron is momentarily trapped in 2D perovskites, that is, a dynamic exciton polaron.Finally, we highlight prospective opportunities with ligand and cation engineering to regulate the exciton-phonon interaction and exciton polaron properties in 2D perovskites, which have strong implications toward future rational design for 2D perovskite-based efficient photovoltaics or light-emitting devices with high color purity.
Collapse
Affiliation(s)
- Weijian Tao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310014, P. R. China
| |
Collapse
|
23
|
Triolo C, De Giorgi ML, Lorusso A, Cretì A, Santangelo S, Lomascolo M, Anni M, Mazzeo M, Patané S. Light Emission Properties of Thermally Evaporated CH 3NH 3PbBr 3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons. NANOMATERIALS 2022; 12:nano12020211. [PMID: 35055230 PMCID: PMC8779009 DOI: 10.3390/nano12020211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
Over the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano- to micro- and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CH3NH3PbBr3 perovskite after wet air UV light trap passivation. The map of light emission from grains, carried out by SNOM at the nanoscale and by micro-PL techniques, clearly indicates that free and localized excitons (EXs) are the dominant light-emitting species, the localized excitons being the dominant ones in the presence of crystallites. These species also have a key role in the amplified spontaneous emission (ASE) process: for higher excitation densities, the relative contribution of localized EXs basically remains constant, while a clear competition between ASE and free EXs spontaneous emission is present, which suggests that ASE is due to stimulated emission from the free EXs.
Collapse
Affiliation(s)
- Claudia Triolo
- Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University, 89122 Reggio Calabria, Italy;
- Correspondence: (C.T.); (M.A.)
| | - Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce, Italy; (M.L.D.G.); (A.L.); (M.M.)
| | - Antonella Lorusso
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce, Italy; (M.L.D.G.); (A.L.); (M.M.)
| | - Arianna Cretì
- IMM-CNR Institute for Microelectronic and Microsystems, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.)
| | - Saveria Santangelo
- Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University, 89122 Reggio Calabria, Italy;
| | - Mauro Lomascolo
- IMM-CNR Institute for Microelectronic and Microsystems, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.)
| | - Marco Anni
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce, Italy; (M.L.D.G.); (A.L.); (M.M.)
- Correspondence: (C.T.); (M.A.)
| | - Marco Mazzeo
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce, Italy; (M.L.D.G.); (A.L.); (M.M.)
- CNR NANOTEC—Institute of Nanotechnology, 73100 Lecce, Italy
| | - Salvatore Patané
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
24
|
Enomoto S, Tagami T, Ueda Y, Moriyama Y, Fujiwara K, Takahashi S, Yamashita K. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures. LIGHT, SCIENCE & APPLICATIONS 2022; 11:8. [PMID: 34974529 PMCID: PMC8720309 DOI: 10.1038/s41377-021-00701-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 05/09/2023]
Abstract
Lead-halide perovskites are highly promising for various optoelectronic applications, including laser devices. However, fundamental photophysics explaining the coherent-light emission from this material system is so intricate and often the subject of debate. Here, we systematically investigate photoluminescence properties of all-inorganic perovskite microcavity at room temperature and discuss the excited state and the light-matter coupling regime depending on excitation density. Angle-resolved photoluminescence clearly exhibits that the microcavity system shows a transition from weak coupling regime to strong coupling regime, revealing the increase in correlated electron-hole pairs. With pumping fluence above the threshold, the photoluminescence signal shows a lasing behavior with bosonic condensation characteristics, accompanied by long-range phase coherence. The excitation density required for the lasing behavior, however, is found to exceed the Mott density, excluding the exciton as the excited state. These results demonstrate that the polaritonic Bardeen-Cooper-Schrieffer state originates the strong coupling formation and the lasing behavior.
Collapse
Affiliation(s)
- Shuki Enomoto
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoya Tagami
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yusuke Ueda
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuta Moriyama
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kentaro Fujiwara
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Shun Takahashi
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kenichi Yamashita
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
25
|
Zheng M, Fang G. Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures. NANOSCALE 2021; 13:16427-16447. [PMID: 34590647 DOI: 10.1039/d1nr05667k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal halide perovskites, as newly emerging light emitters, have been attracting considerable attention on luminescent materials and devices, due to their superior optoelectronic properties and potential practical applications. Recently, perovskite light-emitting diodes (PeLEDs) based on lead halide perovskites (LHPs) have been largely designed and intensively studied in laboratory platforms. However, to satisfy demand and promote their commercialization, it is crucial to improve the efficiency and stability of PeLEDs. Accordingly, the surface-plasmon (SP) effect provides a promising approach to enhance their luminescence, which is realized by incorporating plasmonic metal nanostructures (NSs) into PeLEDs. This review presents a comprehensive overview of the research status and prospect on LHP-based plasmonic PeLEDs together with the corresponding perovskite light-emission films (PeLEFs). Firstly, the recent development of the PeLEDs is briefly introduced. Secondly, the mechanisms and photophysics of the PeLEDs by SP manipulation are simply illustrated and analyzed. Then, the recent progress and achievements on the theoretical and experimental results of SP effect applications in the PeLEDs together with PeLEFs are presented in detail and systematically reviewed. Next, the current challenges and future directions of the PeLEDs are shown and discussed. Finally, a critical summary and outlook of the PeLEDs are summarized and proposed. Our results indicate that this new class of LHP-based plasmonic PeLEDs presents future research fields and demonstrates promising applications in lighting and displays, and further luminescence enhancement in exciton radiation processes and light extraction techniques are a hopeful route to obtain high-performance PeLEDs.
Collapse
Affiliation(s)
- Mingfei Zheng
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Guojia Fang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
26
|
Maeng I, Tanaka H, Mag-usara VK, Nakajima M, Nakamura M, Jung MC. Terahertz Wave Absorption Property of all Mixed Organic-Inorganic Hybrid Perovskite Thin Film MA(Sn, Pb)(Br, I) 3 Fabricated by Sequential Vacuum Evaporation Method. Front Chem 2021; 9:753141. [PMID: 34604176 PMCID: PMC8481619 DOI: 10.3389/fchem.2021.753141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 12/05/2022] Open
Abstract
All mixed hybrid perovskite (MA(Sn, Pb)(Br,I)3) thin film was fabricated by sequential vacuum evaporation method. To optimize the first layer with PbBr2 and SnI2, we performed different annealing treatments. Further, MA(Sn, Pb)(Br, I)3 thin film was synthesized on the optimized first layer by evaporating MAI and post-annealing. The formed hybrid perovskite thin film exhibited absorptions at 1.0 and 1.7 THz with small absorbance (<10%). Moreover, no chemical and structural defect-incorporated absorption was found. In this study, the possibility of changing terahertz absorption frequency through the mixture of metal cations (Sn+ and Pb+) and halogen anions (Br- and I-) was verified.
Collapse
Affiliation(s)
- Inhee Maeng
- YUHS-KRIBB, Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hiroshi Tanaka
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Makoto Nakajima
- Institute of Laser Engineering, Osaka University, Suita, Japan
| | - Masakazu Nakamura
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Min-Cherl Jung
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Achieving Optical Gain of the CsPbBr 3 Perovskite Quantum Dots and Influence of the Variable Stripe Length Method. ACS OMEGA 2021; 6:5297-5309. [PMID: 33681570 PMCID: PMC7931209 DOI: 10.1021/acsomega.0c05414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of the CsPbBr3 PQDs as an active laser medium, amplified spontaneous emission (ASE) and optical gain properties were investigated under picosecond pulse excitation using the variable stripe length (VSL) method. The thin film of CsPbBr3 PQDs has exhibited a sufficient value of the optical absorption coefficient of ∼0.86 × 105 cm-1 near the band edge and a direct band gap energy E g ∼2.38 eV. The samples showed enhanced emission, and ASE was successfully recorded at a low threshold. The light emitted from the edge was observed near 2.40 and 2.33 eV for the stimulated emission (SE) and ASE regimes, respectively. The nonradiative decay contributes excitons dominant over biexcitons in the sample edge emission above the ASE threshold, making it practical for CsPbBr3 PQDs to be used as optical gain media without undergoing repeated SE processes above the threshold over long periods. A high value of the optical gain coefficient was recorded at 346 cm-1.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M. Ghaithan
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Sana’a
University, Sana’a 12544, Yemen
| | - Abdullah S. Aldwayyan
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- K.A.
CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Achieving Optical Gain of the CsPbBr 3 Perovskite Quantum Dots and Influence of the Variable Stripe Length Method. ACS OMEGA 2021; 6:5297-5309. [PMID: 33681570 DOI: 10.1021/acsomega.0c05414/suppl_file/ao0c05414_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023]
Abstract
High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of the CsPbBr3 PQDs as an active laser medium, amplified spontaneous emission (ASE) and optical gain properties were investigated under picosecond pulse excitation using the variable stripe length (VSL) method. The thin film of CsPbBr3 PQDs has exhibited a sufficient value of the optical absorption coefficient of ∼0.86 × 105 cm-1 near the band edge and a direct band gap energy E g ∼2.38 eV. The samples showed enhanced emission, and ASE was successfully recorded at a low threshold. The light emitted from the edge was observed near 2.40 and 2.33 eV for the stimulated emission (SE) and ASE regimes, respectively. The nonradiative decay contributes excitons dominant over biexcitons in the sample edge emission above the ASE threshold, making it practical for CsPbBr3 PQDs to be used as optical gain media without undergoing repeated SE processes above the threshold over long periods. A high value of the optical gain coefficient was recorded at 346 cm-1.
Collapse
Affiliation(s)
- Saif M H Qaid
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M Ghaithan
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Sana'a University, Sana'a 12544, Yemen
| | - Abdullah S Aldwayyan
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat Commun 2021; 12:336. [PMID: 33436618 PMCID: PMC7804015 DOI: 10.1038/s41467-020-20555-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Rapid Auger recombination represents an important challenge faced by quasi-2D perovskites, which induces resulting perovskite light-emitting diodes' (PeLEDs) efficiency roll-off. In principle, Auger recombination rate is proportional to materials' exciton binding energy (Eb). Thus, Auger recombination can be suppressed by reducing the corresponding materials' Eb. Here, a polar molecule, p-fluorophenethylammonium, is employed to generate quasi-2D perovskites with reduced Eb. Recombination kinetics reveal the Auger recombination rate does decrease to one-order-of magnitude lower compared to its PEA+ analogues. After effective passivation, nonradiative recombination is greatly suppressed, which enables resulting films to exhibit outstanding photoluminescence quantum yields in a broad range of excitation density. We herein demonstrate the very efficient PeLEDs with a peak external quantum efficiency of 20.36%. More importantly, devices exhibit a record luminance of 82,480 cd m-2 due to the suppressed efficiency roll-off, which represent one of the brightest visible PeLEDs yet.
Collapse
|
30
|
Gao Z, Chen S, Bai Y, Wang M, Liu X, Yang W, Li W, Ding X, Yao J. A new perspective for evaluating the photoelectric performance of organic-inorganic hybrid perovskites based on the DFT calculations of excited states. Phys Chem Chem Phys 2021; 23:11548-11556. [PMID: 33977993 DOI: 10.1039/d1cp01000j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high efficiency of organic-inorganic hybrid perovskites has attracted the attention of many scholars all over the world, the chemical formula of which is ABX3, where A is an organic cation, B is a metal cation, and X is a halogen ion. In addition, the micro-mechanism behind the efficient photoelectric conversion needs more in-depth exploration. Therefore, in this work, based on time-dependent density functional theory (TD-DFT), the electron transfer mechanism from the ground state to the first singlet excited state was systematically investigated by electron and hole analysis and an inter-fragment charge transfer amount method (IFCT). In this work, we optimized and analyzed 99 different perovskite cluster configurations, where A sites are CH3NH3+ (MA+), NH2CHNH2+ (FA+), CH3CH2NH3+ (EA+), NH2CHOH+ (JA+), NH3OH+ (BA+), N(CH3)4+ (DA+), CH3CH2CH2NH3+ (KB+), CH3CH2CH2CH2NH3+ (KC+), C3N2H5+ (RA+), CH(CH3)2+ (TA+), and CH3NH(CH3)2+ (UA+), B sites are Ge2+, Sn2+ and Pb2+, and X sites are Cl-, Br- and I-. According to the analysis of a series of perovskite clusters of the hole-electron distribution, the distribution is mainly concentrated on BX, and electrons and holes are respectively distributed on B and X sites. The exciton binding energy decreases when the metal element changes from Ge to Pb and the halogen element changes from Cl to I. A radar chart including the exciton binding energy, excited energy, amount of net charge transfer, electron and hole overlap index, distance between the centroid of holes and electrons, and the hole and electron separation index was proposed to intuitively describe the electron transmission characteristics of perovskites. Based on that, a comprehensive score index was innovatively proposed to evaluate the photoelectric property of perovskites, providing foundational guidance for the design of high-efficiency organic-inorganic hybrid perovskites.
Collapse
Affiliation(s)
- Zhengyang Gao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Shengyi Chen
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Yang Bai
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Min Wang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Xiaoshuo Liu
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China. and Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| | - Wei Li
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, People's Republic of China.
| | - Xunlei Ding
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, People's Republic of China.
| | - Jianxi Yao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China. and Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
31
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Alqasem A, Aldwayyan AS. Fabrication of Thin Films from Powdered Cesium Lead Bromide (CsPbBr 3) Perovskite Quantum Dots for Coherent Green Light Emission. ACS OMEGA 2020; 5:30111-30122. [PMID: 33251445 PMCID: PMC7689956 DOI: 10.1021/acsomega.0c04517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 05/27/2023]
Abstract
High-quality thin films were obtained directly by spin-coating glass substrates with suspensions of powdered cesium lead bromide (CsPbBr3) perovskite quantum dots (PQDs). The structural properties of the films were characterized via transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). The crystal structure of the CsPbBr3 PQDs was unique. The optical behavior of the CsPbBr3 PQDs, including absorption and emission, was then investigated to determine the absorption coefficient and band gap of the material. The CsPbBr3 PQDs were evaluated as active lasing media and irradiated with a pulsed laser under ambient conditions. The PQDs were laser-active when subjected to optical pumping for pulse durations of 70-80 ps at 15 Hz. Amplified spontaneous emission (ASE) by the CsPbBr3 PQD thin films was observed, and a narrow ASE band (∼5 nm) was generated at a low threshold energy of 22.25 μJ cm-2. The estimated ASE threshold carrier density (n th) was ∼7.06 × 1018 cm-3. Band-gap renormalization (BGR) was indicated by an ASE red shift and a BGR constant of ∼27.10 × 10-8 eV. A large optical absorption coefficient, photoluminescence (PL), and a substantial optical gain indicated that the CsPbBr3 PQD thin films could be embedded in a wide variety of cavity resonators to fabricate unique on-chip coherent light sources.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M. Ghaithan
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Sana’a
University, Sana’a 70270, Yemen
| | - Abdulaziz Alqasem
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Aldwayyan
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- K.
A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
You M, Wang H, Cao F, Zhang C, Zhang T, Kong L, Wang L, Zhao D, Zhang J, Yang X. Improving Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes by a Multifunctional LiF Interlayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43018-43023. [PMID: 32872769 DOI: 10.1021/acsami.0c11762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the enlarged exciton binding energy and the ability to confine charge carriers compared to their three-dimensional (3D) counterparts, research on quasi-two-dimensional (quasi-2D) perovskite materials and the correlative application in light-emitting diodes (LEDs) has attracted considerable attention. However, high density of defects, exciton emission trapping, and unbalanced charge injection are still the main intractable obstacles to their further development and practical application. Herein, we report an efficient multifunctional interlayer, lithium fluoride (LiF), to boost the performance of green-emitting quasi-2D perovskite LEDs (PeLEDs) by simultaneously overcoming the aforementioned issues. The introduced LiF interlayer not only eliminates the defects at perovskite grain boundaries and the surface by reinforcing the chemical bonds with uncoordinated lead ions but also restrains the emission of perovskite from quenching triggered by the electron transport layer and reduces excess electron injections to effectively balance carriers in the device. As a result, the resulting green quasi-2D PeLED shows a maximum external quantum efficiency of 16.35%, which is the best value obtained for quasi-2D perovskite-based LEDs reported so far, with simultaneous improvement in the operating lifetime of the device.
Collapse
Affiliation(s)
- Mengqing You
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Haoran Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Ting Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Dewei Zhao
- Institute of Solar Energy Materials and Devices, College of Materials Science and Engineering, Sichuan University, 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| |
Collapse
|
33
|
Duan HG, Tiwari V, Jha A, Berdiyorov GR, Akimov A, Vendrell O, Nayak PK, Snaith HJ, Thorwart M, Li Z, Madjet ME, Miller RJD. Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. J Am Chem Soc 2020; 142:16569-16578. [PMID: 32869985 PMCID: PMC7586332 DOI: 10.1021/jacs.0c03970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The success of organic–inorganic
perovskites in optoelectronics
is dictated by the complex interplay between various underlying microscopic
phenomena. The structural dynamics of organic cations and the inorganic
sublattice after photoexcitation are hypothesized to have a direct
effect on the material properties, thereby affecting the overall device
performance. Here, we use ultrafast heterodyne-detected two-dimensional
(2D) electronic spectroscopy to reveal impulsively excited vibrational
modes of methylammonium (MA) lead iodide perovskite, which drive the
structural distortion after photoexcitation. Vibrational analysis
of the measured data allows us to monitor the time-evolved librational
motion of the MA cation along with the vibrational coherences of the
inorganic sublattice. Wavelet analysis of the observed vibrational
coherences reveals the coherent generation of the librational motion
of the MA cation within ∼300 fs complemented with the coherent
evolution of the inorganic skeletal motion. To rationalize this observation,
we employed the configuration interaction singles (CIS), which support
our experimental observations of the coherent generation of librational
motions in the MA cation and highlight the importance of the anharmonic
interaction between the MA cation and the inorganic sublattice. Moreover,
our advanced theoretical calculations predict the transfer of the
photoinduced vibrational coherence from the MA cation to the inorganic
sublattice, leading to reorganization of the lattice to form a polaronic
state with a long lifetime. Our study uncovers the interplay of the
organic cation and inorganic sublattice during formation of the polaron,
which may lead to novel design principles for the next generation
of perovskite solar cell materials.
Collapse
Affiliation(s)
- Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,Department of Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Ajay Jha
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Golibjon R Berdiyorov
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Alexey Akimov
- Department of Chemistry, State University of New York at Buffalo, Buffalo New York 14260, United States
| | - Oriol Vendrell
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Pabitra K Nayak
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Zheng Li
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Mohamed E Madjet
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany.,The Departments of Chemistry and Physics, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
34
|
Gu L, Wen K, Peng Q, Huang W, Wang J. Surface-Plasmon-Enhanced Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001861. [PMID: 32573954 DOI: 10.1002/smll.202001861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20-50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near-field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP-enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP-enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Lianghui Gu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
35
|
Dynamic processes involving inorganic solids. Inorg Chem 2020. [DOI: 10.1016/b978-0-12-814369-8.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Dong H, Zhang C, Liu X, Yao J, Zhao YS. Materials chemistry and engineering in metal halide perovskite lasers. Chem Soc Rev 2020; 49:951-982. [PMID: 31960011 DOI: 10.1039/c9cs00598f] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The invention and development of the laser have revolutionized science, technology, and industry. Metal halide perovskites are an emerging class of semiconductors holding promising potential in further advancing the laser technology. In this Review, we provide a comprehensive overview of metal halide perovskite lasers from the viewpoint of materials chemistry and engineering. After an introduction to the materials chemistry and physics of metal halide perovskites, we present diverse optical cavities for perovskite lasers. We then comprehensively discuss various perovskite lasers with particular functionalities, including tunable lasers, multicolor lasers, continuous-wave lasers, single-mode lasers, subwavelength lasers, random lasers, polariton lasers, and laser arrays. Following this a description of the strategies for improving the stability and reducing the toxicity of metal halide perovskite lasers is provided. Finally, future research directions and challenges toward practical technology applications of perovskite lasers are provided to give an outlook on this emerging field.
Collapse
Affiliation(s)
- Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
37
|
Bhaumik S, Bruno A, Mhaisalkar S. Broadband emission from zero-dimensional Cs4PbI6 perovskite nanocrystals. RSC Adv 2020; 10:13431-13436. [PMID: 35493024 PMCID: PMC9051410 DOI: 10.1039/d0ra00467g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
To overcome the drawbacks in three-dimensional (3D) perovskites, such as instability, surface hydration, and ion migration, recently researchers have focused on comparatively stable lower-dimensional perovskite derivatives. All-inorganic zero-dimensional (0D) perovskites (e.g., Cs4PbX6; X = Cl−, Br−, I−) can be evolved as a high performing material due to their larger exciton binding energy and better structural stability. The clear understanding of carrier recombination process in 0D perovskites is very important for better exploitation in light-emitting devices. In this work, we comprehensively studied the light emission process in 0D Cs4PbI6 nanocrystals (NCs) and interestingly we observe intense white light emission at low temperatures. According to our experimental observations, we conclude that the white light emission contains an intrinsic exciton emission at 2.95 eV along with a broadband emission covering from 1.77 eV to 2.6 eV. We also confirm that the broadband emission is related to the carrier recombination of both self-trapped excitons (STE) and defect state trapped excitons. Our investigations reveal the carrier recombination processes in Cs4PbI6 NCs and provide experimental guidelines for the potential application of white light generation. The broadband white light emission is realized in zero dimensional (OD) Cs4PbI6 nanocrystals at low temperatures. The white light emission originates from recombination of both self-trapped excitons and defect state trapped excitons.![]()
Collapse
Affiliation(s)
- Saikat Bhaumik
- Energy Research Institute@NTU (ERI@N)
- Singapore 637553
- Institute of Chemical Technology-IndianOil Odisha Campus
- Bhubaneswar
- India 751013
| | | | - Subodh Mhaisalkar
- Energy Research Institute@NTU (ERI@N)
- Singapore 637553
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| |
Collapse
|
38
|
Yang L, Li Z, Liu C, Yao X, Li H, Liu X, Liu J, Zhu P, Liu B, Cui T, Sun C, Bao Y. Temperature-Dependent Lasing of CsPbI 3 Triangular Pyramid. J Phys Chem Lett 2019; 10:7056-7061. [PMID: 31665607 DOI: 10.1021/acs.jpclett.9b02703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, the lasing performance of a microsized single-crystal CsPbI3 triangular pyramid (MSCTP) is evaluated by measuring the lasing threshold at low temperature. The MSCTPs of well-defined facets are synthesized on a Si/SiO2 substrate with chemical vapor deposition. The MSCTP shows a spontaneous emission around 719 nm at room temperature and a stimulated emission resonant in a single Fabry-Perot mode within 148-223 K. The lasing threshold varies from 21.56 to 53.15 μJ/cm2 and presents a temperature dependence in an empirical exponential function with a characteristic temperature of 72.73 K. The temperature dependence of lasing behavior is ascribed to the competition between the exciton binding energy and thermal disturbance energy of CsPbI3. The results of this work provide us a perspective to engineer and optimize optoelectrical devices based on perovskite materials and a microsized optical cavity to investigate the light-matter interaction in quantum optics.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Zhongqi Li
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Chang Liu
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Xiuru Yao
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Hongqi Li
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Xinxia Liu
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Junsong Liu
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - BingBing Liu
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Tian Cui
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| | - Cheng Sun
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yongjun Bao
- State Key Laboratory of Superhard Materials & School of Physics , Jilin University , Changchun 130012 , China
| |
Collapse
|
39
|
Jiang Y, Wang X, Pan A. Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806671. [PMID: 31106917 DOI: 10.1002/adma.201806671] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/01/2019] [Indexed: 05/25/2023]
Abstract
Metal halide perovskites (MHPs) have recently attracted great attention from the scientific community due to their excellent photovoltaic performance as well as their tremendous potential for other optoelectronic applications such as light-emitting diodes, lasers, and photodetectors. Despite the rapid progress in device applications, a solid understanding of the photophysical properties behind the device performance is highly desirable for MHPs. Here, the properties of excitons and photogenerated charge carriers in MHPs are explored. The unique dielectric constant properties, crystal-liquid duality, and fundamental optical processes of MHPs are first discussed. The properties of excitons and related phenomena in MHPs are then detailed, including the exciton binding energy determined by various methods and their influence factors, exciton dynamics, exciton-photon coupling and related applications, and exciton-phonon coupling in MHPs. The properties of photogenerated free charge carriers in MHPs such as the carrier diffusion length, mobility, and recombination are described. Recent progress in various applications is also demonstrated. Finally, a conclusion and perspectives of future studies for MHPs are presented.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410012, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410012, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410012, China
| |
Collapse
|
40
|
Zhang XF, Xu B. Organo metal halide perovskites effectively photosensitize the production of singlet oxygen ( 1Δ g). Chem Commun (Camb) 2019; 55:13100-13103. [PMID: 31612179 DOI: 10.1039/c9cc06397h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the steady state and time resolved NIR emission and specific chemical trapping techniques, we show for the first time that metal halide perovskite quantum dots can effectively generate singlet oxygen with a quantum yield of up to 0.34, the highest among nano semiconductor/nano metal singlet oxygen photosensitizers. The mechanism is concluded to be due to energy transfer from triplet excitons to molecular oxygen.
Collapse
Affiliation(s)
- Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China. and Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066000, China and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China. and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
41
|
He Y, Huang YR, Li YL, Li HH, Chen ZR, Jiang R. Encapsulating Halometallates into 3-D Lanthanide-Viologen Frameworks: Controllable Emissions, Reversible Thermochromism, Photocurrent Responses, and Electrical Bistability Behaviors. Inorg Chem 2019; 58:13862-13880. [DOI: 10.1021/acs.inorgchem.9b01740] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan He
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - You-Ren Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Li Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhi-Rong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
42
|
Ščajev P, Litvinas D, Kreiza G, Stanionytė S, Malinauskas T, Tomašiūnas R, Juršėnas S. Highly efficient nanocrystalline Cs xMA 1-xPbBr x perovskite layers for white light generation. NANOTECHNOLOGY 2019; 30:345702. [PMID: 30995629 DOI: 10.1088/1361-6528/ab1a69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perovskite light converting layers optimization for cost-efficient white light emitting diodes (LED) was demonstrated. High excitation independent internal quantum efficiency (IQE) of 80% and weakly excitation dependent PL spectra suitable for white light generation were obtained in the mixed cation CsxMA1-xPbBr3 perovskite nanocrystal layers with optimal x = 0.3 being determined by effective surface passivation and phase mixing as revealed by x-ray diffraction. Enhancement of the PL homogeneity and the external quantum efficiency (EQE) were secured when using 2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi) additive in the layer preparation process. Excitation dependent PL intensity, decay time, and IQE revealed that the high emission efficiency of the layers originates from a dominant radiative localized exciton recombination (130 ns) weakly influenced by the nonradiative free carrier recombination (750 ns). Warm and cool white LEDs with correlated color temperature 3000 K and 5600 K, and color rendering index 82 and 74, respectively, were realized by using the optimized perovskite layers, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) red emitter and a blue LED.
Collapse
Affiliation(s)
- Patrik Ščajev
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio ave. 3, LT 10257, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
43
|
Tao S, Schmidt I, Brocks G, Jiang J, Tranca I, Meerholz K, Olthof S. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun 2019; 10:2560. [PMID: 31189871 PMCID: PMC6561953 DOI: 10.1038/s41467-019-10468-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/22/2022] Open
Abstract
Metal halide perovskites are promising materials for future optoelectronic applications. One intriguing property, important for many applications, is the tunability of the band gap via compositional engineering. While experimental reports on changes in absorption or photoluminescence show rather good agreement for different compounds, the physical origins of these changes, namely the variations in valence and conduction band positions, are not well characterized. Here, we determine ionization energy and electron affinity values of all primary tin- and lead-based perovskites using photoelectron spectroscopy data, supported by first-principles calculations and a tight-binding analysis. We demonstrate energy level variations are primarily determined by the relative positions of the atomic energy levels of metal cations and halide anions and secondarily influenced by the cation-anion interaction strength. These results mark a significant step towards understanding the electronic structure of this material class and provides the basis for rational design rules regarding the energetics in perovskite optoelectronics. The band gap of metal halide perovskites can be tuned by changing composition, but the underlying mechanism is not well understood. Here the authors determine, by experiments and theoretical analysis, the energy levels of all primary tin- and lead-based perovskites, relating them to the levels of the composing ions.
Collapse
Affiliation(s)
- Shuxia Tao
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513,, 5600MB, Eindhoven, The Netherlands.
| | - Ines Schmidt
- Department of Chemistry, University of Cologne, Luxemburger Straße 116, Cologne, 50939, Germany
| | - Geert Brocks
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513,, 5600MB, Eindhoven, The Netherlands.,Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217,, 7500 AE, Enschede, The Netherlands
| | - Junke Jiang
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513,, 5600MB, Eindhoven, The Netherlands
| | - Ionut Tranca
- Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Klaus Meerholz
- Department of Chemistry, University of Cologne, Luxemburger Straße 116, Cologne, 50939, Germany
| | - Selina Olthof
- Department of Chemistry, University of Cologne, Luxemburger Straße 116, Cologne, 50939, Germany.
| |
Collapse
|
44
|
Sanches AWP, da Silva MAT, Cordeiro NJA, Urbano A, Lourenço SA. Effect of intermediate phases on the optical properties of PbI 2-rich CH 3NH 3PbI 3 organic-inorganic hybrid perovskite. Phys Chem Chem Phys 2019; 21:5253-5261. [PMID: 30776031 DOI: 10.1039/c8cp06916f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methylammonium lead halide perovskite (CH3NH3PbI3) films, with high PbI2 concentration, were grown by the two-step spin coating method. The influence of the precursor concentration and annealing time on the optical and structural properties of the perovskite films was analyzed by optical absorption, photoluminescence, X-ray diffraction and scanning electron microscopy. The results showed that, in addition to the CH3NH3PbI3 and PbI2 phases, intermediate phases, such as (MA)2(DMF)2Pb3I8, were formed in the films, depending on the time and temperature of annealing, which can tune the optical absorption in the visible spectra. This intermediate phase induced the formation of perovskite nanowires, identified by SEM images, and their growth may be associated with the presence of the DMF solvent remaining in the PbI2 film.
Collapse
Affiliation(s)
- Alonso W P Sanches
- Laboratory of Photonics and Nanostructured Materials (DFMNano), Postgraduate course in Materials Science and Engineering of Federal Technological University of Paraná (UTFPR), CEP 86036-370, Londrina, Paraná, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Li X, Ha Do TT, Granados del Águila A, Huang Y, Chen W, Li Y, Ganguly R, Morris S, Xiong Q, Li DS, Zhang Q. Two-Dimensional and Emission-Tunable: An Unusual Perovskite Constructed from Lindqvist-Type [Pb6Br19]7– Nanoclusters. Inorg Chem 2018; 57:14035-14038. [DOI: 10.1021/acs.inorgchem.8b02535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xinxiong Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - T. Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematics Science, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - A. Granados del Águila
- Division of Physics and Applied Physics, School of Physical and Mathematics Science, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematics Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematics Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Samuel Morris
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematics Science, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Dong-sheng Li
- College of Material and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
46
|
Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Sci Rep 2018; 8:15496. [PMID: 30341317 PMCID: PMC6195535 DOI: 10.1038/s41598-018-33729-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022] Open
Abstract
Herein, an insulating biopolymer is exploited to guide the controlled formation of micro/nano-structure and physical confinement of α-δ mixed phase crystalline grains of formamidinium lead iodide (FAPbI3) perovskite, functioning as charge carrier concentrators and ensuring improved radiative recombination and photoluminescence quantum yield (PLQY). This composite material is used to build highly efficient near-infrared (NIR) FAPbI3 Perovskite light-emitting diodes (PeLEDs) that exhibit a high radiance of 206.7 W/sr*m2, among the highest reported for NIR-PeLEDs, obtained at a very high current density of 1000 mA/cm2, while importantly avoiding the efficiency roll-off effect. In depth photophysical characterization allows to identify the possible role of the biopolymer in i) enhancing the radiative recombination coefficient, improving light extraction by reducing the refractive index, or ii) enhancing the effective optical absorption because of dielectric scattering at the polymer-perovskite interfaces. Our study reveals how the use of insulating matrixes for the growth of perovskites represents a step towards high power applications of PeLEDs.
Collapse
|
47
|
Wang D, Shi WB, Jing H, Yin C, Zhu Y, Su J, Ma GB, Peng R, Wang X, Wang M. Photon-induced carrier recombination in the nonlayered-structured hybrid organic-inorganic perovskite nano-sheets. OPTICS EXPRESS 2018; 26:27504-27514. [PMID: 30469816 DOI: 10.1364/oe.26.027504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
The hybrid organic-inorganic perovskites (HOIPs) have attracted much attention recently due to their preeminent efficiency in solar cells. According to the difference on the crystalline structure, the HOIPs could be classified into layered and non-layered perovskites. Very recently, it has been realized that the non-layered HOIPs with common-vertex structure possess even better opto-electrical performance. Yet the carrier recombination mechanism in perovskite remains not very clear, and a clear understanding of this mechanism is essential to pinpoint the working mechanism of photovoltaic and electroluminescent materials. Here we report the optical studies on the hybrid perovskite crystalline nano-sheet of CH3NH3PbBr3 with common-vertex structure. It is shown that the non-layered perovskite crystalline nanosheets possess the exciton binding energy about two orders of magnitude smaller than that of the layered perovskite and the colloidal nanoplates, which is beneficial for the designing of the high-efficiency photovoltaic devices. By measuring the temperature-dependent photoluminescence (PL) spectra, the excitation-power-variant PL spectra, and the time-resolved PL spectra, we identify that both the free-carrier and the localized exciton recombination channels may coexist in the crystallites. Further, for the thin crystallite (∼60 nm), the free-carrier recombination channel dominates; whereas when the thickness increases beyond 200 nm, the localized exciton recombination channel plays the major role. We suggest these results are helpful to improve further the photovoltaic and electroluminescent performances of perovskite devices.
Collapse
|
48
|
Li X, Do TTH, Granados del Águila A, Huang Y, Chen W, Xiong Q, Zhang Q. A 3D Haloplumbate Framework Constructed From Unprecedented Lindqvist-like Highly Coordinated [Pb6
Br25
]13−
Nanoclusters with Temperature-Dependent Emission. Chem Asian J 2018; 13:3185-3189. [DOI: 10.1002/asia.201801292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/08/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xinxiong Li
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| | - T. Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematics Science; Nanyang Technological University; 21 Nanyang Link 637371 Singapore Singapore
| | - A. Granados del Águila
- Division of Physics and Applied Physics, School of Physical and Mathematics Science; Nanyang Technological University; 21 Nanyang Link 637371 Singapore Singapore
| | - Yinjuan Huang
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematics Science; Nanyang Technological University; 21 Nanyang Link 637371 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
49
|
Stroyuk O. Lead-free hybrid perovskites for photovoltaics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2209-2235. [PMID: 30202691 PMCID: PMC6122178 DOI: 10.3762/bjnano.9.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/25/2018] [Indexed: 05/17/2023]
Abstract
This review covers the state-of-the-art in organo-inorganic lead-free hybrid perovskites (HPs) and applications of these exciting materials as light harvesters in photovoltaic systems. Special emphasis is placed on the influence of the spatial organization of HP materials both on the micro- and nanometer scale on the performance and stability of perovskite-based solar light converters. This review also discusses HP materials produced by isovalent lead(II) substitution with Sn2+ and other metal(II) ions, perovskite materials formed on the basis of M3+ cations (Sb3+, Bi3+) as well as on combinations of M+/M3+ ions aliovalent to 2Pb2+ (Ag+/Bi3+, Ag+/Sb3+, etc.). The survey is concluded with an outlook highlighting the most promising strategies for future progress of photovoltaic systems based on lead-free perovskite compounds.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Physikalische Chemie, Technische Universität Dresden, 01062 Dresden, Germany and L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine
| |
Collapse
|
50
|
Jena P, Sun Q. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chem Rev 2018; 118:5755-5870. [DOI: 10.1021/acs.chemrev.7b00524] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puru Jena
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Qiang Sun
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| |
Collapse
|