1
|
Sarkar R, Bandyopadhyay A, Brahmachari G. Residue-specific protein-glycan conjugation strategies for the development of pharmaceutically promising glycoconjugate vaccines: A recent update. Carbohydr Res 2025; 552:109476. [PMID: 40188503 DOI: 10.1016/j.carres.2025.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
Covalent coupling between a carbohydrate antigen and a protein carrier leads to the formation of pharmaceutically promising glycoconjugate vaccines. Most licensed glycoconjugate vaccines are acquired by random bioconjugation of native or sized glycans with the surface-exposed amino acid residues of proteins, such as lysine, cysteine, aspartic acid, glutamic amino acid, etc. In the last two decades, considerable momentum has been gained in the glycoconjugate vaccine development by discovering several residue-specific bioconjugation strategies. As a result, glycoconjugate chemistry reaches the verge of discovering well-defined and "real" homogeneous vaccines, which may be more potent to generate antimicrobial resistance against "bad-bugs". Through this literature survey, we intend to highlight the state of the art of residue-specific bioconjugation of proteins with glycans to obtain glycoconjugate vaccines. The review will also identify a potential roadmap to address the gap and the prospects in the medicinal domain.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Muragachha Government College, Nadia, 741154, West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Chapra Government College, Nadia, 741123, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731 235, West Bengal, India.
| |
Collapse
|
2
|
Zhang L, Zheng Z, Zhang Y, Wu X, Tu Y, Liu C, Wang Z, Wang L, Yang Y, Zhang Q. Chemical Synthesis and Antigenic Evaluation of Oligosaccharides of Bordetella hinzii O-Antigen Containing Unique Amidated 2,3-Diacetamido-2,3-dideoxy-alduronic Acids. JACS AU 2025; 5:1903-1913. [PMID: 40313848 PMCID: PMC12041961 DOI: 10.1021/jacsau.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Bordetella hinzii is a zoonotic pathogen, which can cause brain abscess, pneumonia, bacteremia, and urinary tract infection. Vaccines are economical and effective means for combating infectious diseases. Herein, we present the first total synthesis of the highly functionalized mono- and oligosaccharides of B. hinzii O-antigen for vaccine development. The rare 2,3-diacetamidopyranoses were generated from 3-O-acetyl-2-nitroglycals via an organocatalyzed one-pot relay glycosylation method. The postglycosylation oxidation strategy was used to overcome the poor reactivity of 2,3-diacetamido-aldouronic acid building blocks in glycosylation reactions. Direct amidation of alduronic acid with NH3 in the late stage reduced the protecting group operation and increased the synthetic efficiency. Di-tert-butylsilylidene-directed α-galactosylation method was used to construct challenging 1,2-cis-glycosidic bond. Six oligosaccharides of B. hinzii O-antigen were obtained and further conjugated to human serum albumin for antigenicity evaluation (the sera antibodies were obtained from vaccinated mouse via inactivated B. hinzii). The terminal tetrasaccharide of B. hinzii O-antigen has been identified as a potential glycol-epitope and might be useful for vaccine development against B. hinzii.
Collapse
Affiliation(s)
- Lin Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhichao Zheng
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yumeng Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaopei Wu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuanhong Tu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Can Liu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qingju Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
- Jiangxi
Provincial Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
3
|
Gast D, Neidig S, Reindl M, Hoffmann-Röder A. Synthesis of Fluorinated Glycotope Mimetics Derived from Streptococcus pneumoniae Serotype 8 CPS. Int J Mol Sci 2025; 26:1535. [PMID: 40004000 PMCID: PMC11855009 DOI: 10.3390/ijms26041535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic vaccine candidates for cancer, HIV and bacterial infections. Despite their attractiveness, the synthesis of fluorinated oligosaccharides is still challenging, emphasizing the need for efficient protocols that allow for the site-specific incorporation of fluorine atoms (especially at late stages of the synthesis). This is particularly true for the development of fully synthetic vaccine candidates, whose (modified) carbohydrate antigen structures (glycotopes) per se comprise multistep synthesis routes. Based on a known minimal protective epitope from the capsular polysaccharide of S. pneumoniae serotype 8, a panel of six novel F-glycotope mimetics was synthesized, equipped with amine linkers for subsequent conjugation to immunogens. Next to the stepwise assembly via fluorinated building blocks, the corresponding 6F-substituted derivatives could be obtained by microwave-assisted, nucleophilic late-stage fluorination of tri- and tetrasaccharidic precursors in high yields. The described synthetic strategy allowed for preparation of the targeted fluorinated oligosaccharides in sufficient quantities for future immunological studies.
Collapse
Affiliation(s)
| | | | | | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
4
|
Sheikhi A, Shirmohammadpour M, Mahdei Nasirmahalleh N, Mirzaei B. Analysis of immunogenicity and purification methods in conjugated polysaccharide vaccines: a new approach in fighting pathogenic bacteria. Front Immunol 2024; 15:1483740. [PMID: 39635523 PMCID: PMC11614811 DOI: 10.3389/fimmu.2024.1483740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Carbohydrates are commonly found in conjunction with lipids or proteins, resulting in the formation of glycoconjugates such as glycoproteins, glycolipids, and proteoglycans. These glycoconjugates are essential in various biological activities, including inflammation, cell-cell recognition, bacterial infections, and immune response. Nonetheless, the isolation of naturally occurring glycoconjugates presents challenges due to their typically heterogeneous nature, resulting in variations between batches in structure and function, impeding a comprehensive understanding of their mechanisms of action. Consequently, there is a strong need for the efficient synthesis of artificial glycoconjugates with precisely described compositions and consistent biological properties. The chemical and enzymatic approaches discussed in this paper present numerous research opportunities to develop customised glycoconjugate vaccines.
Collapse
Affiliation(s)
- Arya Sheikhi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
- Student Research Committee, Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Shirmohammadpour
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
- Student Research Committee, Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Mahdei Nasirmahalleh
- Department of Medical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Mirzaei
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Lensch V, Johnson JA, Kiessling LL. Glycoconjugate vaccines: platforms and adjuvants for directed immunity. Glycobiology 2024; 34:cwae092. [PMID: 39593193 PMCID: PMC11604072 DOI: 10.1093/glycob/cwae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024] Open
Abstract
Central to immune recognition is the glycocalyx, a glycan-rich coat on all cells that plays a crucial role in interactions that enable pathogen detection and activation of immune defenses. Pathogens and cancerous cells often display distinct glycans on their surfaces, making these saccharide antigens prime targets for vaccine development. However, carbohydrates alone generally serve as poor immunogens due to their often weak binding affinities, inability to effectively recruit T cell help, and reliance on adjuvants to iboost immune activation. The introduction of glycoconjugate vaccines, initially involving the covalent coupling of carbohydrate antigens to carrier proteins, marked a pivotal advancement by facilitating neutralizing antibody production against carbohydrate targets. Despite successes in generating glycoconjugate vaccines against certain bacterial diseases, challenges persist in creating effective vaccines against numerous intracellular pathogens and non-communicable diseases such as cancer. In this review, we highlight new developments in conjugate vaccine platforms aim to overcome these limitations by optimizing the display of glycan and T cell epitopes as well as incorporating defined carbohydrate adjuvants to direct tailored immune responses. These advancements promise to improve the effectiveness of carbohydrate-based vaccines and broaden their coverage against a wide range of diseases.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| |
Collapse
|
7
|
Cheung IY, Mauguen A, Modak S, Basu EM, Feng Y, Kushner BH, Cheung NK. Long Prime-Boost Interval and Heightened Anti-GD2 Antibody Response to Carbohydrate Cancer Vaccine. Vaccines (Basel) 2024; 12:587. [PMID: 38932316 PMCID: PMC11209353 DOI: 10.3390/vaccines12060587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The carbohydrate ganglioside GD2/GD3 cancer vaccine adjuvanted by β-glucan stimulates anti-GD2 IgG1 antibodies that strongly correlate with improved progression-free survival (PFS) and overall survival (OS) among patients with high-risk neuroblastoma. Thirty-two patients who relapsed on the vaccine (first enrollment) were re-treated on the same vaccine protocol (re-enrollment). Titers during the first enrollment peaked by week 32 at 751 ± 270 ng/mL, which plateaued despite vaccine boosts at 1.2-4.5 month intervals. After a median wash-out interval of 16.1 months from the last vaccine dose during the first enrollment to the first vaccine dose during re-enrollment, the anti-GD2 IgG1 antibody rose to a peak of 4066 ± 813 ng/mL by week 3 following re-enrollment (p < 0.0001 by the Wilcoxon matched-pairs signed-rank test). Yet, these peaks dropped sharply and continually despite repeated boosts at 1.2-4.5 month intervals, before leveling off by week 20 to the first enrollment peak levels. Despite higher antibody titers, patients experienced no pain or neuropathic side effects, which were typically associated with immunotherapy using monoclonal anti-GD2 antibodies. By the Kaplan-Meier method, PFS was estimated to be 51%, and OS was 81%. The association between IgG1 titer during re-enrollment and β-glucan receptor dectin-1 SNP rs3901533 was significant (p = 0.01). A longer prime-boost interval could significantly improve antibody responses in patients treated with ganglioside conjugate cancer vaccines.
Collapse
Affiliation(s)
- Irene Y. Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Audrey Mauguen
- Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Shakeel Modak
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Ellen M. Basu
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Yi Feng
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Brian H. Kushner
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Nai Kong Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| |
Collapse
|
8
|
Ghotekar BK, Biswas S, Kulkarni SS. Circumventing aglycon transfer en route to the synthesis of pentasaccharide thioglycoside donor for the chain extension of Plesiomonas shigelloides strain 302-73 (serotype O1) repeating unit. Carbohydr Res 2024; 537:109073. [PMID: 38442682 DOI: 10.1016/j.carres.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Herein we report a chemical synthesis of a pentasaccharide thioglycoside repeating unit of Plesiomonas shigelloides Strain 302-73 (Serotype O1), as a chain extension unit. In our synthetic endeavor we encountered multiple aglycon transfer reactions during glycosylations. This problem was obviated by employing a PMP group as a transient protecting group.
Collapse
Affiliation(s)
- Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Sayantan Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, India.
| |
Collapse
|
9
|
Thakur K, T K S, Singh SK, V R, Rawale DG, Adusumalli SR, Kalra N, Shukla S, Mishra RK, Rai V. Human Behavior-Inspired Linchpin-Directed Catalysis for Traceless Precision Labeling of Lysine in Native Proteins. Bioconjug Chem 2022; 33:2370-2380. [PMID: 36383773 DOI: 10.1021/acs.bioconjchem.2c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex social ecosystem regulates the spectrum of human behavior. However, it becomes relatively easier to understand if we disintegrate the contributing factors, such as locality and interacting partners. Interestingly, it draws remarkable similarity with the behavior of a residue placed in a social setup of functional groups in a protein. Can it inspire principles for creating a unique environment for the precision engineering of proteins? We demonstrate that localization-regulated interacting partner(s) could render precise and traceless single-site modification of structurally diverse native proteins. The method targets a combination of high-frequency Lys residues through an array of reversible and irreversible reactions. However, excellent simultaneous control over chemoselectivity, site selectivity, and modularity ensures that the user-friendly protocol renders acyl group installation, including post-translational modifications (PTMs), on a single Lys. Besides, it offers a chemically orthogonal handle for the installation of probes. Also, a purification protocol integration delivers analytically pure single-site tagged protein bioconjugates. The precise labeling of a surface Lys residue ensures that the structure and enzymatic activities remain conserved post-bioconjugation. For example, the precise modification of insulin does not affect its uptake and downstream signaling pathway. Further, the method enables the synthesis of homogeneous antibody-fluorophore and antibody-drug conjugates (AFC and ADC; K183 and K249 labeling). The trastuzumab-rhodamine B conjugate displays excellent serum stability along with antigen-specific cellular imaging. Further, the trastuzumab-emtansine conjugate offers highly specific antiproliferative activity toward HER-2 positive SKBR-3 breast cancer cells. This work validates that disintegrate theory can create a comprehensive platform to enrich the chemical toolbox to meet the technological demands at the chemistry, biology, and medicine interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neetu Kalra
- School of Bioengineering, VIT Bhopal, Bhopal 466114, Madhya Pradesh, India
| | | | | | | |
Collapse
|
10
|
Shit P, Sahaji S, Misra AK. Convergent synthesis of the hexasaccharide repeating unit of the capsular polysaccharide of klebsiella serotype K-34. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
12
|
Classical- and bioconjugate vaccines: comparison of the structural properties and immunological response. Curr Opin Immunol 2022; 78:102235. [PMID: 35988326 DOI: 10.1016/j.coi.2022.102235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 01/29/2023]
Abstract
Glycoconjugate vaccines have been effectively used in humans for about 40 years. The glycoconjugates have substituted plain polysaccharide vaccines that have many limitations, especially in infants. The covalent linking of protein to carbohydrates has allowed to overcome T-cell-dependent type-2 response of sugars. Glycoconjugates can show improved responses (over plain saccharides) also in elderly and immunocompromised (and depending on the endpoint also in immunocompetent adults), but infants represent the main target of these vaccines because of their unique immune system. Differently from the plain polysaccharide vaccines, the glycoconjugates are also able to induce Immunoglobulin G (IgG) response in infants. Recently, vaccines containing conjugates directly expressed in Escherichia coli (bioconjugates) have been tested in the clinic against Shigella dysenteriae type 1, uropathogenic E. coli, and Streptococcus pneumoniae. Here, we report an overall comparison of classical- and bioconjugate vaccines in terms of the structural properties and the immunological response elicited.
Collapse
|
13
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
14
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
15
|
Hou H, Tian G, Fu J, Qin C, Chen G, Zou X, Hu J, Yin J. Highly stereoselective construction of 1,2- cis-D-quinovosamine glycosides for the synthesis of Pseudomonas aeruginosa O-antigen disaccharide. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2055049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hongli Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guodong Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Carboni F, Kitowski A, Sorieul C, Veggi D, Marques MC, Oldrini D, Balducci E, Brogioni B, Del Bino L, Corrado A, Angiolini F, Dello Iacono L, Margarit I, Romano MR, Bernardes GJL, Adamo R. Retaining the structural integrity of disulfide bonds in diphtheria toxoid carrier protein is crucial for the effectiveness of glycoconjugate vaccine candidates. Chem Sci 2022; 13:2440-2449. [PMID: 35310500 PMCID: PMC8864718 DOI: 10.1039/d1sc01928g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood. In particular, the influence of the conjugation site and strategy on the immunogenic properties of the final glycoconjugate vaccine is the focus of intense research. Here, we present a comparison of two cysteine selective conjugation strategies, elucidating the impact of both modifications on the structural integrity of the carrier protein, as well as on the immunogenic properties of the resulting glycoconjugate vaccine candidates. Our work suggests that conjugation chemistries impairing structurally relevant elements of the protein carrier, such as disulfide bonds, can have a dramatic effect on protein immunogenicity.
Collapse
Affiliation(s)
| | - Annabel Kitowski
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | | | | | | | | | | | | | | | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | |
Collapse
|
17
|
Halder T, Yadav S. Total synthesis of the O-antigen repeating unit of Providencia stuartii O49 serotype through linear and one-pot assemblies. Beilstein J Org Chem 2021; 17:2915-2921. [PMID: 34956410 PMCID: PMC8685571 DOI: 10.3762/bjoc.17.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Capsular polysaccharides of pathogenic bacteria have been reported to be effective vaccines against diseases caused by them. Providencia stuartii is a class of enterobacteria of the family Providencia that is responsible for several antibiotic resistant infections, particularly urinary tract infections of patients with prolonged catheterization in hospital settings. Towards the goal of development of vaccine candidates against this pathogen, we herein report the total synthesis of a trisaccharide repeating unit of the O-antigen polysaccharide of the P. stuartii O49 serotype containing the →6)-β-ᴅ-Galp-(1→3)-β-ᴅ-GalpNAc(1→4)-α-ᴅ-Galp(1→ linkage. The synthesis of the trisaccharide repeating unit was carried out first by a linear strategy involving the [1 + (1 + 1 = 2)] assembly, followed by a one-pot synthesis involving [1 + 1 + 1] strategy from the corresponding monosaccharides. The one-pot method provided a higher yield of the protected trisaccharide intermediate (73%) compared to the two step synthesis (66%). The protected trisaccharide was then deprotected and N-acetylated to finally afford the desired trisaccharide repeating unit as its α-p-methoxyphenyl glycoside.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
18
|
Abstract
l-Rhamnose forms the key components of important antigenic oligo- and polysaccharides of a variety of pathogens. Obtaining 1,2-cis stereoselectivity in the glycosylation of l-rhamnoside is quite challenging due to the unavailability of neighboring group participation and disfavoring of the anomeric effect and stereoelectronic effect of the substituents on the C-2 axial position. Nevertheless, various methodologies have been developed exploiting diverse pathways for obtaining β-stereoselectivity in the glycosylation of l-rhamnose. This review describes the recent advances in β-l-rhamnosylation and its applications in the total synthesis of β-l-rhamnose-containing biologically important oligosaccharides.
Collapse
Affiliation(s)
- Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
19
|
Gurbanov R. Synthetic Polysaccharide‐Based Vaccines: Progress and Achievements. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
21
|
Litschko C, Budde I, Berger M, Fiebig T. Exploitation of Capsule Polymerases for Enzymatic Synthesis of Polysaccharide Antigens Used in Glycoconjugate Vaccines. Methods Mol Biol 2021; 2183:313-330. [PMID: 32959251 DOI: 10.1007/978-1-0716-0795-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The exploitation of recombinant enzymes for the synthesis of complex carbohydrates is getting increasing attention. Unfortunately, the analysis of the resulting products often requires advanced methods like nuclear magnetic resonance spectroscopy and mass spectrometry. Here, we use the capsule polymerases Cps4B and Cps11D from Actinobacillus pleuropneumoniae serotypes 4 and 11, respectively, as examples for the in vitro synthesis of capsule polymers similar to those used in glycoconjugate vaccine formulations. We demonstrate how substrate turnover in an enzymatic reaction can be analyzed by HPLC-based anion exchange chromatography and provide the protocol for separation and detection of UV-active polymer. Moreover, we describe how UV-inactive polymer can be separated and visualized using polyacrylamide gel electrophoresis followed by combined alcian blue-silver staining.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends Microbiol 2020; 28:985-998. [DOI: 10.1016/j.tim.2020.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
|
23
|
Fiebig T, Cramer JT, Bethe A, Baruch P, Curth U, Führing JI, Buettner FFR, Vogel U, Schubert M, Fedorov R, Mühlenhoff M. Structural and mechanistic basis of capsule O-acetylation in Neisseria meningitidis serogroup A. Nat Commun 2020; 11:4723. [PMID: 32948778 PMCID: PMC7501274 DOI: 10.1038/s41467-020-18464-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
O-Acetylation of the capsular polysaccharide (CPS) of Neisseria meningitidis serogroup A (NmA) is critical for the induction of functional immune responses, making this modification mandatory for CPS-based anti-NmA vaccines. Using comprehensive NMR studies, we demonstrate that O-acetylation stabilizes the labile anomeric phosphodiester-linkages of the NmA-CPS and occurs in position C3 and C4 of the N-acetylmannosamine units due to enzymatic transfer and non-enzymatic ester migration, respectively. To shed light on the enzymatic transfer mechanism, we solved the crystal structure of the capsule O-acetyltransferase CsaC in its apo and acceptor-bound form and of the CsaC-H228A mutant as trapped acetyl-enzyme adduct in complex with CoA. Together with the results of a comprehensive mutagenesis study, the reported structures explain the strict regioselectivity of CsaC and provide insight into the catalytic mechanism, which relies on an unexpected Gln-extension of a classical Ser-His-Asp triad, embedded in an α/β-hydrolase fold.
Collapse
Affiliation(s)
- Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | | | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Li R, Yu H, Chen X. Recent progress in chemical synthesis of bacterial surface glycans. Curr Opin Chem Biol 2020; 58:121-136. [PMID: 32920523 DOI: 10.1016/j.cbpa.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections. They are also important probes for investigating glycan-protein interactions. Glycosylation strategies applied for the formation of some challenging glycosidic bonds of various uncommon sugars in a number of recently synthesized bacterial surface glycans are highlighted.
Collapse
Affiliation(s)
- Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
26
|
Meena J, Kumar R, Singh M, Ahmed A, Panda AK. Modulation of immune response and enhanced clearance of Salmonella typhi by delivery of Vi polysaccharide conjugate using PLA nanoparticles. Eur J Pharm Biopharm 2020; 152:270-281. [DOI: 10.1016/j.ejpb.2020.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
|
27
|
Sanapala SR, Seco BMS, Baek JY, Awan SI, Pereira CL, Seeberger PH. Chimeric oligosaccharide conjugate induces opsonic antibodies against Streptococcus pneumoniae serotypes 19A and 19F. Chem Sci 2020; 11:7401-7407. [PMID: 34123020 PMCID: PMC8159444 DOI: 10.1039/d0sc02230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae 19A (ST19A) and 19F (ST19F) are among the prevalent serotypes causing pneumococcal disease worldwide even after introduction of a 13-valent pneumococcal conjugate vaccine (PCV13). Synthetic glycoconjugate vaccines have defined chemical structures rather than isolated polysaccharide mixtures utilized in marketed vaccines. Ideally, a minimal number of synthetic antigens would cover as many bacterial serotypes to lower cost of goods and minimize the response to carrier proteins. To demonstrate that a chimeric oligosaccharide antigen can induce a protective immune response against multiple serotypes, we synthesized a chimeric antigen (ST19AF) that is comprised of a repeating unit of ST19A and ST19F capsular polysaccharide each. Synthetic glycan epitopes representing only ST19A, and ST19F were prepared for comparison. Semisynthetic glycoconjugates containing chimeric antigen ST19AF induced high antibody titers able to recognize native CPS from ST19A and ST19F in rabbits. The antibodies were able to kill both strains of pneumococci. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. The chimeric semisynthetic glycoconjugate ST19AF induced antibodies with opsonic activity able to kill ST19A and ST19F bacteria in rabbits.![]()
Collapse
Affiliation(s)
- Someswara Rao Sanapala
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Bruna M S Seco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Shahid I Awan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Claney L Pereira
- Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| |
Collapse
|
28
|
Affiliation(s)
- Kabita Pradhan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
29
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
30
|
Lin L, Qiao M, Zhang X, Linhardt RJ. Site-selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development. Carbohydr Polym 2020; 230:115643. [DOI: 10.1016/j.carbpol.2019.115643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
|
31
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
32
|
Cheng S, Wantuch PL, Kizer ME, Middleton DR, Wang R, DiBello M, Li M, Wang X, Li X, Ramachandiran V, Avci FY, Zhang F, Zhang X, Linhardt RJ. Glycoconjugate synthesis using chemoselective ligation. Org Biomol Chem 2020; 17:2646-2650. [PMID: 30778481 DOI: 10.1039/c9ob00270g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemoselective ligation of carbohydrates and polypeptides was achieved using an adipic acid dihydrazide cross-linker. The reducing end of a carbohydrate is efficiently attached to peptides in two steps, constructing a glycoconjugate in high yield and with high regioselectivity, enabling the production of homogeneous glycoconjugates.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, Chaoyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Del Bino L, Calloni I, Oldrini D, Raso MM, Cuffaro R, Ardá A, Codée JDC, Jiménez‐Barbero J, Adamo R. Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry 2019; 25:16277-16287. [PMID: 31506992 PMCID: PMC6972993 DOI: 10.1002/chem.201903527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Indexed: 12/29/2022]
Abstract
Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a β1-4 linkage in serotype Ia and a β1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcβ1-3[Glcβ1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.
Collapse
Affiliation(s)
| | - Ilaria Calloni
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | | | | | | | - Ana Ardá
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Jeroen D. C. Codée
- Department of Bioorganic SynthesisLeiden University2333LeidenThe Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Basque Foundation for Science IKERBASQUE8009BilbaoSpain
- Department of Organic Chemistry IIFaculty of Science and TechnologyUniversity of the Basque Country48940LeioaSpain
| | | |
Collapse
|
34
|
Behera A, Rai D, Kulkarni SS. Total Syntheses of Conjugation-Ready Trisaccharide Repeating Units of Pseudomonas aeruginosa O11 and Staphylococcus aureus Type 5 Capsular Polysaccharide for Vaccine Development. J Am Chem Soc 2019; 142:456-467. [DOI: 10.1021/jacs.9b11309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Synthetic directions towards capsular polysaccharide of Streptococcus pneumoniae serotype 18C. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 2019; 18:881-895. [PMID: 31475596 DOI: 10.1080/14760584.2019.1657012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.
Collapse
Affiliation(s)
- Francesca Micoli
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | - Renzo Alfini
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | | | | |
Collapse
|
37
|
Zhang Q, Gimeno A, Santana D, Wang Z, Valdés-Balbin Y, Rodríguez-Noda LM, Hansen T, Kong L, Shen M, Overkleeft HS, Vérez-Bencomo V, van der Marel GA, Jiménez-Barbero J, Chiodo F, Codée JDC. Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. ACS CENTRAL SCIENCE 2019; 5:1407-1416. [PMID: 31482123 PMCID: PMC6716135 DOI: 10.1021/acscentsci.9b00454] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 05/22/2023]
Abstract
The zwitterionic Streptococcus pneumoniae serotype 1 polysaccharide (Sp1) is an important anchor point for our immune system to act against streptococcal infections. Antibodies can recognize Sp1 saccharides, and it has been postulated that Sp1 can elicit a T-cell-dependent immune reaction as it can be presented by MHC-II molecules. To unravel the molecular mode of action of this unique polysaccharide we here describe the chemical synthesis of a set of Sp1 fragments, ranging from 3 to 12 monosaccharides in length. We outline a unique synthetic approach to overcome the major synthetic challenges associated with the complex Sp1 structure and provide a stereoselective route of synthesis for the oligosaccharide backbone as well as a strategy to introduce the carboxylic acid functions. Molecular dynamics (MD) simulations together with NMR spectroscopy studies reveal that the oligosaccharides take up helical structures with the nona- and dodecasaccharide completing a full helical turn. The 3D structure of the oligosaccharides coincides with the topology required for good interaction with anti-Sp1 antibodies, which has been mapped in detail using STD-NMR. Our study has revealed the Sp1 nona- and dodecasaccharides as promising synthetic antigens, displaying all (3D) structural elements required to mimic the natural polysaccharide and required to unravel the molecular mode of action of these unique zwitterionic polysaccharides.
Collapse
Affiliation(s)
- Qingju Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- The
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, No 99 Ziyang Avenue, Nanchang 330022, China
| | - Ana Gimeno
- CIC
bioGUNE, Bizkaia Technology Park, Building 801 A, 48170 Derio, Spain
| | - Darielys Santana
- Finlay
Vaccine Institute, 200
and 21 Street, Playa, Havana 11600, Cuba
| | - Zhen Wang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | - Thomas Hansen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Li Kong
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mengjie Shen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology Park, Building 801 A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao, 48013 Bizkaia, Spain
- Department
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU−UPV, 48940 Leioa, Spain
| | - Fabrizio Chiodo
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Amsterdam
Infection and Immunity Institute, Department of Molecular Cell Biology
and Immunology, Amsterdam UMC, Location
VUmc, 1007 MB Amsterdam, The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
38
|
Liao G, Guo J, Yang D, Zhou Z, Liu Z, Guo Z. Synthesis of a dimer of the repeating unit of type Ia Group B Streptococcus extracellular capsular polysaccharide and immunological evaluations of related protein conjugates. Org Chem Front 2019; 6:2833-2838. [PMID: 32274071 PMCID: PMC7144420 DOI: 10.1039/c9qo00486f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type Ia group B Streptococcus (GBS) is one of the major causes of fatal infections in neonates. Its extracellular capsular polysaccharide (CPS) is a useful target for the development of anti-type Ia GBS vaccines. To explore the structure-activity relationships of type Ia GBS CPS and design more effective vaccines, a dimer of the branched pentasaccharide repeating unit of this CPS was synthesized by a highly convergent strategy highlighted by constructing the key intermediate via one-pot iterative glycosylation and imposing two side chains in one step via dual glycosylation. This represented the first total synthesis of a dimer of the repeating unit of any GBS CPS reported so far and the strategy should be applicable to higher oligomers of this repeating unit. The synthetic dimer and its monomeric analog were coupled with CRM197 carrier protein to generate conjugates that were evaluated in mice. Immunological results revealed that both carbohydrate antigens could induce robust total and IgG antibody responses and the elicited antibodies were cross-reactive with both carbohydrate antigens. It was concluded that both the monomeric and the dimeric repeating units may be employed as haptens for anti-type Ia GBS vaccine development.
Collapse
Affiliation(s)
- Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jiatong Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhifang Zhou
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Key Laboratory of Carbohydrate Chemistry & Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 2019; 4:16. [PMID: 31069118 PMCID: PMC6494827 DOI: 10.1038/s41541-019-0110-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
Glycoconjugate vaccines against bacteria are one of the success stories of modern medicine and have led to a significant reduction in the global occurrence of bacterial meningitis and pneumonia. Glycoconjugate vaccines are produced by covalently linking a bacterial polysaccharide (usually capsule, or more recently O-antigen), to a carrier protein. Given the success of glycoconjugate vaccines, it is surprising that to date only vaccines against Haemophilus influenzae type b, Neisseria meningitis and Streptococcus pneumoniae have been fully licenced. This is set to change through the glycoengineering of recombinant vaccines in bacteria, such as Escherichia coli, that act as mini factories for the production of an inexhaustible and renewable supply of pure vaccine product. The recombinant process, termed Protein Glycan Coupling Technology (PGCT) or bioconjugation, offers a low-cost option for the production of pure glycoconjugate vaccines, with the in-built flexibility of adding different glycan/protein combinations for custom made vaccines. Numerous vaccine candidates have now been made using PGCT, which include those improving existing licenced vaccines (e.g., pneumococcal), entirely new vaccines for both Gram-positive and Gram-negative bacteria, and (because of the low production costs) veterinary pathogens. Given the continued threat of antimicrobial resistance and the potential peril of bioterrorist agents, the production of new glycoconjugate vaccines against old and new bacterial foes is particularly timely. In this review, we will outline the component parts of bacterial PGCT, including recent advances, the advantages and limitations of the technology, and future applications and perspectives.
Collapse
|
40
|
Zhang H, Zhou S, Zhao Y, Gao J. Chemical synthesis of the dimeric repeating unit of type Ia group BStreptococcuscapsular polysaccharide. Org Biomol Chem 2019; 17:5839-5848. [DOI: 10.1039/c9ob01024f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesis of the dimeric repeating unit of type Ia GBS CPS containing two sialotrisaccharide side chains and adjacent 3,4-di-branched Gal motifs was achieved.
Collapse
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Ying Zhao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|
41
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
42
|
Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mével M, Deniaud D, Boujtita M, Gouin SG. Electrochemically Promoted Tyrosine-Click-Chemistry for Protein Labeling. J Am Chem Soc 2018; 140:17120-17126. [DOI: 10.1021/jacs.8b09372] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dimitri Alvarez-Dorta
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Christine Thobie-Gautier
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Mikael Croyal
- Centre de Recherche en Nutrition Humaine Ouest (CRNHO), West Human Nutrition Research Center, F-44000 Nantes, France
- UMR 1280 PhAN, INRA, F-44000 Nantes, France
| | | | - Mathieu Mével
- INSERM UMR1089, Université de Nantes, CHU de Nantes, France
| | - David Deniaud
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Mohammed Boujtita
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G. Gouin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
43
|
Emmadi M, Kulkarni SS. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J Org Chem 2018; 83:14323-14337. [DOI: 10.1021/acs.joc.8b02037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
44
|
Yin Z, Wu X, Kaczanowska K, Sungsuwan S, Comellas Aragones M, Pett C, Yu J, Baniel C, Westerlind U, Finn M, Huang X. Antitumor Humoral and T Cell Responses by Mucin-1 Conjugates of Bacteriophage Qβ in Wild-type Mice. ACS Chem Biol 2018; 13:1668-1676. [PMID: 29782143 DOI: 10.1021/acschembio.8b00313] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucin-1 (MUC1) is one of the top ranked tumor associated antigens. In order to generate effective anti-MUC1 immune responses as potential anticancer vaccines, MUC1 peptides and glycopeptides have been covalently conjugated to bacteriophage Qβ. Immunization of mice with these constructs led to highly potent antibody responses with IgG titers over one million, which are among the highest anti-MUC1 IgG titers reported to date. Furthermore, the high IgG antibody levels persisted for more than six months. The constructs also elicited MUC1 specific cytotoxic T cells, which can selectively kill MUC1 positive tumor cells. The unique abilities of Qβ-MUC1 conjugates to powerfully induce both antibody and cytotoxic T cell immunity targeting tumor cells bode well for future translation of the constructs as anticancer vaccines.
Collapse
Affiliation(s)
| | | | - Katarzyna Kaczanowska
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Marta Comellas Aragones
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
| | | | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - M.G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
45
|
Litschko C, Oldrini D, Budde I, Berger M, Meens J, Gerardy-Schahn R, Berti F, Schubert M, Fiebig T. A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens. mBio 2018; 9:e00641-18. [PMID: 29844111 PMCID: PMC5974469 DOI: 10.1128/mbio.00641-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Bibersteinia trehalosi, and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis.IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Oldrini D, Fiebig T, Romano MR, Proietti D, Berger M, Tontini M, De Ricco R, Santini L, Morelli L, Lay L, Gerardy-Schahn R, Berti F, Adamo R. Combined Chemical Synthesis and Tailored Enzymatic Elongation Provide Fully Synthetic and Conjugation-Ready Neisseria meningitidis Serogroup X Vaccine Antigens. ACS Chem Biol 2018; 13:984-994. [PMID: 29481045 DOI: 10.1021/acschembio.7b01057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies on the polymerization mode of Neisseria meningitidis serogroup X capsular polymerase CsxA recently identified a truncated construct that can be immobilized and used for length controlled on-column production of oligosaccharides. Here, we combined the use of a synthetic acceptor bearing an appendix for carrier protein conjugation and the on-column process to a novel chemo-enzymatic strategy. After protein coupling of the size optimized oligosaccharide produced by the one-pot elongation procedure, we obtained a more homogeneous glycoconjugate compared to the one previously described starting from the natural polysaccharide. Mice immunized with the conjugated fully synthetic oligomer elicited functional antibodies comparable to controls immunized with the current benchmark MenX glycoconjugates prepared from the natural capsule polymer or from fragments of it enzymatically elongated. This pathogen-free technology allows the fast total in vitro construction of predefined bacterial polysaccharide fragments. Compared to conventional synthetic protocols, the procedure is more expeditious and drastically reduces the number of purification steps to achieve the oligomers. Furthermore, the presence of a linker for conjugation in the synthetic acceptor minimizes manipulations on the enzymatically produced glycan prior to protein conjugation. This approach enriches the methods for fast construction of complex bacterial carbohydrates.
Collapse
Affiliation(s)
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | - Laura Morelli
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Luigi Lay
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
47
|
Peng CJ, Chen HL, Chiu CH, Fang JM. Site-Selective Functionalization of Flagellin by Steric Self-Protection: A Strategy To Facilitate Flagellin as a Self-Adjuvanting Carrier in Conjugate Vaccine. Chembiochem 2018; 19:805-814. [PMID: 29377518 DOI: 10.1002/cbic.201700634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/18/2023]
Abstract
Flagellin (FliC) can act as a carrier protein in the preparation of conjugate vaccines to elicit a T-cell-dependent immune response and as an intrinsic adjuvant to activate the toll-like receptor 5 (TLR5) to enhance vaccine potency. To enable the use of FliC as a self-adjuvanting carrier, an effective method for site-selective modification (SSM) of pertinent amino-acid residues in the D2 and D3 domains of FliC is explored without excessive modification of the D0 and D1 domains, which are responsible for activating and binding with TLR5. In highly concentrated Na2 SO4 solution, FliC monomers form flagellar filaments, in which the D0 and D1 domains are situated inside the tubular structure. Thus, the lysine residues (K219, K224, K324, and K331) in the D2 and D3 domains of flagellin are selectively modified by a diazo-transfer reaction with imidazole-1-sulfonyl azide. The sites with azido modification are confirmed by MALDI-TOF-MS, ESI-TOF-MS, and LC-MS/MS analyses along with label-free quantitation. The azido-modified filament dissolves to give FliC monomers, which can conjugate with alkyne-hinged saccharides by the click reaction. Transmission electron microscopy imaging, dynamic light scattering measurements, and the secreted embryonic alkaline phosphatase reporter assay indicate that the modified FliC monomers retain the ability either to bind with TLR5 or to reassemble into filaments. Overall, this study establishes a feasible method for the SSM of FliC by steric self-protection of the D0 and D1 domains.
Collapse
Affiliation(s)
- Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan District, Taoyuan, 33302, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan
| |
Collapse
|
48
|
Méndez Y, Chang J, Humpierre AR, Zanuy A, Garrido R, Vasco AV, Pedroso J, Santana D, Rodríguez LM, García-Rivera D, Valdés Y, Vérez-Bencomo V, Rivera DG. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem Sci 2018; 9:2581-2588. [PMID: 29719713 PMCID: PMC5897956 DOI: 10.1039/c7sc05467j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
A new synthetic strategy for the development of multivalent antibacterial glycoconjugate vaccines is described. The approach comprises the utilization of an isocyanide-based multicomponent process for the conjugation of functionalized capsular polysaccharides of S. pneumoniae and S. Typhi to carrier proteins such as diphtheria and tetanus toxoids. For the first time, oxo- and carboxylic acid-functionalized polysaccharides could be either independently or simultaneously conjugated to immunogenic proteins by means of the Ugi-multicomponent reaction, thus leading to mono- or multivalent unimolecular glycoconjugates as vaccine candidates. Despite the high molecular weight of the two or three reacting biomolecules, the multicomponent bioconjugation proved highly efficient and reproducible. The Ugi-derived glycoconjugates showed notable antigenicity and elicited good titers of functional specific antibodies. To our knowledge, this is the only bioconjugation method that enables the incorporation of two different polysaccharidic antigens to a carrier protein in a single step. Applications in the field of self-adjuvanting, eventually anticancer, multicomponent vaccines are foreseeable.
Collapse
Affiliation(s)
- Yanira Méndez
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
| | - Janoi Chang
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Ana R Humpierre
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
| | - Abel Zanuy
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Raine Garrido
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Aldrin V Vasco
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 , Halle/Saale , Germany
| | - Jessy Pedroso
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Darielys Santana
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | - Laura M Rodríguez
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | | | - Yury Valdés
- Finlay Institute of Vaccines , Ave 27 Nr. 19805 , Havana 10600 , Cuba .
| | | | - Daniel G Rivera
- Center for Natural Products Research , Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba .
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 , Halle/Saale , Germany
| |
Collapse
|
49
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
50
|
Zou X, Qin C, Pereira CL, Tian G, Hu J, Seeberger PH, Yin J. Synergistic Glycosylation as Key to the Chemical Synthesis of an Outer Core Octasaccharide ofHelicobacter pylori. Chemistry 2018; 24:2868-2872. [DOI: 10.1002/chem.201800049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Lihu Avenue 1800 Wuxi Jiangsu province 214122 P. R. China
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Lihu Avenue 1800 Wuxi Jiangsu province 214122 P. R. China
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Claney L. Pereira
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Lihu Avenue 1800 Wuxi Jiangsu province 214122 P. R. China
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Lihu Avenue 1800 Wuxi Jiangsu province 214122 P. R. China
| | - Peter H. Seeberger
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Lihu Avenue 1800 Wuxi Jiangsu province 214122 P. R. China
| |
Collapse
|