1
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
2
|
Chen Y, Zhang Y, Xu X. XPB: an Extendable Polymer Builder for High-Throughput and High-Quality Generation of Complex Polymer Structures. J Chem Theory Comput 2025; 21:347-357. [PMID: 39739664 DOI: 10.1021/acs.jctc.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The efficient generation of complex initial structures for polymers remains a critical challenge in the field of molecular simulation. This necessitates the development of high-quality and highly efficient modeling algorithms. Inspired by fundamental polymerization reactions, we propose a general algorithm for an efficient de novo polymer model building, resulting in the development of the eXtendable Polymer Builder (XPB) package. We show that XPB is well-suited for constructing a wide range of polymer models, including linear, dendritic, and cross-linked structures. It offers a precise control over polymer morphology through adjustable, physically meaningful parameters such as residue types, connection preferences, and cross-linking distances. As a showcase, XPB can construct well-defined dendrimers up to the 10th generation and hyperbranched polymers with tens of thousands of residues within mere minutes, while effectively minimizing structural overlaps. This versatility facilitates the construction of more complex polymer architectures than before, providing a general and robust framework for the high-throughput and high-quality generation of diverse polymer structures.
Collapse
Affiliation(s)
- Yuheng Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, People's Republic of China
| | - Yuwei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, People's Republic of China
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Sha H, Zhu F. Hexagonal Lattices of HIV Capsid Proteins Explored by Simulations Based on a Thermodynamically Consistent Model. J Phys Chem B 2024; 128:960-972. [PMID: 38251836 DOI: 10.1021/acs.jpcb.3c06881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
HIV capsid proteins (CAs) may self-assemble into a variety of shapes under in vivo and in vitro conditions. Here, we employed simulations based on a residue-level coarse-grained (CG) model with full conformational flexibility to investigate hexagonal lattices, which are the underlying structural pattern for CA aggregations. Facilitated by enhanced sampling simulations to rigorously calculate CA dimerization and polymerization affinities, we calibrated our model to reproduce the experimentally measured affinities. Using the calibrated model, we performed unbiased simulations on several large systems consisting of 1512 CA subunits, allowing reversible binding and unbinding of the CAs in a thermodynamically consistent manner. In one simulation, a preassembled hexagonal CA sheet developed spontaneous curvatures reminiscent of those observed in experiments, and the edges of the sheet exhibited local curvatures larger than those of the interior. In other simulations starting with randomly distributed CAs at different concentrations, existing CA assemblies grew by binding free capsomeres to the edges and by merging with other assemblies. At high CA concentrations, rapid establishment of predominant aggregates was followed by much slower adjustments toward more regular hexagonal lattices, with increasing numbers of intact CA hexamers and pentamers being formed. Our approach of adapting a general CG model to specific systems by using experimental binding data represents a practical and effective strategy for simulating and elucidating intricate protein aggregations.
Collapse
Affiliation(s)
- Hao Sha
- Department of Physics, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Fangqiang Zhu
- Department of Physics, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Bhatia H, Thiagarajan JJ, Anirudh R, TS J, Oppelstrup T, Ingólfsson HI, Lightstone F, Bremer PT. A Biology-Informed Similarity Metric for Simulated Patches of Human Cell Membrane. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac8523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Complex scientific inquiries rely increasingly upon large and autonomous multiscale simulation campaigns, which fundamentally require similarity metrics to quantify “sufficient” changes among data and/or configurations. However, subject matter experts are often unable to articulate similarity precisely or in terms of well-formulated definitions, especially when new hypotheses are to be explored, making it challenging to design a meaningful metric. Furthermore, the key to practical usefulness of such metrics to enable autonomous simulations lies in in situ inference, which requires generalization to possibly substantial distributional shifts in unseen, future data. Here, we address these challenges in a cancer biology application and develop a meaningful similarity metric for “patches”— regions of simulated human cell membrane that express interactions between certain proteins of interest and relevant lipids. In the absence of well-defined conditions for similarity, we leverage several biology-informed notions about data and the underlying simulations to impose inductive biases on our metric learning framework, resulting in a suitable similarity metric that also generalizes well to significant distributional shifts encountered during the deployment. We combine these intuitions to organize the learned embedding space in a multiscale manner, which makes the metric robust to incomplete and even contradictory intuitions. Our approach delivers a metric that not only performs well on the conditions used for its development and other relevant criteria, but also learns key spatiotemporal relationships from statistical mechanics without ever being exposed to any such information during training.
Collapse
|
5
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Wilson E, Vant J, Layton J, Boyd R, Lee H, Turilli M, Hernández B, Wilkinson S, Jha S, Gupta C, Sarkar D, Singharoy A. Large-Scale Molecular Dynamics Simulations of Cellular Compartments. Methods Mol Biol 2021; 2302:335-356. [PMID: 33877636 DOI: 10.1007/978-1-0716-1394-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Molecular dynamics or MD simulation is gradually maturing into a tool for constructing in vivo models of living cells in atomistic details. The feasibility of such models is bolstered by integrating the simulations with data from microscopic, tomographic and spectroscopic experiments on exascale supercomputers, facilitated by the use of deep learning technologies. Over time, MD simulation has evolved from tens of thousands of atoms to over 100 million atoms comprising an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium. In this chapter, we present a step-by-step outline for preparing, executing and analyzing such large-scale MD simulations of biological systems that are essential to life processes. All scripts are provided via GitHub.
Collapse
Affiliation(s)
- Eric Wilson
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - John Vant
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Jacob Layton
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Ryan Boyd
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Hyungro Lee
- RADICAL, ECE, Rutgers University, Piscataway, NJ, USA
| | | | | | | | - Shantenu Jha
- RADICAL, ECE, Rutgers University, Piscataway, NJ, USA.,Brookhaven National Laboratory, Upton, NY, USA
| | - Chitrak Gupta
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Daipayan Sarkar
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Abhishek Singharoy
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Atomistic Basis of Microtubule Dynamic Instability Assessed Via Multiscale Modeling. Ann Biomed Eng 2021; 49:1716-1734. [PMID: 33537926 PMCID: PMC8302526 DOI: 10.1007/s10439-020-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Microtubule “dynamic instability,” the abrupt switching from assembly to disassembly caused by the hydrolysis of GTP to GDP within the β subunit of the αβ-tubulin heterodimer, is necessary for vital cellular processes such as mitosis and migration. Despite existing high-resolution structural data, the key mechanochemical differences between the GTP and GDP states that mediate dynamic instability behavior remain unclear. Starting with a published atomic-level structure as an input, we used multiscale modeling to find that GTP hydrolysis results in both longitudinal bond weakening (~ 4 kBT) and an outward bending preference (~ 1.5 kBT) to both drive dynamic instability and give rise to the microtubule tip structures previously observed by light and electron microscopy. More generally, our study provides an example where atomic level structural information is used as the sole input to predict cellular level dynamics without parameter adjustment.
Collapse
|
9
|
Koh H, Chiashi S, Shiomi J, Maruyama S. Heat diffusion-related damping process in a highly precise coarse-grained model for nonlinear motion of SWCNT. Sci Rep 2021; 11:563. [PMID: 33436656 PMCID: PMC7804176 DOI: 10.1038/s41598-020-79200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022] Open
Abstract
Second sound and heat diffusion in single-walled carbon nanotubes (SWCNT) are well-known phenomena which is related to the high thermal conductivity of this material. In this paper, we have shown that the heat diffusion along the tube axis affects the macroscopic motion of SWCNT and adapting this phenomena to coarse-grained (CG) model can improve the precision of the coarse-grained molecular dynamics (CGMD) exceptionally. The nonlinear macroscopic motion of SWCNT in the free thermal vibration condition in adiabatic environment is demonstrated in the most simplified version of CG modeling as maintaining finite temperature and total energy with suggested dissipation process derived from internal heat diffusion. The internal heat diffusion related to the cross correlated momentum from different potential energy functions is considered, and it can reproduce the nonlinear dynamic nature of SWCNTs without external thermostatting in CG model. Memory effect and thermostat with random noise distribution are not included, and the effect of heat diffusion on memory effect is quantified through Mori-Zwanzig formalism. This diffusion shows perfect syncronization of the motion between that of CGMD and MD simulation, which is started with initial conditions from the molecular dynamics (MD) simulation. The heat diffusion related to this process has shown the same dispersive characteristics to second wave in SWCNT. This replication with good precision indicates that the internal heat diffusion process is the essential cause of the nonlinearity of the tube. The nonlinear dynamic characteristics from the various scale of simple beads systems are examined with expanding its time step and node length.
Collapse
Affiliation(s)
- Heeyuen Koh
- Mechanical and Aerospace Engineering Department, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Shohei Chiashi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Energy Nano Engineering Lab., National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8564, Japan.
| |
Collapse
|
10
|
Jin J, Yu A, Voth GA. Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J Chem Theory Comput 2020; 16:6823-6842. [PMID: 32975948 DOI: 10.1021/acs.jctc.0c00832] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the structural correlations in atomistic simulations, the general use of bottom-up CG methods is limited because of the nontransferable nature of these CG models under different thermodynamic conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions to account for issues with transferability. However, these approaches can require a manual adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To overcome these limitations, we construct temperature and phase transferable CG models under constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global changes to the system by automatically adjusting the effective CG interactions, thus bridging free energy decompositions with UCG theory. The method presented is designed to faithfully capture structural correlations under different thermodynamic conditions, using a single UCG model. Specifically, we test the applicability of the developed theory in three distinct cases: (1) different temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both temperature and phase transferable bottom-up CG models is possible using this generalized UCG theory. Based on our findings, this approach significantly extends the transferability and applicability of the bottom-up CG theory and method.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Leng J, Shoura M, McLeish TCB, Real AN, Hardey M, McCafferty J, Ranson NA, Harris SA. Securing the future of research computing in the biosciences. PLoS Comput Biol 2019; 15:e1006958. [PMID: 31095554 PMCID: PMC6521984 DOI: 10.1371/journal.pcbi.1006958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Improvements in technology often drive scientific discovery. Therefore, research requires sustained investment in the latest equipment and training for the researchers who are going to use it. Prioritising and administering infrastructure investment is challenging because future needs are difficult to predict. In the past, highly computationally demanding research was associated primarily with particle physics and astronomy experiments. However, as biology becomes more quantitative and bioscientists generate more and more data, their computational requirements may ultimately exceed those of physical scientists. Computation has always been central to bioinformatics, but now imaging experiments have rapidly growing data processing and storage requirements. There is also an urgent need for new modelling and simulation tools to provide insight and understanding of these biophysical experiments. Bioscience communities must work together to provide the software and skills training needed in their areas. Research-active institutions need to recognise that computation is now vital in many more areas of discovery and create an environment where it can be embraced. The public must also become aware of both the power and limitations of computing, particularly with respect to their health and personal data.
Collapse
Affiliation(s)
- Joanna Leng
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Massa Shoura
- School of Pathology, Stanford University, Palo Alto, California, United States of America
| | | | - Alan N. Real
- Advanced Research Computing, University of Durham, Durham, United Kingdom
| | - Mariann Hardey
- Advanced Research Computing, University of Durham, Durham, United Kingdom
- School of Business, University of Durham, Durham, United Kingdom
| | | | - Neil A. Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah A. Harris
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Computational approaches to macromolecular interactions in the cell. Curr Opin Struct Biol 2019; 55:59-65. [PMID: 30999240 DOI: 10.1016/j.sbi.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Structural modeling of a cell is an evolving strategic direction in computational structural biology. It takes advantage of new powerful modeling techniques, deeper understanding of fundamental principles of molecular structure and assembly, and rapid growth of the amount of structural data generated by experimental techniques. Key modeling approaches to principal types of macromolecular assemblies in a cell already exist. The main challenge, along with the further development of these modeling approaches, is putting them together in a consistent, unified whole cell model. This opinion piece addresses the fundamental aspects of modeling macromolecular assemblies in a cell, and the state-of-the-art in modeling of the principal types of such assemblies.
Collapse
|
13
|
Aydin F, Katkar HH, Voth GA. Multiscale simulation of actin filaments and actin-associated proteins. Biophys Rev 2018; 10:1521-1535. [PMID: 30382557 PMCID: PMC6297090 DOI: 10.1007/s12551-018-0474-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Harshwardhan H Katkar
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Gregory A Voth
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Coarse-grained dynamics of supramolecules: Conformational changes in outer shells of Dengue viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:20-37. [PMID: 30273615 DOI: 10.1016/j.pbiomolbio.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023]
Abstract
While structural data on viruses are more and more common, information on their dynamics is much harder to obtain as those viruses form very large molecular complexes. In this paper, we propose a new method for computing the coarse-grained normal modes of such supra-molecules, NormalGo. A new formalism is developed to represent the Hessian of a quadratic potential using tensor products. This formalism is applied to the Tirion elastic potential, as well as to a Gō like potential. When combined with a fast method for computing a select set of eigenpairs of the Hessian, this new formalism enables the computation of thousands of normal modes of a full viral shell with more than one hundred thousand atoms in less than 2 h on a standard desktop computer. We then compare the two coarse-grained potentials. We show that, despite significant differences in their formulations, the Tirion and the Gō like potentials capture very similar dynamics characteristics of the molecule under study. However, we find that the Gō like potential should be preferred as it leads to less local deformations in the structure of the molecule during normal mode dynamics. Finally, we use NormalGo to characterize the structural transitions that occur when FAB fragments bind to the icosahedral outer shell of serotype 3 of the Dengue virus. We have identified residues at the surface of the outer shell that are important for the transition between the FAB-free and FAB-bound conformations, and therefore potentially useful for the design of antibodies to Dengue viruses.
Collapse
|
15
|
Das S, Balasubramanian S. pH-Induced Rotation of Lidless Lipase LipA from Bacillus subtilis at Lipase-Detergent Interface. J Phys Chem B 2018; 122:4802-4812. [PMID: 29623706 DOI: 10.1021/acs.jpcb.8b02296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lipases exhibit a unique process during the catalysis of the hydrolysis of triglyceride substrates called interfacial activation. Surfactants are used as cosolvents with water not only to offer a less polar environment to the lipases needed for their interfacial activation but also to solvate the substrate which are poorly soluble in water. However, the presence of detergent in the medium can affect both the lipase and the substrate, making the construction of a microkinetic model for lipase activity in the presence of the detergent difficult. Herein, we study the interfacial activation of a lidless lipase LipA from Bacillus subtilis using extensive atomistic molecular dynamics simulations at different concentrations of the surfactant, Thesit (C12E8), at two pH values. Residues which bind to the monomeric detergent are found to be the same as the ones which have been reported earlier to bind to the substrate. Very importantly, a pH-induced rotation of the enzyme with respect to surfactant aggregate has been observed which not only explains the experimentally observed pH-dependent enzymatic activity of this lidless lipase, but also suggests its reorientation at an aqueous-lipodophilic interface.
Collapse
Affiliation(s)
- Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| |
Collapse
|
16
|
|
17
|
Yamamoto E. Computational and theoretical approaches for studies of a lipid recognition protein on biological membranes. Biophys Physicobiol 2017; 14:153-160. [PMID: 29159013 PMCID: PMC5689545 DOI: 10.2142/biophysico.14.0_153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|