1
|
Liu Y, Biesel A, Kamal MAM, Latta L, Loretz B, Hirsch AKH, Lee S, Lehr CM. Tobramycin crosslinking improves the colloidal stability of arginine chitosan biodynamers for safe and efficient siRNA delivery. Int J Biol Macromol 2025; 311:143420. [PMID: 40274164 DOI: 10.1016/j.ijbiomac.2025.143420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
We previously reported proteoid biodynamers to form dynamic nanocomplexes (dynaplexes, DPs) with siRNA and their efficient transfection via dynamic responsive changes in endosomal environments. However, their limited colloidal stability requires chemical crosslinking, which may cause toxicity. To address these limitations, we designed biodynamers using positively charged aldehyde chitosan (ACh) as the backbone, which was functionalized with arginine hydrazide (Arg) and/or tobramycin (Tob) to create either Arg-ACh, Tob-ACh or Arg/Tob-ACh, respectively. While the additional positive charges introduced by Arg improved the siRNA complexation, the multiple amine groups in Tob acted as internal crosslinkers. Additionally, the resulting siRNA-loaded DPs were coated with hyaluronic acid (HA), which further enhanced colloidal stability. Compared to proteoid biodynamers, these novel functionalized chitosan biodynamers provided adequate gene silencing efficiency without the need for potentially harmful additional crosslinkers.
Collapse
Affiliation(s)
- Yun Liu
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany
| | - Achim Biesel
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany
| | - Mohamed A M Kamal
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany
| | - Lorenz Latta
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany; Department of Drug Design and Optimisation, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Sangeun Lee
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, PharmaScienceHub (PSH), Saarbrücken, Germany.
| |
Collapse
|
2
|
Nguyen TD, Lee JS. Dynamic Bonds in Biopolymers: Enhancing Performance and Properties. Polymers (Basel) 2025; 17:457. [PMID: 40006119 PMCID: PMC11860009 DOI: 10.3390/polym17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
As the demand for polymer materials increases, conventional petroleum-based synthetic polymers face several significant challenges, including raw material depletion, environmental issues, and the potential for biotoxicity in biological applications. In response, bio-based polymers derived from natural sources, such as cellulose, alginate, chitosan, and gelatin, have garnered attention due to their advantages of biocompatibility and biodegradability. However, these polymers often suffer from poor physical stability due to the high density of hydrogen bonds and the large structure of pyranose rings. This review explores the potential of incorporating dynamic covalent bonds into biopolymers to overcome these limitations. The chemical structures of biopolymers contain numerous functional groups that can serve as anchoring sites for dynamic bonds, thereby enhancing the mechanical properties and overall stability of the polymer network. The review discusses the performance improvements achievable through dynamic covalent bonds and examines the future potential of this technology to enhance the physical properties of biopolymers and expand their applicability in biological fields.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
3
|
Hu G, Zhou Z, Tang G, Liu Y, Zhang X, Huang Y, Yan G, Xiao J, Yan W, Li J, Cao Y. Prodrug Self-Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407480. [PMID: 39723694 DOI: 10.1002/smll.202407480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions. The results showed that pH of 7 and temperature of 35 °C are the optimal conditions for the formation of the prodrug self-assemblies with the highest self-assembly rates. The prepared prodrug self-assemblies are spherical nanoparticles with average particle sizes of 100-200 nm, almost no volatilization, and high surface activity and stability, and can respond to acidic and redox microenvironments to release PVAs. The prodrug self-assemblies showed synergistic antimicrobial activities against Sclerotinia sclerotiorum and Penicillium digitatum, and good biological safety to plants. Therefore, these findings have important implications for the efficient utilization of PVAs in agriculture, ensuring the safety of the ecological environment and realizing the sustainable development of agriculture.
Collapse
Affiliation(s)
- Gaohua Hu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianhua Xiao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
4
|
Afari MNK, Heikinmäki N, Virta P, Lönnberg T. The Impact of Secondary Structure on the Base-Filling of N-Methoxy-1,3-Oxazinane (MOANA) and N-Methoxy-1,3-Oxazolidine Glycol Nucleic Acid (MOGNA) Oligonucleotides. Chembiochem 2025; 26:e202400666. [PMID: 39243158 PMCID: PMC11727013 DOI: 10.1002/cbic.202400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Various single-stranded and hairpin-forming DNA and 2'-O-methyl-RNA oligonucleotides bearing a single (2R,3S)-4-(methoxyamino)butane-1,2,3-triol residue esterified from either O1 and O2 or O1 and O3 were synthesized. Incubation of these oligonucleotides with equimolar mixtures of formylmethyl derivatives of the canonical nucleobases and 2-methylbenzimidazole under mildly acidic conditions revealed base-filling of the modified site to be strongly favored by base stacking of a double-helix, especially an A-type one. In 2'-O-methyl-RNA hairpin oligonucleotides, base-filling of the (2R,3S)-4-(methoxyamino)butane-1,2,3-triol residue with nucleobase aldehydes followed the rules of Watson-Crick base pairing, thymine being the only exception. In single-stranded oligonucleotides or the Hoogsteen strand of triple helices, both the yield and selectivity of base-filling were much more modest.
Collapse
Affiliation(s)
- Mark N. K. Afari
- Department of ChemistryUniversity of TurkuHenrikinkatu 220500TurkuFinland
| | - Ninna Heikinmäki
- Department of ChemistryUniversity of TurkuHenrikinkatu 220500TurkuFinland
| | - Pasi Virta
- Department of ChemistryUniversity of TurkuHenrikinkatu 220500TurkuFinland
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of TurkuHenrikinkatu 220500TurkuFinland
| |
Collapse
|
5
|
Zeroug-Metz L, Lee S. Biodynamers: applications of dynamic covalent chemistry in single-chain polymer nanoparticles. Drug Deliv Transl Res 2024; 14:3599-3607. [PMID: 39009930 PMCID: PMC11499429 DOI: 10.1007/s13346-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
Collapse
Affiliation(s)
- Lena Zeroug-Metz
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany
| | - Sangeun Lee
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
Karalius A, Qi Y, Ayinla M, Szabó Z, Ramström O. Interdependent Dynamic Nitroaldol and Boronic Ester Reactions for Complex Dynamers of Different Topologies. Chemistry 2024; 30:e202402409. [PMID: 39183180 DOI: 10.1002/chem.202402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Complex dynamic systems displaying interdependency between nitroaldol and boronic ester reactions have been demonstrated. Nitroalkane-1,3-diols, generated by the nitroaldol reaction, were susceptible to ester formation with different boronic acids in aprotic solvents, whereas hydrolysis of the esters occurred in the presence of water. The boronic ester formation led to significant stabilization of the nitroaldol adducts under basic conditions. The use of bifunctional building blocks was furthermore established, allowing for main chain nitroaldol-boronate dynamers as well as complex network dynamers with distinct topologies. The shape and rigidity of the resulting dynamers showed an apparent dependency on the configuration of the boronic acids.
Collapse
Affiliation(s)
- Antanas Karalius
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Zoltán Szabó
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
7
|
Gahlot S, Schmitt JL, Chevalier A, Villa M, Roy M, Ceroni P, Lehn JM, Gingras M. "The Sulfur Dance" Around Arenes and Heteroarenes - the Reversible Nature of Nucleophilic Aromatic Substitutions. Chemistry 2024; 30:e202400231. [PMID: 38289151 DOI: 10.1002/chem.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SNAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SNAr is confirmed by three methods: a convergence of the products distribution in reversible SNAr systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SNAr in aromatic chemistry and in DCC.
Collapse
Affiliation(s)
- Sapna Gahlot
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Aline Chevalier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marco Villa
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, 75005, Paris, France
| | - Paola Ceroni
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| |
Collapse
|
8
|
Afari MNK, Lönnberg T. Base-Filling in Double-Helical Nucleic Acids. ChemistryOpen 2024; 13:e202400088. [PMID: 38709096 PMCID: PMC11467735 DOI: 10.1002/open.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Base-filling, i. e., post-synthetic furnishing of an oligonucleotide scaffold with base moieties or their analogues, is an interesting alternative to the conventional approach of sequential coupling of building blocks (modified or otherwise). Reversible attachment of the base moieties is particularly attractive as it allows the use of dynamic combinatorial chemistry and usually leads to higher fidelity. This concept article summarizes the various backbones and coupling reactions used for base-filling over the past fifteen years, discusses the impact of base stacking and pairing on efficiency and fidelity and highlights potential and realized applications.
Collapse
Affiliation(s)
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of TurkuHenrikinkatu 220500TurkuFinland
| |
Collapse
|
9
|
Kriebisch CME, Burger L, Zozulia O, Stasi M, Floroni A, Braun D, Gerland U, Boekhoven J. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat Chem 2024; 16:1240-1249. [PMID: 39014158 PMCID: PMC11321992 DOI: 10.1038/s41557-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
One of science's greatest challenges is determining how life can spontaneously emerge from a mixture of molecules. A complicating factor is that life and its molecules are inherently unstable-RNA and proteins are prone to hydrolysis and denaturation. For the de novo synthesis of life or to better understand its emergence at its origin, selection mechanisms are needed for unstable molecules. Here we present a chemically fuelled dynamic combinatorial library to model RNA oligomerization and deoligomerization and shine new light on selection and purification mechanisms under kinetic control. In the experiments, oligomers can only be sustained by continuous production. Hybridization is a powerful tool for selecting unstable molecules, offering feedback on oligomerization and deoligomerization rates. Moreover, we find that templation can be used to purify libraries of oligomers. In addition, template-assisted formation of oligomers within coacervate-based protocells changes its compartment's physical properties, such as their ability to fuse. Such reciprocal coupling between oligomer production and physical properties is a key step towards synthetic life.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Ludwig Burger
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Oleksii Zozulia
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Alexander Floroni
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Job Boekhoven
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany.
| |
Collapse
|
10
|
Kamal MAM, Bassil J, Loretz B, Hirsch AKH, Lee S, Lehr CM. Arg-biodynamers as antibiotic potentiators through interacting with Gram-negative outer membrane lipopolysaccharides. Eur J Pharm Biopharm 2024; 200:114336. [PMID: 38795784 DOI: 10.1016/j.ejpb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Antimicrobial resistance is becoming more prominent day after day due to a number of mechanisms by microbes, especially the sophisticated biological barriers of bacteria, especially in Gram-negatives. There, the lipopolysaccharides (LPS) layer is a unique component of the outer leaflet of the outer membrane which is highly impermeable and prevents antibiotics from passing passively into the intracellular compartments. Biodynamers, a novel class of dynamically bio-responsive polymers, may open new perspectives to overcome this particular barrier by accommodating various secondary structures and form supramolecular structures in such bacterial microenvironments. Generally, bio-responsive polymers are not only candidates as bio-active molecules against bacteria but also carriers via their interactions with the cargo. Based on their dynamicity, design flexibility, biodegradability, biocompatibility, and pH-responsiveness, we investigated the potential of two peptide-based biodynamers for improving antimicrobial drug delivery. By a range of experimental methods, we discovered a greater affinity of Arg-biodynamers for bacterial membranes than for mammalian membranes as well as an enhanced LPS targeting on the bacterial membrane, opening perspectives for enhancing the delivery of antimicrobials across the Gram-negative bacterial cell envelope. This could be explained by the change of the secondary structure of Arg-biodynamers into a predominant β-sheet character in the LPS microenvironment, by contrast to the α-helical structure typically observed for most lipid membrane-permeabilizing peptides. In comparison to poly-L-arginine, the intrinsic antibacterial activity of Arg-biodynamers was nearly unchanged, but its toxicity against mammalian cells was >128-fold reduced. When used in bacterio as an antibiotic potentiator, however, Arg-biodynamers improved the minimum inhibitory concentration (MIC) against Escherichia coli by 32 times compared to colistin alone. Similar effect has also been observed in two stains of Pseudomonas aeruginosa. Arg-biodynamers may therefore represent an interesting option as an adjuvant for antibiotics against Gram-negative bacteria and to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed A M Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Justine Bassil
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany
| | - Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.
| |
Collapse
|
11
|
Liu Y, Hamm T, Eichinger TR, Kamm W, Wieland HA, Loretz B, Hirsch AKH, Lee S, Lehr CM. Biodynamer Nano-Complexes and -Emulsions for Peptide and Protein Drug Delivery. Int J Nanomedicine 2024; 19:4429-4449. [PMID: 38784761 PMCID: PMC11114140 DOI: 10.2147/ijn.s448578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Background Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.
Collapse
Affiliation(s)
- Yun Liu
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Timo Hamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Thomas Ralf Eichinger
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Walter Kamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Heike Andrea Wieland
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Brigitta Loretz
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimisation, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Sangeun Lee
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
12
|
Roy N, Schädler V, Lehn JM. Supramolecular Polymers: Inherently Dynamic Materials. Acc Chem Res 2024; 57:349-361. [PMID: 38277510 DOI: 10.1021/acs.accounts.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
ConspectusSince its inception in the early 1990s, the field of supramolecular polymers (SPs) has grown into an interdisciplinary field of chemistry. It expanded from the self-assembly of molecular building blocks based on H-bonding into the realm of complex dynamic material, encompassing both supramolecular noncovalent and molecular covalent regimes. It has paved the path for a more diverse field of research into a new class of polymeric materials, coined dynamic polymers or dynamers. Dynamers are bringing a paradigm shift not only in material science research but also in a broad field of applications from self-healing materials to biocompatible polymeric materials. The present Account presents the evolution of supramolecular polymer chemistry from simple linear polymeric chains to complex dynamic polymers imparting novel functional properties, such as component exchange and self-healing. We explore how SPs led to materials of increasing complexity, starting from simple main-chain polymers to the formation of more complex columnar SPs and lateral SPs. The field has experienced three partially overlapping periods. The main goal was first the generation of polymeric entities from various molecular components connected through noncovalent interactions, especially complementary hydrogen bonding recognition patterns as well as stacked columnar SPs. Thereafter, attention was directed in parallel to the exploration of the properties of SPs and their applications as novel materials. In a third period, the dynamic properties of supramolecular polymers were explored, taking advantage of the lability of noncovalent interactions to perform component rearrangement and exchange. We illustrate how the field of SPs has emerged as a multidisciplinary field of chemistry, biology, and materials science with selected examples from the literature. The SPs, specifically dynamic owing to their inherent reversibility, also pave the path to easier sorting and recycling, as desired in the plastics industry.One of the biggest challenges that the plastics industry is facing today is the end-of-life fate of plastics. Plastics that cannot be recycled end up in landfills or are improperly disposed of in rivers and oceans, polluting and damaging the environmental balance irreversibly. Dynamic polymeric materials presenting inherent dynamicity could pave the way for addressing this long-standing challenge of nonrecyclability of plastics. Dynamers formed via noncovalent interactions or reversible covalent bonds can be broken into components that could be easily recycled and reused. Therefore, dynamers could play a pivotal role toward closing the loop for the plastics industry and provide a solution to an elusive circular economy with plastics being an integral part.
Collapse
Affiliation(s)
- Nabarun Roy
- BASF Polyurethanes GmbH, 60 Elastogranstrasse, 49448, Lemförde, Germany
| | - Volker Schädler
- BASF Polyurethanes GmbH, 60 Elastogranstrasse, 49448, Lemförde, Germany
| | - Jean-Marie Lehn
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
13
|
Liu Y, Ashmawy S, Latta L, Weiss AV, Kiefer AF, Nasr S, Loretz B, Hirsch AKH, Lee S, Lehr CM. pH-Responsive Dynaplexes as Potent Apoptosis Inductors by Intracellular Delivery of Survivin siRNA. Biomacromolecules 2023; 24:3742-3754. [PMID: 37523746 DOI: 10.1021/acs.biomac.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Gene knockdown by siRNA offers an unrestricted choice of targets and specificity based on the principle of complementary Watson-Crick base pairing with mRNA. However, the negative charge, large molecular size, and susceptibility to enzymatic degradation of siRNA impede its successful transfection, hence limiting its potential for therapeutic use. The development of efficient and safe siRNA transfection agents is, therefore, critical for siRNA-based therapy. Herein, we developed a protein-based biodynamic polymer (biodynamer) that showed potential as a siRNA transfection vector, owing to its excellent biocompatibility, easy tunability, and dynamic polymerization under acidic environments. The positively charged biodynamers formed stable dynamic nanocomplexes (XL-DPs, hydrodynamic diameter of approximately 104 nm) with siRNA via electrostatic interactions and chemical cross-linking. As a proof of concept, the optimized XL-DPs were stable in physiological conditions with serum proteins and demonstrated significant pH-dependent size change and degradability, as well as siRNA release capability. The minimal cytotoxicity and excellent cellular uptake of XL-DPs effectively supported the intracellular delivery of siRNA. Our study demonstrated that the XL-DPs in survivin siRNA delivery enabled potent knockdown of survivin mRNA and induced notable apoptosis of carcinoma cells (2.2 times higher than a lipid-based transfection agent, Lipofectamine 2000). These findings suggested that our XL-DPs hold immense potential as a promising platform for siRNA delivery and can be considered strong candidates in the advancement of next-generation transfection agents.
Collapse
Affiliation(s)
- Yun Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Salma Ashmawy
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | - Alexander F Kiefer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Sarah Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Qi Y, Ramström O. Polymerization, Stimuli-induced Depolymerization, and Precipitation-driven Macrocyclization in a Nitroaldol Reaction System. Chemistry 2022; 28:e202201863. [PMID: 35971799 PMCID: PMC9826525 DOI: 10.1002/chem.202201863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
| | - Olof Ramström
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus UniversitySE-39182KalmarSweden
| |
Collapse
|
15
|
Fluorescent Dynamic Covalent Polymers for DNA Complexation and Templated Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196648. [PMID: 36235185 PMCID: PMC9570939 DOI: 10.3390/molecules27196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores. Two types of fluorescent building blocks bearing neutral or cationic side groups on the fluorene moiety are considered in order to assess the role of the number of cationic units on complexation with DNA. The (chir)optical properties of the building blocks, the DCPs, and their complexes with several types of DNA are explored, providing details on the formation of supramolecular complexes and on their stability in aqueous solutions. The DNA-templated formation of DCPs is demonstrated, which provides new perspectives on the assembly of fluorescent DCP based on the nucleic acid structure.
Collapse
|
16
|
Zagiel B, Peker T, Marquant R, Cazals G, Webb G, Miclet E, Bich C, Sachon E, Moumné R. Dynamic Amino Acid Side‐Chains Grafting on Folded Peptide Backbone**. Chemistry 2022; 28:e202200454. [DOI: 10.1002/chem.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Zagiel
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Taleen Peker
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Rodrigue Marquant
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Guillaume Cazals
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Gabrielle Webb
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Emeric Miclet
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Emmanuelle Sachon
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
- MS3 U platform UFR 926 UFR 927 Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Roba Moumné
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| |
Collapse
|
17
|
Caillaud K, Ladavière C. Water‐soluble (poly)acylhydrazones: Syntheses and Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kilian Caillaud
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| | - Catherine Ladavière
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| |
Collapse
|
18
|
Zong Y, Xu YY, Wu Y, Liu Y, Li Q, Lin F, Yu SB, Wang H, Zhou W, Sun XW, Zhang DW, Li ZT. Porous dynamic covalent polymers as promising reversal agents for heparin anticoagulants. J Mater Chem B 2022; 10:3268-3276. [PMID: 35357392 DOI: 10.1039/d2tb00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparins are natural and partially degraded polyelectrolytes that consist of sulfated polysaccharide backbones. However, as clinically used anticoagulants, heparins are associated with clinical bleeding risks and thus require rapid neutralization. Protamine sulfate is the only clinically approved antidote for unfractionated heparin (UFH), which not only may cause severe adverse reactions in patients, but also is only partially effective against low molecular weight heparins (LMWHs). We here present the facile synthesis of four porous multicationic dynamic covalent polymers (DCPs) from the condensation of tritopic aldehyde and acylhydrazine precursors. We show that, as new water-soluble polymeric antidotes, the new DCPs can effectively include both UFH and LMWHs and thus reverse their anticoagulating activity, which is confirmed by the activated partial thromboplastin time and thromboelastographic assays as well as mouse tail transection assay (bleeding model). The neutralization activities of two of the DCPs were found to be overall superior to that of protamine and have wider concentration windows and good biocompatibility. This pore-inclusion neutralization strategy paves the way for the development of water-soluble polymers as universal heparin binding agents.
Collapse
Affiliation(s)
- Yang Zong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xing-Wen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
19
|
Heras-Mozos R, Gavara R, Hernández-Muñoz P. Chitosan films as pH-responsive sustained release systems of naturally occurring antifungal volatile compounds. Carbohydr Polym 2022; 283:119137. [DOI: 10.1016/j.carbpol.2022.119137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
|
20
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
21
|
Baudis S, Behl M. High-Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromol Rapid Commun 2021; 43:e2100400. [PMID: 34460146 DOI: 10.1002/marc.202100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Indexed: 01/22/2023]
Abstract
High-throughput (HT) development of new multifunctional polymers is accomplished by the combination of different HT tools established in polymer sciences in the last decade. Important advances are robotic/HT synthesis of polymer libraries, the HT characterization of polymers, and the application of spatially resolved polymer library formats, explicitly microarray and gradient libraries. HT polymer synthesis enables the generation of material libraries with combinatorial design motifs. Polymer composition, molecular weight, macromolecular architecture, etc. may be varied in a systematic, fine-graded manner to obtain libraries with high chemical diversity and sufficient compositional resolution as model systems for the screening of these materials for the functions aimed. HT characterization allows a fast assessment of complementary properties, which are employed to decipher quantitative structure-properties relationships. Moreover, these methods facilitate the HT determination of important surface parameters by spatially resolved characterization methods, including time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Here current methods for the high-throughput robotic synthesis of multifunctional polymers as well as their characterization are presented and advantages as well as present limitations are discussed.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
22
|
Schuster GB, Cafferty BJ, Karunakaran SC, Hud NV. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J Am Chem Soc 2021; 143:9279-9296. [PMID: 34152760 DOI: 10.1021/jacs.0c13081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothesis that RNA and DNA are products of chemical and biological evolution has motivated our search for alternative nucleic acids that may have come earlier in the emergence of life-polymers that possess a proclivity for covalent and non-covalent self-assembly not exhibited by RNA. Our investigations have revealed a small set of candidate ancestral nucleobases that self-assemble into hexameric rosettes that stack in water to form long, twisted, rigid supramolecular polymers. These structures exhibit properties that provide robust solutions to long-standing problems that have stymied the search for a prebiotic synthesis of nucleic acids. Moreover, their examination by experimental and computational methods provides insight into the chemical and physical principles that govern a particular class of water-soluble one-dimensional supramolecular polymers. In addition to efficient self-assembly, their lengths and polydispersity are modulated by a wide variety of positively charged, planar compounds; their assembly and disassembly are controlled over an exceedingly narrow pH range; they exhibit spontaneous breaking of symmetry; and homochirality emerges through non-covalent cross-linking during hydrogel formation. Some of these candidate ancestral nucleobases spontaneously form glycosidic bonds with ribose and other sugars, and, most significantly, functionalized forms of these heterocycles form supramolecular structures and covalent polymers under plausibly prebiotic conditions. This Perspective recounts a journey of discovery that continues to reveal attractive answers to questions concerning the origins of life and to uncover the principles that control the structure and properties of water-soluble supramolecular polymers.
Collapse
Affiliation(s)
- Gary B Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Brian J Cafferty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
24
|
Zhuo Y, Wang X, Chen S, Chen H, Ouyang J, Yang L, Wang X, You L, Utz M, Tian Z, Cao X. Quantification and Prediction of Imine Formation Kinetics in Aqueous Solution by Microfluidic NMR Spectroscopy. Chemistry 2021; 27:9508-9513. [PMID: 33899293 DOI: 10.1002/chem.202100874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Quantitatively predicting the reactivity of dynamic covalent reaction is essential to understand and rationally design complex structures and reaction networks. Herein, the reactivity of aldehydes and amines in various rapid imine formation in aqueous solution by microfluidic NMR spectroscopy was quantified. Investigation of reaction kinetics allowed to quantify the forward rate constants k+ by an empirical equation, of which three independent parameters were introduced as reactivity parameters of aldehydes (SE , E) and amines (N). Furthermore, these reactivity parameters were successfully used to predict the unknown forward rate constants of imine formation. Finally, two competitive reaction networks were rationally designed based on the proposed reactivity parameters. Our work has demonstrated the capability of microfluidic NMR spectroscopy in quantifying the kinetics of label-free chemical reactions, especially rapid reactions that are complete in minutes.
Collapse
Affiliation(s)
- Youzhen Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiuxiu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Si Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Jie Ouyang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
25
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021; 60:12911-12917. [DOI: 10.1002/anie.202101378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
26
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary-Bobo M, Bettache N, Ulrich S. Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021; 60:5783-5787. [PMID: 33289957 DOI: 10.1002/anie.202014066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Collapse
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
27
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary‐Bobo M, Bettache N, Ulrich S. Cell‐Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self‐Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Department of Biochemistry Medical Research Institute University of Alexandria 21561 Alexandria Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| |
Collapse
|
28
|
Zhang Y, Zhang Y, Cui H, Barboiu M, Chen J. Dynameric Collagen Self-Healing Membranes with High Mechanical Strength for Effective Cell Growth Applications. Chemistry 2020; 26:16994-16999. [PMID: 32761991 DOI: 10.1002/chem.202003269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 01/03/2023]
Abstract
The fabrication of biocompatible adaptive materials with high stiffness and self-healing properties for medical applications is a challenging endeavor. Collagen is a major extracellular matrix component acting as a substrate for cell adhesion and migration. Dynamers are constitutional polymers whose monomeric components are linked through reversible bonds, able to modify their constitution through reversible exchange of their components. In the current work, we demonstrate that the rational combination of collagen and dynameric networks connected with reversible covalent imine bonds is a very important and previously unreported strategy to provide biocompatible membranes with self-healing ability and excellent mechanical strength. The key challenge in the construction of such membranes is the required adaptive interaction between collagen chains and the dynamic cross-linkers, preventing the formation of defects. For example, by varying structure and molecular lengths of the dynamers, the tensile strength of the dynameric membranes reach over 80 MPa, more than 400 % higher than that observed for the reference collagen membrane, and the highest value for break strain found, was 19 %. The self-healing properties were observed when reconnecting two membrane pieces or even from crushed status of the membranes. Moreover, both MTT assay and confocal laser scanning microscopy method demonstrated the good biocompatibility of the collagen membranes, leaving more than 90 % viability for NIH 3T3 cells after 24 h co-culture.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ye Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Han Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
29
|
Schaufelberger F, Seigel K, Ramström O. Hydrogen-Bond Catalysis of Imine Exchange in Dynamic Covalent Systems. Chemistry 2020; 26:15581-15588. [PMID: 32427370 DOI: 10.1002/chem.202001666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/28/2022]
Abstract
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Karolina Seigel
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden.,Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA.,Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
30
|
Accardo JV, McClure ER, Mosquera MA, Kalow JA. Using Visible Light to Tune Boronic Acid–Ester Equilibria. J Am Chem Soc 2020; 142:19969-19979. [DOI: 10.1021/jacs.0c08551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joseph V. Accardo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily R. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Martín A. Mosquera
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Larsen D, Beeren SR. Tuning the Outcome of Enzyme-Mediated Dynamic Cyclodextrin Libraries to Enhance Template Effects. Chemistry 2020; 26:11032-11038. [PMID: 32445426 DOI: 10.1002/chem.202001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Enzyme-mediated dynamic combinatorial chemistry combines the concept of thermodynamically controlled covalent self-assembly with the inherent biological relevance of enzymatic transformations. A system of interconverting cyclodextrins has been explored, in which the glycosidic linkage is rendered dynamic by the action of cyclodextrin glucanotransferase (CGTase). External factors, such as pH, temperature, solvent, and salinity are reported to modulate the composition of the dynamic cyclodextrin library. Dynamic libraries of cyclodextrins (CDs) could be obtained in wide ranges of pH (5.0-9.0), temperature (5-37 °C), and salinity (up to 7.5 m NaNO3 ), and with high organic solvent content (50 % by volume of ethanol), showing that enzyme-mediated dynamic systems can be robust and not limited to physiological conditions. Furthermore, it is demonstrated how strategic choice of reaction conditions can enhance template effects, in this case, to achieve highly selective production of α-CD, an otherwise challenging target due to competition from the structurally similar β-CD.
Collapse
Affiliation(s)
- Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Yang H, Ghiassinejad S, van Ruymbeke E, Fustin CA. Tunable Interpenetrating Polymer Network Hydrogels Based on Dynamic Covalent Bonds and Metal–Ligand Bonds. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Yang
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Sina Ghiassinejad
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
|
34
|
Jiao T, Wu G, Zhang Y, Shen L, Lei Y, Wang C, Fahrenbach AC, Li H. Self‐Assembly in Water with N‐Substituted Imines. Angew Chem Int Ed Engl 2020; 59:18350-18367. [DOI: 10.1002/anie.201910739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Libo Shen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | | | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
35
|
Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Zhang H, Zeng H, Priimagi A, Ikkala O. Viewpoint: Pavlovian Materials-Functional Biomimetics Inspired by Classical Conditioning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906619. [PMID: 32003096 DOI: 10.1002/adma.201906619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Herein, it is discussed whether the complex biological concepts of (associative) learning can inspire responsive artificial materials. It is argued that classical conditioning, being one of the most elementary forms of learning, inspires algorithmic realizations in synthetic materials, to allow stimuli-responsive materials that learn to respond to a new stimulus, to which they are originally insensitive. Two synthetic model systems coined as "Pavlovian materials" are described, whose stimuli-responsiveness algorithmically mimics programmable associative learning, inspired by classical conditioning. The concepts minimally need a stimulus-triggerable memory, in addition to two stimuli, i.e., the unconditioned and the originally neutral stimuli. Importantly, the concept differs conceptually from the classic stimuli-responsive and shape-memory materials, as, upon association, Pavlovian materials obtain a given response using a new stimulus (the originally neutral one); i.e., the system evolves to a new state. This also enables the functionality to be described by a logic diagram. Ample room for generalization to different stimuli and memory combinations is foreseen, and opportunities to develop future adaptive materials with ever-more intelligent functions are expected.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI 02150, Espoo, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI 02150, Espoo, Finland
| |
Collapse
|
37
|
Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O. Dynamic Covalent Polymers for Biomedical Applications. MATERIALS CHEMISTRY FRONTIERS 2020; 4:489-506. [PMID: 33791102 PMCID: PMC8009197 DOI: 10.1039/c9qm00598f] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université of Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
- Department of Chemical and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
38
|
Zhang Y, Barboiu M, Ramström O, Chen J. Surface-Directed Selection of Dynamic Constitutional Frameworks as an Optimized Microenvironment for Controlled Enzyme Activation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P.R. China
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
39
|
Kandrnálová M, Kokan Z, Havel V, Nečas M, Šindelář V. Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Markéta Kandrnálová
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Zoran Kokan
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Václav Havel
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Marek Nečas
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
40
|
Kandrnálová M, Kokan Z, Havel V, Nečas M, Šindelář V. Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis. Angew Chem Int Ed Engl 2019; 58:18182-18185. [PMID: 31587433 DOI: 10.1002/anie.201908953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Reversible covalent bonds play a significant role in achieving the high-yielding synthesis of mechanically interlocked molecules. Still, only a handful of such bonds have been successfully employed in synthetic procedures. Herein, we introduce a novel approach for the fast and simple preparation of interlocked molecules, combining the dynamic bond character of bis(acyloxy)iodate(I) anions with macrocyclic bambusuril anion receptors. The proof of principle was demonstrated on rotaxane synthesis, with near-quantitative yields observed in both the classical and "in situ" approach. The rotaxane formation was confirmed in the solid-state and solution by the X-ray and NMR studies. Our novel approach could be utilized in the fields of dynamic combinatorial chemistry, supramolecular polymers, or molecular machines, as well inspire further research on molecules that exhibit dynamic behavior, but owing to their high reactivity, have not been considered as constituents of more elaborate supramolecular structures.
Collapse
Affiliation(s)
- Markéta Kandrnálová
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zoran Kokan
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Václav Havel
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marek Nečas
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
41
|
Shy AN, Kim BJ, Xu B. Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. MATTER 2019; 1:1127-1147. [PMID: 32104791 PMCID: PMC7043404 DOI: 10.1016/j.matt.2019.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enzymatic noncovalent synthesis (ENS), a process that integrates enzymatic reactions and supramolecular (i.e., noncovalent) interactions for spatial organization of higher-order molecular assemblies, represents an emerging research area at the interface of physical and biological sciences. This review provides a few representative examples of ENS in the context of supramolecular soft matter. After a brief comparison of enzymatic covalent and noncovalent synthesis, we discuss ENS of man-made molecules for generating supramolecular nanostructures (e.g., supramolecular hydrogels) in cell-free conditions. Then, we introduce ENS in a cellular environment. To illustrate the unique merits for applications, we discuss intercellular, peri- or intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and targeted delivery. Finally, we provide an outlook on the potential of ENS. We hope that this review offers a new perspective for scientists who develop supramolecular soft matter to address societal needs at various frontiers.
Collapse
Affiliation(s)
- Adrianna N. Shy
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Beom Jin Kim
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
42
|
Hebel M, Riegger A, Zegota MM, Kizilsavas G, Gačanin J, Pieszka M, Lückerath T, Coelho JAS, Wagner M, Gois PMP, Ng DYW, Weil T. Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. J Am Chem Soc 2019; 141:14026-14031. [PMID: 31436970 PMCID: PMC6743217 DOI: 10.1021/jacs.9b03107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/25/2022]
Abstract
The development of a synthetic code that enables a sequence programmable feature like DNA represents a key aspect toward intelligent molecular systems. We developed herein the well-known dynamic covalent interaction between boronic acids (BAs) and catechols (CAs) into synthetic nucleobase analogs. Along a defined peptide backbone, BA or CA residues are arranged to enable sequence recognition to their complementary strand. Dynamic strand displacement and errors were elucidated thermodynamically to show that sequences are able to specifically select their partners. Unlike DNA, the pH dependency of BA/CA binding enables the dehybridization of complementary strands at pH 5.0. In addition, we demonstrate the sequence recognition at the macromolecular level by conjugating the cytochrome c protein to a complementary polyethylene glycol chain in a site-directed fashion.
Collapse
Affiliation(s)
- Marco Hebel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Riegger
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maksymilian M. Zegota
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gönül Kizilsavas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jasmina Gačanin
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michaela Pieszka
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thorsten Lückerath
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jaime A. S. Coelho
- Research Institute
for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pedro M. P. Gois
- Research Institute
for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic
Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
43
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019; 58:9522-9526. [PMID: 31168906 PMCID: PMC6618005 DOI: 10.1002/anie.201905003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cyclic oligochalcogenides (COCs) are emerging as promising systems to penetrate cells. Clearly better than and different to the reported diselenolanes and epidithiodiketopiperazines, we introduce the benzopolysulfanes (BPS), which show efficient delivery, insensitivity to inhibitors of endocytosis, and compatibility with substrates as large as proteins. This high activity coincides with high reactivity, selectively toward thiols, exceeding exchange rates of disulfides under tension. The result is a dynamic-covalent network of extreme sulfur species, including cyclic oligomers, from dimers to heptamers, with up to nineteen sulfurs in the ring. Selection from this unfolding adaptive network then yields the reactivities and selectivities needed to access new uptake pathways. Contrary to other COCs, BPS show high retention on thiol affinity columns. The identification of new modes of cell penetration is important because they promise new solutions to challenges in delivery and beyond.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: School of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: SyMMES, UMR 5819CEA38054GrenobleFrance
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of BaselBaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
44
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell‐Penetrating Dynamic‐Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: School of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: SyMMES, UMR 5819CEA 38054 Grenoble France
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of Basel Basel Switzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
45
|
Bartold K, Pietrzyk-Le A, D'Souza F, Kutner W. Oligonucleotide Analogs and Mimics for Sensing Macromolecular Biocompounds. Trends Biotechnol 2019; 37:1051-1062. [PMID: 31109738 DOI: 10.1016/j.tibtech.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/04/2023]
Abstract
Living organisms create life-sustaining macromolecular biocompounds including biopolymers. Artificial polymers can selectively recognize biocompounds and are more resistant to harsh physical, chemical, and physiological conditions than biopolymers are. Due to recognition at a molecular level, molecularly imprinted polymers (MIPs) provide powerful tools to correlate structure with biological functionality and are often used to build next-generation chemosensors. We envision an increasing emergence of nucleic acid analogs (NAAs) or biorelevant monomers built into nature-mimicking polymers. For example, if nucleobases bearing monomers arranged by a complementary template are polymerized to form NAAs, the resulting MIPs will open up novel perspectives for synthesizing NAAs. Despite their usefulness, it is still challenging to use MIPs to devise adaptive biomaterials and to implement them in point-of-care testing.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, 1155, Union, Circle, #305070, TX 76203-5017, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
46
|
Ding S, Che Y, Yu Y, Liu L, Jia D, Zhao J. Interactive Aggregation-Induced Emission Systems Controlled by Dynamic Covalent Chemistry. J Org Chem 2019; 84:6752-6756. [DOI: 10.1021/acs.joc.9b00495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Booth R, Insua I, Bhak G, Montenegro J. Self-assembled micro-fibres by oxime connection of linear peptide amphiphiles. Org Biomol Chem 2019; 17:1984-1991. [PMID: 30387798 DOI: 10.1039/c8ob02243g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Linear peptide amphiphiles are excellent biocompatible scaffolds for the hierarchical self-assembly of one-dimensional nano-structures in aqueous media. However, their structural exploration and screening of self-assembling properties are often limited by time-consuming synthesis and purification steps. We here describe the application of an oxime bond as a powerful synthetic tool towards the conjugation of peptide heads bearing a hydroxylamine group with hydrophobic aldehyde tails. This methodology allowed the quick preparation of a small library of oxime-connected peptide amphiphiles, whose supramolecular screening revealed nano-to-micro-fibrillation with dependency on their chemical structure. These results demonstrate the simplicity and the synthetic potential of the oxime conjugation for the preparation of peptide amphiphiles with improved self-assembling capabilities.
Collapse
Affiliation(s)
- Richard Booth
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
48
|
Abstract
Delivery remains a major obstacle restricting the potential action of small molecular drugs as well as novel biologics which cannot readily enter cells without the help of a vector. A successful active delivery process involves three steps: (a) tagging the drug with a vector, (b) effective trafficking of this [drug-vector] conjugate through biological barriers, and finally (c) controlled drug release. While covalent bond formation and/or supramolecular association is involved in the making of the [drug-vector] conjugate, the final step requires precisely a controlled dissociation in order to trigger drug release. Therefore, in pursuit of smart, effective, and nontoxic delivery systems, it has become widely recognized that control over dynamic self-assembly could unleash the efficacy of artificial vectors. In this Account, I discuss our endeavors, and those of colleagues, in the recent implementation of Dynamic Covalent Chemistry (DCvC) in delivery applications. DCvC exploits reversible covalent reactions to generate covalent systems that can self-fabricate, adapt, respond, and fall apart in a controlled fashion. A privileged set of reversible covalent reactions has emerged in the community working on delivery applications and is based on condensation reactions (imine, acylhydrazone, oxime), and disulfide and boronate ester formations. The latest developments making this chemistry particularly attractive for such a DCvC approach are discussed. The rational justifying the potential of DCvC in delivery is based on the principle that using such reversible covalent reactions afford transient [drug-vector] conjugates which form spontaneously and chemoselectively, then adapt and self-correct their structure during self-assembly and trafficking thanks to the dynamic nature of the reversible covalent bonds, and finally respond to physicochemical stimuli such as pH and redox changes, thereby enabling controlled dissociation and concomitant drug release. For these reasons, DCvC has recently emerged as a leverage tool with growing prospects for advancing toward smarter delivery systems. The implementation of DCvC can follow three approaches that are discussed herein: (1) dynamic covalent bioconjugates, involving the transient covalent conjugation with a vector, (2) dynamic covalent vectors, involving the controlled dynamic and adaptive assembly and disassembly of vectors that complex drugs through supramolecular association, and (3) dynamic covalent targeting, involving the transient chemoselective formation of covalent bonds with the constituents of cell membranes. While DCvC has already attracted interest in material sciences, the recent results described in this Account showcase the vast potential of DCvC in biological sciences, and in particular in delivery applications where self-fabricated, adaptive, and responsive devices are of utmost importance.
Collapse
Affiliation(s)
- Sébastien Ulrich
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
49
|
Orrillo AG, Escalante AM, Martinez-Amezaga M, Cabezudo I, Furlan RLE. Molecular Networks in Dynamic Multilevel Systems. Chemistry 2018; 25:1118-1127. [DOI: 10.1002/chem.201804143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Maitena Martinez-Amezaga
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| |
Collapse
|
50
|
Ailincai D, Peptanariu D, Pinteala M, Marin L. Dynamic constitutional chemistry towards efficient nonviral vectors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:635-646. [PMID: 30423749 DOI: 10.1016/j.msec.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Dynamic constitutional chemistry has been used to design nonviral vectors for gene transfection. Their design has been thought in order to fulfill ab initio the main requirements for gene therapy. As building blocks were used hyperbranched PEI as hydrophilic part and benzentrialdehyde and a diamine linear siloxane as hydrophobic part, connected through reversible imine linkages. The obtaining of the envisaged structures has been confirmed by NMR and FTIR spectroscopy. The dynamic synthesized amphiphiles proved to be able to self-assemble in nano-sized spherical entities as was demonstrated by TEM and DLS, characterized by a narrow dimensional polydispersity. Agarose gel electrophoresis proved the ability of the synthesized compounds to bind DNA, while TEM revealed the spherical morphology of the formed polyplexes. As a proof of the concept, the nonviral vectors promoted an efficient transfection on HeLa cells, demonstrating that dynamic constitutional chemistry can be an important tool in the development of this domain.
Collapse
Affiliation(s)
- Daniela Ailincai
- Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania.
| | | | | | - Luminita Marin
- Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|