1
|
Che F, Hu J, Liao M, Luo Z, Long H, Li B, Chi YR, Wu X. Synthesis of P(V)-Stereogenic Phosphorus Compounds via Organocatalytic Asymmetric Condensation. J Am Chem Soc 2024; 146:33763-33773. [PMID: 39588735 DOI: 10.1021/jacs.4c11956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Enantioenriched phosphorus(V)-stereogenic compounds, featuring a pentavalent phosphorus atom as the stereogenic center, are crucial in various natural products, drugs, bioactive molecules, and catalysts/ligands. While a handful of stereoselective synthetic approaches have been developed, achieving direct stereocontrol at the phosphorus atom through catalytic generation of phosphorus(V)-heteroatom bonds continues to be a formidable challenge. Here, we disclose an organocatalytic asymmetric condensation strategy that employs a novel activation mode of stable feedstock phosphinic acids by the formation of mixed phosphinic anhydride as the reactive species to facilitate further catalyst-controlled asymmetric P-O bond formations, involving a dynamic kinetic asymmetric transformation (DYKAT) process with alcohol nucleophiles via a cinchonidine-derived bifunctional catalyst. The resulting H-phosphinate intermediates allow further stereospecific derivatizations, affording modular access to a diverse library of chiral phosphonates and phosphonamidates with notable antibacterial activity. Furthermore, this synthetic platform facilitates P-O/N coupling with various natural products and drugs, presenting a valuable tool for medicine and agrochemical discovery.
Collapse
Affiliation(s)
- Fengrui Che
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Junyuan Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhongfu Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyan Long
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Benpeng Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Cai Y, Zhao Y, Tang K, Zhang H, Mo X, Chen J, Huang Y. Amide C-N bonds activation by A new variant of bifunctional N-heterocyclic carbene. Nat Commun 2024; 15:496. [PMID: 38216571 PMCID: PMC10786861 DOI: 10.1038/s41467-024-44756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
We report an organocatalyst that combines a triazolium N-heterocyclic carbene (NHC) with a squaramide as a hydrogen-bonding donor (HBD), which can effectively catalyze the atroposelective ring-opening of biaryl lactams via a unique amide C-N bond cleavage mode. The free carbene species attacks the amide carbonyl, forming an axially chiral acyl-azolium intermediate. Various axially chiral biaryl amines can be accessed by this methodology with up to 99% ee and 99% yield. By using mercaptan as a catalyst turnover agent, the resulting thioester synthon can be transformed into several interesting atropisomers. Both control experiments and theoretical calculations reveal the crucial role of the hybrid NHC-HBD skeleton, which activates the amide via H-bonding and brings it spatially close to the carbene centre. This discovery illustrates the potential of the NHC-HBD chimera and demonstrates a complementary strategy for amide bond activation and manipulation.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kai Tang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Hong Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Xueling Mo
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zhang QY, Li X, Luo J, Li X, Song J, Wei D. Cofactor-Free Dioxygenases-Catalyzed Reaction Pathway via Proton-Coupled Electron Transfer. J Phys Chem B 2023; 127:95-103. [PMID: 36525303 DOI: 10.1021/acs.jpcb.2c03161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the general mechanism of the metal-free and cofactor-free oxidases and oxygenases catalyzed activation of triplet O2 is one of the most challenging questions in the field of enzymatic catalysis. Herein, we have performed Quantum Mechanics/Molecular Mechanics (QM/MM) multiscale simulations to reveal the detailed mechanism of the HOD catalyzed (i.e., 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter nitroguajacolicus Rü61a) decomposition of N-heteroaromatic compounds. The complete catalytic mechanism includes four steps: (1) proton transfer from 1-H-3-hydroxy-4-oxoquinaldine (QND) substrate to His251 residue coupled with an electron transfer from QND to triplet O2 (i.e., PCET), (2) formation of C-O bond via an open-shell singlet diradical recombination pathway, (3) ring-closure to form a bicyclic ring, and (4) dissociation of CO. The dissociation of CO is determined as the rate-limiting step, and its calculated energy barrier of 14.9 kcal/mol is consistent with the 15.5 kcal/mol barrier derived from experimental kinetic data. The mechanistic profile is not only valuable for understanding the fundamental pathway of cofactor-free oxidases and oxygenases-catalyzed reactions involving the triplet O2 activation but also discloses a new pathway that undergoes the processes of PCET and open-shell singlet transition state.
Collapse
Affiliation(s)
- Qiao-Yu Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Xing Li
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong510280, China
| | - Jing Luo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Xue Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng475001, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| |
Collapse
|
6
|
Luo F, Dong H, Ren W, Wang Y. Organocatalytic Asymmetric Synthesis of Tetrahydroquinolines from ortho-Aminophenyl para-Quinone Methides. Org Lett 2022; 24:7727-7731. [PMID: 36250632 DOI: 10.1021/acs.orglett.2c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric catalytic [4 + 2] cycloannulation of ortho-aminophenyl p-QMs with different types of alkenes for the construction of tetrahydroquinolines containing three contiguous stereogenic centers was developed. This is the first example of catalytic asymmetric cycloannulation of ortho-aminophenyl p-QMs. This reaction exhibits excellent functional group tolerance. Excellent yields, exclusive diastereoselectivities, and high enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Fengbiao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
7
|
Jin MY, Zhen Q, Xiao D, Tao G, Xing X, Yu P, Xu C. Engineered non-covalent π interactions as key elements for chiral recognition. Nat Commun 2022; 13:3276. [PMID: 35672365 PMCID: PMC9174283 DOI: 10.1038/s41467-022-31026-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
Molecular recognition and self-assembly are often mediated by intermolecular forces involving aromatic π-systems. Despite the ubiquity of such interactions in biological systems and in the design of functional materials, the elusive nature of aromatic π interaction results in that they have been seldom used as a design element for promoting challenging chemical reactions. Described here is a well-engineered catalytic system into which non-covalent π interactions are directly incorporated. Enabled by a lone pair-π interaction and a π-π stacking interaction operating collectively, efficient chiral recognition is successfully achieved in the long-pursued dihydroxylation-based kinetic resolution. Density functional theory calculations shed light on the crucial role played by the lone pair-π interaction between the carbonyl oxygen of the cinchona alkaloid ligand and the electron-deficient phthalazine π moiety of the substrate in the stereoselectivity-determining transition states. This discovery serves as a proof-of-principle example showing how the weak non-covalent π interactions, if ingeniously designed, could be a powerful guide in attaining highly enantioselective catalysis.
Collapse
Affiliation(s)
- Ming Yu Jin
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qianqian Zhen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dengmengfei Xiao
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Guanyu Tao
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiangyou Xing
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
8
|
Dhayalan V, Dandela R, Devi KB, Dhanusuraman R. Synthesis and Applications of Asymmetric Catalysis Using Chiral Ligands Containing Quinoline Motifs. SYNOPEN 2022. [DOI: 10.1055/a-1743-4534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In the past decade, asymmetric synthesis of chiral ligands containing quinoline motifs, a family of natural products displaying a broad range of structural diversity and their metal complexes have become the most significant methodology for the generation of enantiomerically pure compounds of biological and pharmaceutical interest. This review provides comprehensive insight on the plethora of nitrogen-based chiral ligands containing quinoline motifs and organocatalysts used in asymmetric synthesis. However, it is circumscribed to the synthesis of quinoline-based chiral ligands and metal complexes, and their applications in asymmetric synthesis as a homogeneous and heterogeneous catalyst.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, India
| | - Rambabu Dandela
- Dept. of Industrial and Engineering Chemistry, Institute of Chemical Technology- IOC Bhubaneswar, Bhubaneswar, India
| | - K. Bavya Devi
- Department of Chemistry, Thassim Beevi Adbul Kader College for Women, Kilakarai, India
| | | |
Collapse
|
9
|
Ciber L, Ričko S, Gregorc J, Pozgan F, Svete J, Brodnik H, Štefane B, Grošelj U. Mechanistic Insights into Annulation of Arylidene‐Δ2‐pyrrolin‐4‐ones by Cinchona Squaramide‐Based Organocatalysts. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luka Ciber
- University of Ljubljana, Faculty of Chemistry and Chemical Technology SLOVENIA
| | - Sebastijan Ričko
- Univerza v Ljubljani Fakulteta za Kemijo in Kemijsko tehnologijo SLOVENIA
| | - Jure Gregorc
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| | | | | | | | | | - Uroš Grošelj
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| |
Collapse
|
10
|
Xu Y, Zhai TY, Xu Z, Ye LW. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Ullah Z, Kim K, Venkanna A, Kim HS, Kim MI, Kim MH. Plausible Pnicogen Bonding of epi-Cinchonidine as a Chiral Scaffold in Catalysis. Front Chem 2021; 9:669515. [PMID: 34295874 PMCID: PMC8290064 DOI: 10.3389/fchem.2021.669515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
As a non-covalent interaction of a chiral scaffold in catalysis, pnicogen bonding of epi-cinchonidine (epi-CD), a cinchona alkaloid, was simulated to consider whether the interaction can have the potential controlling enantiotopic face like hydrogen bonding. Among five reactive functional groups in epi-CD, two stable complexes of the hydroxyl group (X-epi-CD1) at C17 and of the quinoline ring (X-epi-CD2) at N16 with pnictide family analytes [X = substituted phosphine (PX), i.e., F, Br, Cl, CF3, CN, HO, NO2, and CH3, and pnictide family analytes, i.e., PBr3, BiI3, SbI3, and AsI3] were predicted with intermolecular interaction energies, charge transfer (QMulliken and QNBO), and band gap energies of HOMO-LUMO (Eg) at the B3LYP/6-31G(d,p) level of density functional theory. It was found that the dominant site of pnicogen bonding in epi-CD is the quinoline ring (N16 atom) rather than the hydroxyl group (O36 atom). In addition, the UV-Vis spectra of the complex were calculated by time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level and compared with experimental measurements. Through these calculations, two intermolecular interactions (H-bond vs. pnicogen bond) of epi-CD were compared.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kang Kim
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Arramshetti Venkanna
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Hye Su Kim
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Mi-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| |
Collapse
|
12
|
Guo F, Chen J, Huang Y. A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
13
|
Xie S, He ZJ, Zhang LH, Huang BL, Chen XW, Zhan ZS, Zhang FM. The organocatalytic enantiodivergent fluorination of β-ketodiaryl-phosphine oxides for the construction of carbon-fluorine quaternary stereocenters. Chem Commun (Camb) 2021; 57:2069-2072. [PMID: 33507188 DOI: 10.1039/d0cc07770d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercially available cinchona alkaloids that can catalyze the enantiodivergent fluorination of β-ketodiarylphosphine oxides were developed to construct carbon-fluorine quaternary stereocenters. This protocol features a wide scope of substrates and excellent enantioselectivities, and it is scalable.
Collapse
Affiliation(s)
- Shaolei Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mijangos MV, Amador‐Sánchez YA, Miranda LD. Synthesis of Quinoline‐4‐carboxamides and Quinoline‐4‐carboxylates via a Modified Pfitzinger Reaction of
N
‐Vinylisatins. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco V. Mijangos
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| | - Yoarhy A. Amador‐Sánchez
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| | - Luis D. Miranda
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán Ciudad de México 04510 México
| |
Collapse
|
15
|
Yang F, Zhou X, Wei Y, Wang L, Jiang J. Hydroquinine-catalyzed asymmetric 1,4-hydrophosphination of in situ generated aza- o-quinone methides with H-phosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d1qo00823d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalytic enantioselective 1,4-addition of H-phosphine oxides to in situ generated aza-o-quinone methides has been successfully established using hydroquinine.
Collapse
Affiliation(s)
- Fuxing Yang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xingcui Zhou
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yongquan Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lisheng Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Medical College, Guangxi University, Nanning, 530004, P. R. China
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
16
|
Salehi Marzijarani N, Lam YH, Wang X, Klapars A, Qi J, Song Z, Sherry BD, Liu Z, Ji Y. New Mechanism for Cinchona Alkaloid-Catalysis Allows for an Efficient Thiophosphorylation Reaction. J Am Chem Soc 2020; 142:20021-20029. [PMID: 33180475 DOI: 10.1021/jacs.0c09192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient synthesis of nucleoside 5'-monothiophosphates under mild reaction conditions using commercially available thiophosphoryl chloride was achieved with a cinchona alkaloid catalyst. A detailed mechanistic study of the reaction was undertaken, employing a combination of reaction kinetics, NMR spectroscopy, and computational modeling, to better understand the observed reactivity. Taken collectively, the results support an unprecedented mechanism for this class of organocatalyst.
Collapse
Affiliation(s)
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiao Wang
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ji Qi
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States.,Department of Process Research and Development, MSD R&D (China) Co., Ltd., Building 21 Rongda Road, Wangjing R&D Base, Zhongguancun Electronic Zone West Zone, Beijing 100012, China
| | - Zhiyan Song
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, China
| | - Benjamin D Sherry
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhijian Liu
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
17
|
Gui H, Meng Z, Xiao Z, Yang Z, Wei Y, Shi M. Stereo‐ and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3‐Isothiocyanato Oxindoles with Thioaurone Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hou‐Ze Gui
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhe Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhan‐Shuai Xiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Ze‐Ren Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yin Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
18
|
Chen L, Zhang X, Shi KJ, Leng HJ, Li QZ, Liu Y, Li JH, Wang QW, Li JL. Bifunctional Brønsted Base Catalyzed [3 + 3] Annulations of Indolin-2-imines and α,β-Unsaturated Imides: An Enantioselective Approach to α-Carbolinones. J Org Chem 2020; 85:9454-9463. [PMID: 32687362 DOI: 10.1021/acs.joc.0c00957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric construction of α-carbolinones with easily available starting materials has recently attracted considerable attention from the synthesis community, and the development of effective catalysis for this target is in great demand. Here, a bifunctional Brønsted base catalyzed asymmetric [3 + 3] cyclization of indolin-2-imines and α,β-unsaturated N-acylated succinimides was developed by using the strategy of noncovalent bonding catalysis. With this organocatalytic protocol, a variety of tetrahydro-α-carbolinones bearing different substituents were synthesized with up to 99% yield and up to 96:4 er.
Collapse
Affiliation(s)
- Lin Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Jin Shi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Jiang-Hong Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| |
Collapse
|
19
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
20
|
Velardo A, Capaccio V, Caruso T, Di Mola A, Massa A, Tedesco C, Caporaso L, Falivene L, Palombi L. Desymmetrization of 2-Cyano- N
-tosylbenzylidenimine with Thiols and Organocatalytic Heterocyclization by Dynamic Resolution: Mechanism Investigation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amalia Velardo
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Vito Capaccio
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Tonino Caruso
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Antonia Di Mola
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Antonio Massa
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Consiglia Tedesco
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| | - Laura Falivene
- Chemical and Life Sciences and Engineering; Kaust Catalysis Center; King Abdullah University of Science and Technology; 23955-6900 Thuwal Saudi Arabia
| | - Laura Palombi
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fiscyano (SA) Italy
| |
Collapse
|
21
|
Rufino VC, Pliego JR. Is the iminium ion mechanism viable in the piperidine-catalyzed 1,4-conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones? COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Dyguda M, Przydacz A, Krzemińska A, Albrecht Ł. On the origins of stereoselectivity in the aminocatalytic remote alkylation of 5-alkylfurfurals. Org Biomol Chem 2019; 17:6025-6031. [PMID: 31161185 DOI: 10.1039/c9ob00914k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the manuscript, computational studies on the remote alkylation of 5-alkylfurfurals proceeding via formation of the corresponding trienamine intermediate are presented. By the means of density functional theory (DFT) calculations and the symmetry-adapted perturbation theory (SAPT) method, interesting insights into the mechanism of the reaction have been provided explaining the influence and contribution of different molecular interactions on the observed reactivity as well as on the enantio- and diastereoselectivity of the process. The studies have been extended to the thiophene analogue of the starting furfural derivative and the results obtained verified experimentally.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | | | | | | |
Collapse
|
23
|
Liu Q, Sun L, Li S, Li X, Qu L, Lan Y, Wei D. Insights into N‐Heterocyclic Carbene (NHC)‐Catalyzed Asymmetric Addition of 2H‐Azirine with Aldehyde. Chem Asian J 2019; 14:2000-2007. [DOI: 10.1002/asia.201900076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Qiuli Liu
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Ling Sun
- Basic Teaching DepartmentHuanghe Jiaotong University No. 333 Yingbin Road Wuzhi Henan 454950 P. R. China
| | - Shi‐Jun Li
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Xue Li
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Ling‐Bo Qu
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Yu Lan
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular EngineeringZhengzhou University No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
24
|
|
25
|
Li H, Fan W, Hong X. Understanding the axial chirality control of quinidine-derived ammonium cation-directed O-alkylation: a computational study. Org Biomol Chem 2019; 17:1916-1923. [PMID: 30280168 DOI: 10.1039/c8ob02173b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a privileged chiral scaffold, cinchona alkaloid and its derivatives have reached remarkable success in catalytic asymmetric organic synthesis. In addition to the wide applications of point chirality control, Smith and co-workers recently discovered a quinidine-derived ammonium cation-catalyzed O-alkylation of tetralones, providing an effective approach for the synthesis of axially chiral biaryls. Using density functional theory (DFT) calculations, we studied the reaction mechanism and origins of enantioselectivity of this novel transformation. A stepwise strategy is adopted to ensure efficient and thorough exploration of the massive conformational space of transition state. Our computations suggested that enolate oxygen forms two hydrogen bonds with the chiral ammonium catalyst, and the non-covalent interactions between the cationic benzylic fragment and the methoxy group of enolate plays a critical role in determining the enantioselectivity.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Joseph Gal
- University of Colorado School of Medicine Anschutz Medical Campus, UCH Campus Box A-022 Aurora CO 80045 USA
| |
Collapse
|
27
|
Zheng D, Raeisolsadati Oskouei M, Sanders HJ, Qian J, Williams RM, Brouwer AM. Photophysics of perylene monoimide-labelled organocatalysts. Photochem Photobiol Sci 2019; 18:524-533. [DOI: 10.1039/c8pp00462e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fluorophore-tagged organocatalyst undergoes electron transfer in polar solvents allowing to sense the presence of its free quinuclidine catalytic site.
Collapse
Affiliation(s)
- Dongdong Zheng
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | | | - Hans J. Sanders
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - Junhong Qian
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - René M. Williams
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| | - Albert M. Brouwer
- van ‘t Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1090 GD Amsterdam
- The Netherlands
| |
Collapse
|
28
|
Li H, Hong X. Computational studies of cinchona alkaloid-catalyzed asymmetric Michael additions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Heshmat M. Unraveling the Origin of Solvent Induced Enantioselectivity in the Henry Reaction with Cinchona Thiourea as Catalyst. J Phys Chem A 2018; 122:7974-7982. [PMID: 30230831 DOI: 10.1021/acs.jpca.8b04589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we report an energy decomposition and electronic structure analysis using DFT calculations for the C-C coupling step in the Henry reaction with cinchona thiourea as catalyst and DMF solvent to unravel the origin of enantioselectivity. We found that the conformation of flexible thiourea moiety is affected by the solvent, and in the preferred conformation of thiourea in strong Lewis basic DMF solvent, the N-H sites are in the opposite direction, i.e., in trans conformation. Hence, the thiourea moiety acts via single hydrogen bonding with substrates. The conformation of the substrates with respect to the forming C-C bond plays critical role to increase orbital interaction between two substrates and enhances hydrogen bond strength between substrates and catalyst, which in turn stabilizes the positive charge developing on the catalyst at the transition state for one of the enantiomers ( S). Thus, the enantioselectivity has electronic structure origin. The stronger H-bond formation in the S enantiomer has been confirmed by the calculated IR spectra and is in agreement with thus far experimental and computational results.
Collapse
Affiliation(s)
- Mojgan Heshmat
- Department of Organic Chemistry , Stockholm University , Stockholm , 10691 , Sweden.,Theoretical Chemistry , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
30
|
Molchanov S, Rowicki T, Gryff-Keller A, Koźmiński W. Conformational Equilibrium of Cinchonidine in C 6D 12 Solution. Alternative NMR/DFT Approach. J Phys Chem A 2018; 122:7832-7841. [PMID: 30240224 DOI: 10.1021/acs.jpca.8b06722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1H NMR and 13C NMR chemical shifts as well as conformation dependent vicinal 1H-1H spin-spin coupling constants for cinchonidine in a dilute C6D12 solution have been measured. These data have been interpreted in detail exploiting the results of the extensive quantum chemistry calculations of molecular geometry and NMR parameters of the molecule, performed using the density functional theory (DFT) B3LYP/6-311++G(2d,p) polarizable continuum model (PCM) level of theory. The experimental values of NMR parameters for cinchonidine have been reproduced very well in terms of parameters calculated for key conformers of this molecule. Simultaneously, the analysis has provided us with a lot of information on conformational equilibrium of cinchonidine in the investigated solution. These findings remain in general agreement with the conclusions of other works, based on NOESY spectra or other physicochemical data. Thus, a careful quantitative interpretation of easily measurable NMR chemical shifts can be an independent and valuable source of structural information even in such complex cases as cinchonidine in solution.
Collapse
Affiliation(s)
- Sergey Molchanov
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Tomasz Rowicki
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Adam Gryff-Keller
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Warsaw, Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
31
|
Hammer N, Erickson JD, Lauridsen VH, Jakobsen JB, Hansen BK, Jacobsen KM, Poulsen TB, Jørgensen KA. Catalytic Asymmetric [4+2]‐Cycloadditions Using Tropolones: Developments, Scope, Transformations, and Bioactivity. Angew Chem Int Ed Engl 2018; 57:13216-13220. [DOI: 10.1002/anie.201808221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Hammer
- Department of ChemistryAarhus University 8000 Aarhus C Denmark
| | | | | | | | - Bente K. Hansen
- Department of ChemistryAarhus University 8000 Aarhus C Denmark
| | | | | | | |
Collapse
|
32
|
Hammer N, Erickson JD, Lauridsen VH, Jakobsen JB, Hansen BK, Jacobsen KM, Poulsen TB, Jørgensen KA. Catalytic Asymmetric [4+2]‐Cycloadditions Using Tropolones: Developments, Scope, Transformations, and Bioactivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Niels Hammer
- Department of ChemistryAarhus University 8000 Aarhus C Denmark
| | | | | | | | - Bente K. Hansen
- Department of ChemistryAarhus University 8000 Aarhus C Denmark
| | | | | | | |
Collapse
|
33
|
Rufino VC, Resende SM, Pliego JR. Free energy profile and microkinetic modeling of base-catalyzed conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones in polar and apolar solvents. J Mol Model 2018; 24:152. [PMID: 29876745 DOI: 10.1007/s00894-018-3694-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
Michael reactions involving nitroalkanes and enones are important carbon-carbon bond formation reactions. These reactions are base-catalyzed, and during the past 15 years, the asymmetric version using bifunctional amino-thiourea organocatalyst has been developed. In this work, the reaction of nitromethane and 4-phenyl-3-buten-2-one, catalyzed by the methoxide ion and piperidine as bases, was investigated by theoretical calculations. We obtained the theoretical free energy profile and did a microkinetic analysis of the catalytic cycle. The direct reaction of the CH2NO2- ion and the enone is very favorable, with a free energy of activation of 21.1 kcal mol-1 in methanol solvent. However, the generated MS2 product works like an inhibitor of the catalysis, and the effective barrier in the catalytic cycle becomes 25.5 kcal mol-1, leading to slow kinetics at room temperature. In the case of the reaction in apolar solvent (toluene), we found a pathway involving isomerization from the CH3NO2 reactant to the CH2NO2H species, and the latter makes a nucleophilic attack on the enone. Piperidine works like a bifunctional catalyst. In this case, the barrier is very high (32.5 kcal mol-1), indicating the importance of the polar environment to accelerate the reaction in the catalytic cycle. Graphical abstract Base-catalyzed conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Virginia C Rufino
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Stella M Resende
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| |
Collapse
|
34
|
Kumpulainen T, Qian J, Brouwer AM. Spectroscopic Study of a Cinchona Alkaloid-Catalyzed Henry Reaction. ACS OMEGA 2018; 3:1871-1880. [PMID: 29503974 PMCID: PMC5830691 DOI: 10.1021/acsomega.7b01713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
A spectroscopic study of an organocatalytic Henry reaction between nitroalkanes and aldehydes catalyzed by a quinidine-derived Cinchona alkaloid is described. The binding modes of the reaction substrates are investigated using electronic absorption and fluorescence spectroscopy and further corroborated by nuclear magnetic resonance measurements. Aldehydes are shown to associate with both the 6'-OH group and the basic quinuclidine nitrogen of the catalyst, whereas nitroalkanes do not exhibit a clear binding mode. Reaction progress kinetic analysis reveals that the reaction is first-order in both of the substrates and the catalyst. Second, the reaction proceeds approximately five times faster in the excess of the nitroalkanes than in the excess of the aldehydes, suggesting that binding of the aldehydes results in the inhibition of the catalyst. Aldehydes deactivate the basic quinuclidine site, thus suppressing the deprotonation of the nitroalkanes which is the proposed initial step in the reaction cycle.
Collapse
Affiliation(s)
| | | | - Albert M. Brouwer
- Van’t Hoff Institute for Molecular
Sciences, Faculty of Science, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
35
|
Xue Y, Wang Y, Cao Z, Zhou J, Chen ZX. Computational insight into the cooperative role of non-covalent interactions in the aza-Henry reaction catalyzed by quinine derivatives: mechanism and enantioselectivity. Org Biomol Chem 2018; 14:9588-9597. [PMID: 27714327 DOI: 10.1039/c6ob01611a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Density functional theory (DFT) calculations were performed to elucidate the mechanism and the origin of the high enantioselectivity of the aza-Henry reaction of isatin-derived N-Boc ketimine catalyzed by a quinine-derived catalyst (QN). The C-C bond formation step is found to be both the rate-determining and the stereo-controlled step. The results revealed the important role of the phenolic OH group in pre-organizing the complex of nitromethane and QN and stabilizing the in situ-generated nitronate and protonated QN. Three possible activation modes for C-C bond formation involving different coordination patterns of catalyst and substrates were studied, and it was found that both the ion pair-hydrogen bonding mode and the Brønsted acid-hydrogen bonding mode are viable, with the latter slightly preferred for the real catalytic system. The calculated enantiomeric excess (ee) favouring the S enantiomer is in good agreement with the experimental result. The high reactivity and enantioselectivity can be ascribed to the cooperative role of the multiple non-covalent interactions, including classical and non-classical H bonding as well as anionπ interactions. These results also highlight the importance of the inclusion of dispersion correction for achieving a reasonable agreement between theory and experiment for the current reaction.
Collapse
Affiliation(s)
- Yunsheng Xue
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. and School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, P. R. China
| | - Yuhui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhongyan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
36
|
Nagy S, Fehér Z, Kisszékelyi P, Huszthy P, Kupai J. Cinchona derivatives as sustainable and recyclable homogeneous organocatalysts for aza-Markovnikov addition. NEW J CHEM 2018. [DOI: 10.1039/c8nj01277f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aza-Markovnikov additions were achieved with up to 98% yields using cinchona based organocatalysts that were recycled by organic solvent nanofiltration.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Zsuzsanna Fehér
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Péter Kisszékelyi
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - József Kupai
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| |
Collapse
|
37
|
Bhaskararao B, Jindal G, Sunoj RB. Exploring the Mechanism and Stereoselectivity in Chiral Cinchona-Catalyzed Heterodimerization of Ketenes. J Org Chem 2017; 82:13449-13458. [DOI: 10.1021/acs.joc.7b02517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bangaru Bhaskararao
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai,
Mumbai 400076, India
| | - Garima Jindal
- Department
of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Raghavan B. Sunoj
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai,
Mumbai 400076, India
| |
Collapse
|
38
|
Li M, Xue XS, Cheng JP. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with N-Trifluoromethylthiophthalimide as Electrophilic SCF3 Source. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Man Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
39
|
Husch T, Seebach D, Beck AK, Reiher M. Rigorous Conformational Analysis of Pyrrolidine Enamines with Relevance to Organocatalysis. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tamara Husch
- Laboratorium für Physikalische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 8093 Zürich Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 2 8093 Zürich Switzerland
| | - Albert K. Beck
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 2 8093 Zürich Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 8093 Zürich Switzerland
| |
Collapse
|
40
|
Yang C, Zhang W, Li YH, Xue XS, Li X, Cheng JP. Origin of Stereoselectivity of the Photoinduced Asymmetric Phase-Transfer-Catalyzed Perfluoroalkylation of β-Ketoesters. J Org Chem 2017; 82:9321-9327. [DOI: 10.1021/acs.joc.7b01130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Yang
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P.R. China
- Department
of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Wei Zhang
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P.R. China
| | - Yi-He Li
- Department
of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P.R. China
| | - Xin Li
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P.R. China
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P.R. China
- Department
of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
41
|
Singjunla Y, Pigeaux M, Laporte R, Baudoux J, Rouden J. Thioamide-Substituted Cinchona Alkaloids as Efficient Organocatalysts for Asymmetric Decarboxylative Reactions of MAHOs. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuttapong Singjunla
- LCMT, ENSICAEN, UNICAEN, CNRS; Normandie Univ.; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Morgane Pigeaux
- LCMT, ENSICAEN, UNICAEN, CNRS; Normandie Univ.; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Romain Laporte
- LCMT, ENSICAEN, UNICAEN, CNRS; Normandie Univ.; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Jérôme Baudoux
- LCMT, ENSICAEN, UNICAEN, CNRS; Normandie Univ.; 6 Boulevard du Maréchal Juin 14000 Caen France
| | - Jacques Rouden
- LCMT, ENSICAEN, UNICAEN, CNRS; Normandie Univ.; 6 Boulevard du Maréchal Juin 14000 Caen France
| |
Collapse
|
42
|
Grayson MN. Mechanism and Origins of Stereoselectivity in the Cinchona Thiourea- and Squaramide-Catalyzed Asymmetric Michael Addition of Nitroalkanes to Enones. J Org Chem 2017; 82:4396-4401. [PMID: 28319377 DOI: 10.1021/acs.joc.7b00521] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report density functional theory calculations that examine the mechanism and origins of stereoselectivity of Soós' landmark discovery from 2005 that cinchona thioureas catalyze the asymmetric Michael addition of nitroalkanes to enones. We show that the electrophile is activated by the catalyst's protonated amine and that the nucleophile binds to the thiourea moiety by hydrogen bonding. These results lead to the correction of published mechanistic work which did not consider this activation mode. We have also investigated the corresponding cinchona squaramide-catalyzed reaction and found that it proceeds by the same mechanism despite the differences in the geometry of the two catalysts' hydrogen-bond-donating groups, which demonstrates the generality of this mechanistic model.
Collapse
Affiliation(s)
- Matthew N Grayson
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
43
|
Blise K, Cvitkovic MW, Gibbs NJ, Roberts SF, Whitaker RM, Hofmeister GE, Kohen D. A Theoretical Mechanistic Study of the Asymmetric Desymmetrization of a Cyclic meso-Anhydride by a Bifunctional Quinine Sulfonamide Organocatalyst. J Org Chem 2017; 82:1347-1355. [DOI: 10.1021/acs.joc.6b02320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katie Blise
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Milan W. Cvitkovic
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Nolly J. Gibbs
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Sean F. Roberts
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Reid M. Whitaker
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | | | - Daniela Kohen
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| |
Collapse
|