1
|
Pu J, Ma J, Zhai H, Wu S, Wang Y, Putnis CV, Wang L, Zhang W. Atomic force microscopy imaging of plant cell walls. PLANT PHYSIOLOGY 2025; 197:kiae655. [PMID: 39928583 DOI: 10.1093/plphys/kiae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 02/12/2025]
Abstract
Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure-function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Hang Zhai
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Shanshan Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youmei Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, Münster 48149, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Dou B, Wang K, Chen Y, Wang P. Programmable DNA Nanomachine Integrated with Electrochemically Controlled Atom Transfer Radical Polymerization for Antibody Detection at Picomolar Level. Anal Chem 2024; 96:10594-10600. [PMID: 38904276 DOI: 10.1021/acs.analchem.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Keming Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
3
|
Rashid U, Bro-Jørgensen W, Harilal KB, Sreelakshmi PA, Mondal RR, Chittari Pisharam V, Parida KN, Geetharani K, Hamill JM, Kaliginedi V. Chemistry of the Au-Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. J Am Chem Soc 2024; 146:9063-9073. [PMID: 38381861 PMCID: PMC10995995 DOI: 10.1021/jacs.3c14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Chemistry of the Au-S interface at the nanoscale is one of the most complex systems to study, as the nature and strength of the Au-S bond change under different experimental conditions. In this study, using mechanically controlled break junction technique, we probed the conductance and analyzed Flicker noise for several aliphatic and aromatic thiol derivatives and thioethers. We demonstrate that Flicker noise can be used to unambiguously differentiate between stronger chemisorption (Au-SR) and weaker physisorption (Au-SRR') type interactions. The Flicker noise measurements indicate that the gold rearrangement in chemisorbed Au-SR junctions resembles that of the Au rearrangement in pure Au-Au metal contact breaking, which is independent of the molecular backbone structure and the resulting conductance. In contrast, thioethers showed the formation of a weaker physisorbed Au-SRR' type bond, and the Flicker noise measurement indicates the changes in the Au-anchoring group interface but not the Au-Au rearrangement like that in the Au-SR case. Additionally, by employing single-molecular conductance and Flicker noise analysis, we have probed the interfacial electric field-catalyzed ring-opening reaction of cyclic thioether under mild environmental conditions, which otherwise requires harsh chemical conditions for cleavage of the C-S bond. All of our conductance measurements are complemented by NEGF transport calculations. This study illustrates that the single-molecule conductance, together with the Flicker noise measurements can be used to tune and monitor chemical reactions at the single-molecule level.
Collapse
Affiliation(s)
- Umar Rashid
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - William Bro-Jørgensen
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen
Ø, Denmark
| | - KB Harilal
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - PA Sreelakshmi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Reetu Rani Mondal
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Varun Chittari Pisharam
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - Keshaba N. Parida
- School
of Chemistry, Indian Institute of Science
Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - K. Geetharani
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Joseph M. Hamill
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen
Ø, Denmark
| | - Veerabhadrarao Kaliginedi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Khurshid B, Lesniewska E, Polacchi L, L'Héronde M, Jackson DJ, Motreuil S, Thomas J, Bardeau JF, Wolf SE, Vielzeuf D, Perrin J, Marin F. In situ mapping of biomineral skeletal proteins by molecular recognition imaging with antibody-functionalized AFM tips. Acta Biomater 2023; 168:198-209. [PMID: 37490960 DOI: 10.1016/j.actbio.2023.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Spatial localizing of skeletal proteins in biogenic minerals remains a challenge in biomineralization research. To address this goal, we developed a novel in situ mapping technique based on molecular recognition measurements via atomic force microscopy (AFM), which requires three steps: (1) the development and purification of a polyclonal antibody elicited against the target protein, (2) its covalent coupling to a silicon nitride AFM tip ('functionalization'), and (3) scanning of an appropriately prepared biomineral surface. We applied this approach to a soluble shell protein - accripin11 - recently identified as a major component of the calcitic prisms of the fan mussel Pinna nobilis [1]. Multiple tests reveal that accripin11 is evenly distributed at the surface of the prisms and also present in the organic sheaths surrounding the calcitic prisms, indicating that this protein is both intra- and inter-crystalline. We observed that the adhesion force in transverse sections is about twice higher than in longitudinal sections, suggesting that accripin11 may exhibit preferred orientation in the biomineral. To our knowledge, this is the first time that a protein is localized by molecular recognition atomic force microscopy with antibody-functionalized tips in a biogenic mineral. The 'pros' and 'cons' of this methodology are discussed in comparison with more 'classical' approaches like immunogold. This technique, which leaves the surface to analyze clean, might prove useful for clinical tests on non-pathological (bone, teeth) or pathological (kidney stone) biomineralizations. Studies using implants with protein-doped calcium phosphate coating can also benefit from this technology. STATEMENT OF SIGNIFICANCE: Our paper deals with an unconventional technical approach for localizing proteins that are occluded in biominerals. This technique relies on the use of molecular recognition atomic force microscopy with antibody-functionalized tips. Although such approach has been employed in other system, this is the very first time that it is developed for biominerals. In comparison to more classical approaches (such as immunogold), AFM microscopy with antibody-functionalized tips allows higher magnification and keeps the scanned surface clean for other biophysical characterizations. Our method has a general scope as it can be applied in human health, for non-pathological (bone, teeth) and pathological (kidney stone) biomineralizations as well as for bone implants coated with protein-doped calcium phosphate.
Collapse
Affiliation(s)
- Benazir Khurshid
- Laboratoire Biogéosciences, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France; Synchrotron SOLEIL, Beamline ANATOMIX, Saint-Aubin, Gif-sur-Yvette, France
| | - Eric Lesniewska
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Burgundy, Dijon, France
| | - Luca Polacchi
- IPANEMA, USR3461, CNRS/MCC, Saint-Aubin, Gif-sur-Yvette, France; CR2P UMR7207, Muséum National d'Histoire Naturelle, Paris, France
| | - Maëva L'Héronde
- IPANEMA, USR3461, CNRS/MCC, Saint-Aubin, Gif-sur-Yvette, France
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Sébastien Motreuil
- Laboratoire Biogéosciences, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France
| | - Jérôme Thomas
- Laboratoire Biogéosciences, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France
| | | | - Stephan E Wolf
- Institute of Glass and Ceramics, Dpt. Materials Science & Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | | | - Jonathan Perrin
- Synchrotron SOLEIL, Beamline ANATOMIX, Saint-Aubin, Gif-sur-Yvette, France
| | - Frédéric Marin
- Laboratoire Biogéosciences, UMR CNRS-EPHE 6282, University of Burgundy, Dijon, France.
| |
Collapse
|
7
|
Besleaga A, Apetrei A, Sirghi L. Atomic force spectroscopy with magainin 1 functionalized tips and biomimetic supported lipid membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:29-40. [PMID: 35031815 DOI: 10.1007/s00249-021-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are molecules synthesized by living organisms as the first line of defense against bacteria, fungi, parasites, or viruses. Since their biological activity is based on destabilization of the microbial membranes, a study of direct interaction forces between antimicrobial peptides and biomimetic membranes is very important for understanding the molecular mechanisms of their action. Herein, we use atomic force spectroscopy to probe the interaction between atomic force microscopy (AFM) tips functionalized with magainin 1 and supported lipid bilayers (SLBs) mimicking electrically uncharged membranes of normal eukaryotic cells and negatively charged membranes of bacterial cells. The investigations performed on negatively charged SLBs showed that the magainin 1 functionalized AFM tips are quickly adsorbed into the SLBs when they approach, while they adhere strongly to the lipid membrane when retracted. On contrary, same investigations performed on neutral SLBs showed mechanical resistance of the lipid membrane to the tip breakthrough and negligible adhesion force at detachment.
Collapse
Affiliation(s)
- Alexandra Besleaga
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I nr. 11, 700506, Iasi, Romania
| | - Aurelia Apetrei
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, 700506, Iasi, Romania
| | - Lucel Sirghi
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I nr. 11, 700506, Iasi, Romania.
| |
Collapse
|
8
|
Puppulin L, Kanayama D, Terasaka N, Sakai K, Kodera N, Umeda K, Sumino A, Marchesi A, Weilin W, Tanaka H, Fukuma T, Suga H, Matsumoto K, Shibata M. Macrocyclic Peptide-Conjugated Tip for Fast and Selective Molecular Recognition Imaging by High-Speed Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54817-54829. [PMID: 34766499 DOI: 10.1021/acsami.1c17708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fast and selective recognition of molecules at the nanometer scale without labeling is a much desired but still challenging goal to achieve. Here, we show the use of high-speed atomic force microscopy (HS-AFM) for real-time and real-space recognition of unlabeled membrane receptors using tips conjugated with small synthetic macrocyclic peptides. The single-molecule recognition method is validated by experiments on the human hepatocyte growth factor receptor (hMET), which selectively binds to the macrocyclic peptide aMD4. By testing and comparing aMD4 synthesized with linkers of different lengths and rigidities, we maximize the interaction between the functionalized tip and hMET added to both a mica surface and supported lipid bilayers. Phase contrast imaging by HS-AFM enables us to discriminate nonlabeled hMET against the murine MET homologue, which does not bind to aMD4. Moreover, using ligands and linkers of small size, we achieve minimal deterioration of the spatial resolution in simultaneous topographic imaging. The versatility of macrocyclic peptides in detecting unlimited types of membrane receptors with high selectivity and the fast imaging by HS-AFM broaden the range of future applications of this method for molecular recognition without labeling.
Collapse
Affiliation(s)
- Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | - Daiki Kanayama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuya Sakai
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Arin Marchesi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Wei Weilin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kunio Matsumoto
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
9
|
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021; 22:9587. [PMID: 34502495 PMCID: PMC8431109 DOI: 10.3390/ijms22179587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
With the advancement of nanotechnology, the nano-bio-interaction field has emerged. It is essential to enhance our understanding of nano-bio-interaction in different aspects to design nanomedicines and improve their efficacy for therapeutic and diagnostic applications. Many researchers have extensively studied the toxicological responses of cancer cells to nano-bio-interaction, while their mechanobiological responses have been less investigated. The mechanobiological properties of cells such as elasticity and adhesion play vital roles in cellular functions and cancer progression. Many studies have noticed the impacts of cellular uptake on the structural organization of cells and, in return, the mechanobiology of human cells. Mechanobiological changes induced by the interactions of nanomaterials and cells could alter cellular functions and influence cancer progression. Hence, in addition to biological responses, the possible mechanobiological responses of treated cells should be monitored as a standard methodology to evaluate the efficiency of nanomedicines. Studying the cancer-nano-interaction in the context of cell mechanics takes our knowledge one step closer to designing safe and intelligent nanomedicines. In this review, we briefly discuss how the characteristic properties of nanoparticles influence cellular uptake. Then, we provide insight into the mechanobiological responses that may occur during the nano-bio-interactions, and finally, the important measurement techniques for the mechanobiological characterizations of cells are summarized and compared. Understanding the unknown mechanobiological responses to nano-bio-interaction will help with developing the application of nanoparticles to modulate cell mechanics for controlling cancer progression.
Collapse
Affiliation(s)
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
10
|
Abstract
The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy ([Formula: see text]), enthalpy ([Formula: see text]), and entropy ([Formula: see text]), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.
Collapse
|
11
|
Virumbrales-Muñoz M, Paz-Artigas L, Ciriza J, Alcaine C, Espona-Noguera A, Doblaré M, Sáenz Del Burgo L, Ziani K, Pedraz JL, Fernández L, Ochoa I. Force Spectroscopy Imaging and Constriction Assays Reveal the Effects of Graphene Oxide on the Mechanical Properties of Alginate Microcapsules. ACS Biomater Sci Eng 2020; 7:242-253. [PMID: 33337130 DOI: 10.1021/acsbiomaterials.0c01382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microencapsulation of cells in hydrogel-based porous matrices is an approach that has demonstrated great success in regenerative cell therapy. These microcapsules work by concealing the exogenous cells and materials in a robust biomaterial that prevents their recognition by the immune system. A vast number of formulations and additives are continuously being tested to optimize cell viability and mechanical properties of the hydrogel. Determining the effects of new microcapsule additives is a lengthy process that usually requires extensive in vitro and in vivo testing. In this paper, we developed a workflow using nanoindentation (i.e., indentation with a nanoprobe in an atomic force microscope) and a custom-built microfluidic constriction device to characterize the effect of graphene oxide (GO) on three microcapsule formulations. With our workflow, we determined that GO modifies the microcapsule stiffness and surface properties in a formulation-dependent manner. Our results also suggest, for the first time, that GO alters the conformation of the microcapsule hydrogel and its interaction with subsequent coatings. Overall, our workflow can infer the effects of new additives on microcapsule surfaces. Thus, our workflow can contribute to diminishing the time required for the validation of new microcapsule formulations and accelerate their clinical translation.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, Wisconsin Institutes of Medical Research, University of Wisconsin, 1111 Highland Avenue, Room 6028, Madison,53705, Wisconsin United States
| | - Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Manuel Doblaré
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Laura Sáenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Luis Fernández
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| |
Collapse
|
12
|
Kim H, Ishibashi K, Iijima M, Kuroda S, Nakamura C. Influence of Nivolumab for Intercellular Adhesion Force between a T Cell and a Cancer Cell Evaluated by AFM Force Spectroscopy. SENSORS 2020; 20:s20195723. [PMID: 33050090 PMCID: PMC7582537 DOI: 10.3390/s20195723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The influence of nivolumab on intercellular adhesion forces between T cells and cancer cells was evaluated quantitatively using atomic force microscopy (AFM). Two model T cells, one expressing high levels of programmed cell death protein 1 (PD-1) (PD-1high Jurkat) and the other with low PD-1 expression levels (PD-1low Jurkat), were analyzed. In addition, two model cancer cells, one expressing programmed death-ligand 1 (PD-L1) on the cell surface (PC-9, PD-L1+) and the other without PD-L1 (MCF-7, PD-L1−), were also used. A T cell was attached to the apex of the AFM cantilever using a cup-attached AFM chip, and the intercellular adhesion forces were measured. Although PD-1high T cells adhered strongly to PD-L1+ cancer cells, the adhesion force was smaller than that with PD-L1− cancer cells. After the treatment of PD-1high T cells with nivolumab, the adhesion force with PD-L1+ cancer cells increased to a similar level as with PD-L1− cancer cells. These results can be explained by nivolumab influencing the upregulation of the adhesion ability of PD-1high T cells with PD-L1+ cancer cells. These results were obtained by measuring intercellular adhesion forces quantitatively, indicating the usefulness of single-cell AFM analysis.
Collapse
Affiliation(s)
- Hyonchol Kim
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- Correspondence: ; Tel.: +81-29-861-9392
| | - Kenta Ishibashi
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan;
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan;
| | - Shun’ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan;
| | - Chikashi Nakamura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
13
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
15
|
Zhou L, Gao J, Wang H, Shi Y, Xu H, Yan Q, Jing Y, Jiang J, Cai M, Wang H. Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. NANOSCALE 2020; 12:9950-9957. [PMID: 32356532 DOI: 10.1039/c9nr10931e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The organization of a cell membrane is vital for various functions, such as receptor signaling and membrane traffic. However, the understanding of membrane organization remains insufficient, especially the localizations of specific proteins in the cell membrane. Here, we used correlative super-resolution fluorescence/atomic force microscopy to correlate the distributions of specific proteins Na+/K+-ATPase (NKA, an integral membrane protein) and ankyrin G (AnkG, a scaffolding protein) with the topography of the cytoplasmic side of human bronchial epithelium membranes. Our data showed that NKA and AnkG proteins preferred to localize in the protein islands of membranes. Interestingly, we also found that functional domains composed of specific proteins with a few hundreds of nanometers were formed by assembling protein islands with a few tens of nanometers.
Collapse
Affiliation(s)
- Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu C, Monti S, Mathew AP. Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dynamic simulations. Carbohydr Polym 2020; 229:115510. [DOI: 10.1016/j.carbpol.2019.115510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/22/2019] [Accepted: 10/19/2019] [Indexed: 01/01/2023]
|
17
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Ma G, Wan Z, Zhu H, Tao N. Roles of entropic and solvent damping forces in the dynamics of polymer tethered nanoparticles and implications for single molecule sensing. Chem Sci 2019; 11:1283-1289. [PMID: 33376589 PMCID: PMC7747464 DOI: 10.1039/c9sc05434k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023] Open
Abstract
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions.
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions. Understanding the dynamics of the system is critical to all applications. Here we present a plasmonic imaging study of two important forces that govern the dynamics. One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. We measure the response of the particle by driving it into oscillation with an alternating electric field. By varying the field frequency, we study the dynamics on different time scales. We also vary the type of the tether molecule (DNA and polyethylene glycol), size of the particle, and viscosity of the solvent, and describe the observations with a model. The study allows us to derive a single parameter to predict the relative importance of the entropic and damping forces. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA .
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| | - Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| |
Collapse
|
19
|
Wang H, Tang Z, Wang Y, Ma G, Tao N. Probing Single Molecule Binding and Free Energy Profile with Plasmonic Imaging of Nanoparticles. J Am Chem Soc 2019; 141:16071-16078. [DOI: 10.1021/jacs.9b08405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
Kim H, Ishibashi K, Matsuo K, Kira A, Okada T, Watanabe K, Inada M, Nakamura C. Quantitative Measurements of Intercellular Adhesion Strengths between Cancer Cells with Different Malignancies Using Atomic Force Microscopy. Anal Chem 2019; 91:10557-10563. [DOI: 10.1021/acs.analchem.9b01569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyonchol Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Kenta Ishibashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Kosuke Matsuo
- Product Development Center, Japan Aviation Electronics Ind., Ltd., 3-1-1 Musashino, Akishima, Tokyo 196-8555, Japan
| | - Atsushi Kira
- Product Development Center, Japan Aviation Electronics Ind., Ltd., 3-1-1 Musashino, Akishima, Tokyo 196-8555, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenta Watanabe
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Masaki Inada
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
21
|
Alexander Reese R, Xu B. Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Toca‐Herrera JL. Atomic Force Microscopy Meets Biophysics, Bioengineering, Chemistry, and Materials Science. CHEMSUSCHEM 2019; 12:603-611. [PMID: 30556380 PMCID: PMC6492253 DOI: 10.1002/cssc.201802383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Indexed: 05/12/2023]
Abstract
Briefly, herein the use of atomic force microscopy (AFM) in the characterization of molecules and (bioengineered) materials related to chemistry, materials science, chemical engineering, and environmental science and biotechnology is reviewed. First, the basic operations of standard AFM, Kelvin probe force microscopy, electrochemical AFM, and tip-enhanced Raman microscopy are described. Second, several applications of these techniques to the characterization of single molecules, polymers, biological membranes, films, cells, hydrogels, catalytic processes, and semiconductors are provided and discussed.
Collapse
Affiliation(s)
- José L. Toca‐Herrera
- Institute for Biophysics, Department of NanobiotechnologyUniversity of Natural Resources and Life Sciences Vienna (BOKU)Muthgasse 111190ViennaAustria
| |
Collapse
|
23
|
Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ma T, Guo J, Chang S, Wang X, Zhou J, Liang F, He J. Modulating and probing the dynamic intermolecular interactions in plasmonic molecule-pair junctions. Phys Chem Chem Phys 2019; 21:15940-15948. [DOI: 10.1039/c9cp02030f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intermolecular interactions, including hydrogen bonds, are electromechanically modulated and probed in metal–molecule pair–metal junctions.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Jing Guo
- Department of Physics
- Florida International University
- Miami
- USA
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Xuewen Wang
- Department of Physics
- Florida International University
- Miami
- USA
| | - Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry and Chemical Engineering
- School of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan
| | - Jin He
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Science Institute
| |
Collapse
|
25
|
Zhang P, Chen YP, Qiu JH, Dai YZ, Feng B. Imaging the Microprocesses in Biofilm Matrices. Trends Biotechnol 2018; 37:214-226. [PMID: 30075862 DOI: 10.1016/j.tibtech.2018.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Biofilms, which are aggregates of microorganisms and extracellular matrices, widely colonize natural water bodies, wastewater treatment systems, and body tissues, and have vital roles in water purification, biofouling, and infectious diseases. Recently, multiple imaging modalities have been developed to visualize the morphological structure and material distribution within biofilms and to probe the microprocesses in biofilm matrices, including biofilm formation, transfer and metabolism of substrates, and cell-cell communication. These technologies have improved our understanding of biofilm control and the fates of substrates in biofilms. In this review, we describe the principles of various imaging techniques and discuss the advantages and limitations of each approach to characterizing microprocesses in biofilm matrices.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Ju-Hui Qiu
- College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
26
|
Yang# Y, Yu# J, Esfahani AM, Seiffert-Sinha K, Xi N, Lee I, Sinha AA, Chen L, Sun Z, Yang R, Dong L. Single-cell membrane drug delivery using porous pen nanodeposition. NANOSCALE 2018; 10:12704-12712. [PMID: 29946596 PMCID: PMC6528655 DOI: 10.1039/c8nr02600a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Delivering molecules onto the plasma membrane of single cells is still a challenging task in profiling cell signaling pathways with single cell resolution. We demonstrated that a large quantity of molecules could be targeted and released onto the membrane of individual cells to trigger signaling responses. This is achieved by a porous pen nanodeposition (PPN) method, in which a multilayer porous structure, serving as a reservoir for a large amount of molecules, is formed on an atomic force microscope (AFM) tip using layer-by-layer assembly and post processing. To demonstrate its capability for single cell membrane drug delivery, PPN was employed to induce a calcium flux triggered by the binding of released antibodies to membrane antigens in an autoimmune skin disease model. This calcium signal propagates from the target cell to its neighbors in a matter of seconds, proving the theory of intercellular communication through cell-cell junctions. Collectively, these results demonstrated the effectiveness of PPN in membrane drug delivery for single cells; to the best of our knowledge, this is the first technique that can perform the targeted transport and delivery in single cell resolution, paving the way for probing complex signaling interactions in multicellular settings.
Collapse
Affiliation(s)
- Yongliang Yang#
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA,
| | - Jing Yu#
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska -Lincoln, Lincoln, NE 68588, USA
| | | | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ilsoon Lee
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, New York 14203, USA
| | - Liangliang Chen
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska -Lincoln, Lincoln, NE 68588, USA,
| | - Lixin Dong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA,
| |
Collapse
|
27
|
Patel AN, Kranz C. (Multi)functional Atomic Force Microscopy Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:329-350. [PMID: 29490193 DOI: 10.1146/annurev-anchem-061417-125716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incorporating functionality to atomic force microscopy (AFM) to obtain physical and chemical information has always been a strong focus in AFM research. Modifying AFM probes with specific molecules permits accessibility of chemical information via specific reactions and interactions. Fundamental understanding of molecular processes at the solid/liquid interface with high spatial resolution is essential to many emerging research areas. Nanoscale electrochemical imaging has emerged as a complementary technique to advanced AFM techniques, providing information on electrochemical interfacial processes. While this review presents a brief introduction to advanced AFM imaging modes, such as multiparametric AFM and topography recognition imaging, the main focus herein is on electrochemical imaging via hybrid AFM-scanning electrochemical microscopy. Recent applications and the challenges associated with such nanoelectrochemical imaging strategies are presented.
Collapse
Affiliation(s)
- Anisha N Patel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| |
Collapse
|
28
|
Pleshakova TO, Bukharina NS, Archakov AI, Ivanov YD. Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization. Int J Mol Sci 2018; 19:E1142. [PMID: 29642632 PMCID: PMC5979402 DOI: 10.3390/ijms19041142] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.
Collapse
Affiliation(s)
| | - Natalia S Bukharina
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
29
|
Hall AR, Geoghegan M. Polymers and biopolymers at interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036601. [PMID: 29368695 DOI: 10.1088/1361-6633/aa9e9c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Collapse
Affiliation(s)
- A R Hall
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom. Fraunhofer Project Centre for Embedded Bioanalytical Systems, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
30
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
31
|
Ozkan AD, Topal AE, Dikecoglu FB, Guler MO, Dana A, Tekinay AB. Probe microscopy methods and applications in imaging of biological materials. Semin Cell Dev Biol 2018; 73:153-164. [DOI: 10.1016/j.semcdb.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023]
|
32
|
Li T, Zou Q. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope. NANOTECHNOLOGY 2017; 28:505502. [PMID: 29087357 DOI: 10.1088/1361-6528/aa973a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.
Collapse
Affiliation(s)
- Tianwei Li
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | | |
Collapse
|
33
|
Li M, Dang D, Xi N, Wang Y, Liu L. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. NANOSCALE 2017; 9:17643-17666. [PMID: 29135007 DOI: 10.1039/c7nr07023c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the lack of adequate tools for observation, native molecular behaviors at the nanoscale have been poorly understood. The advent of atomic force microscopy (AFM) provides an exciting instrument for investigating physiological processes on individual living cells with molecular resolution, which attracts the attention of worldwide researchers. In the past few decades, AFM has been widely utilized to investigate molecular activities on diverse biological interfaces, and the performances and functions of AFM have also been continuously improved, greatly improving our understanding of the behaviors of single molecules in action and demonstrating the important role of AFM in addressing biological issues with unprecedented spatiotemporal resolution. In this article, we review the related techniques and recent progress about applying AFM to characterize biomolecular systems in situ from single molecules to living cells. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
34
|
Montasser I, Coleman AW, Tauran Y, Perret G, Jalabert L, Collard D, Kim BJ, Tarhan MC. Direct measurement of the mechanism by which magnesium specifically modifies the mechanical properties of DNA. BIOMICROFLUIDICS 2017; 11:051102. [PMID: 29152024 PMCID: PMC5659861 DOI: 10.1063/1.5008622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
We examine the effect of physiological cations Na+, K+, Mg2+, and Ca2+ on the mechanical properties of bundles of λ-phage DNA using silicon nanotweezers (SNTs). Integrating SNTs with a microfluidic device allows us to perform titration experiments while measuring the effect in real-time. The results show that only for Mg2+ and in particular, at the intra-nuclear concentration (100 mM), the interaction occurs.
Collapse
Affiliation(s)
- I Montasser
- INRAP-Technopôle de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | | | | | - G Perret
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - L Jalabert
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Iturri J, Toca-Herrera JL. Characterization of Cell Scaffolds by Atomic Force Microscopy. Polymers (Basel) 2017; 9:E383. [PMID: 30971057 PMCID: PMC6418519 DOI: 10.3390/polym9080383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
This review reports on the use of the atomic force microscopy (AFM) in the investigation of cell scaffolds in recent years. It is shown how the technique is able to deliver information about the scaffold surface properties (e.g., topography), as well as about its mechanical behavior (Young's modulus, viscosity, and adhesion). In addition, this short review also points out the utilization of the atomic force microscope technique beyond its usual employment in order to investigate another type of basic questions related to materials physics, chemistry, and biology. The final section discusses in detail the novel uses that those alternative measuring modes can bring to this field in the future.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| | - José L Toca-Herrera
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| |
Collapse
|
36
|
Braet F, Taatjes DJ. Foreword to the special issue on applications of atomic force microscopy in cell biology. Semin Cell Dev Biol 2017; 73:1-3. [PMID: 28673678 DOI: 10.1016/j.semcdb.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
37
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
38
|
Kim H, Yamagishi A, Imaizumi M, Onomura Y, Nagasaki A, Miyagi Y, Okada T, Nakamura C. Quantitative measurements of intercellular adhesion between a macrophage and cancer cells using a cup-attached AFM chip. Colloids Surf B Biointerfaces 2017; 155:366-372. [PMID: 28454065 DOI: 10.1016/j.colsurfb.2017.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
Abstract
Intercellular adhesion between a macrophage and cancer cells was quantitatively measured using atomic force microscopy (AFM). Cup-shaped metal hemispheres were fabricated using polystyrene particles as a template, and a cup was attached to the apex of the AFM cantilever. The cup-attached AFM chip (cup-chip) approached a murine macrophage cell (J774.2), the cell was captured on the inner concave of the cup, and picked up by withdrawing the cup-chip from the substrate. The cell-attached chip was advanced towards a murine breast cancer cell (FP10SC2), and intercellular adhesion between the two cells was quantitatively measured. To compare cell adhesion strength, the work required to separate two adhered cells (separation work) was used as a parameter. Separation work was almost 2-fold larger between a J774.2 cell and FP10SC2 cell than between J774.2 cell and three additional different cancer cells (4T1E, MAT-LyLu, and U-2OS), two FP10SC2 cells, or two J774.2 cells. FP10SC2 was established from 4T1E as a highly metastatic cell line, indicates separation work increased as the malignancy of cancer cells became higher. One possible explanation of the strong adhesion of macrophages to cancer cells observed in this study is that the measurement condition mimicked the microenvironment of tumor-associated macrophages (TAMs) in vivo, and J774.2 cells strongly expressed CD204, which is a marker of TAMs. The results of the present study, which were obtained by measuring cell adhesion strength quantitatively, indicate that the fabricated cup-chip is a useful tool for measuring intercellular adhesion easily and quantitatively.
Collapse
Affiliation(s)
- Hyonchol Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
| | - Ayana Yamagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Miku Imaizumi
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| | - Yui Onomura
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan; Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| |
Collapse
|
39
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
40
|
Handschuh-Wang S, Wang T, Zhou X. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Adv 2017. [DOI: 10.1039/c7ra08515j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summaries the recent progress of the combination of optical and non-optical surface sensitive techniques with the atomic force microscopy.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Tao Wang
- Functional Thin Films Research Center
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
41
|
Ariga K, Mori T, Nakanishi W, Hill JP. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Phys Chem Chem Phys 2017; 19:23658-23676. [DOI: 10.1039/c7cp02280h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comparisons of science and technology between these solid and liquid surfaces would be a good navigation for current-to-future developments.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Graduate School of Frontier Science
| | - Taizo Mori
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
42
|
Fisicaro E, Compari C, Bacciottini F, Contardi L, Pongiluppi E, Barbero N, Viscardi G, Quagliotto P, Donofrio G, Krafft MP. Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. J Colloid Interface Sci 2016; 487:182-191. [PMID: 27769002 DOI: 10.1016/j.jcis.2016.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,1' position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds' biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds' hydrogenated counterparts, the tight relationship between the solution thermodynamics data and their biological performance is amazing, making "old" methods the foundation to deeply understanding "new" applications.
Collapse
Affiliation(s)
- Emilia Fisicaro
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Carlotta Compari
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Franco Bacciottini
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Laura Contardi
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Erika Pongiluppi
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Nadia Barbero
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Guido Viscardi
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Pierluigi Quagliotto
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Gaetano Donofrio
- University of Parma, Department of Veterinary Sciences, Via del Taglio, 10, 43126 Parma, Italy
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
43
|
Leitner M, Stock LG, Traxler L, Leclercq L, Bonazza K, Friedbacher G, Cottet H, Stutz H, Ebner A. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Anal Chim Acta 2016; 930:39-48. [PMID: 27265903 DOI: 10.1016/j.aca.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated.
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Lorenz G Stock
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Lukas Traxler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Laurent Leclercq
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Klaus Bonazza
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Hervé Cottet
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Hanno Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
44
|
Peng Y, Li X, Yuan R, Xiang Y. Steric hindrance inhibition of strand displacement for homogeneous and signal-on fluorescence detection of human serum antibodies. Chem Commun (Camb) 2016; 52:12586-12589. [DOI: 10.1039/c6cc06893f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Steric hindrance inhibition of strand displacement enables homogeneous and signal-on fluorescence detection of human serum antibodies.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|