1
|
Kulikovsky A, Yagmurov E, Grigoreva A, Popov A, Severinov K, Nair SK, Lippens G, Serebryakova M, Borukhov S, Dubiley S. Bacillus subtilis Utilizes Decarboxylated S-Adenosylmethionine for the Biosynthesis of Tandem Aminopropylated Microcin C, a Potent Inhibitor of Bacterial Aspartyl-tRNA Synthetase. J Am Chem Soc 2025; 147:11998-12011. [PMID: 40162528 DOI: 10.1021/jacs.4c18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The biosynthetic pathways of natural products involve unusual biochemical reactions catalyzed by unique enzymes. Aminopropylation, although apparently simple, is an extremely rare modification outside polyamine biosynthesis. The canonical pathway used in the biosynthesis of peptide-adenylate antibiotic microcin C of E. coli (Eco-McC) entails alkylation by the S-adenosyl-methionine-derived 3-amino-3-carboxypropyl group of the adenylate moiety and subsequent decarboxylation to yield the bioactive aminopropylated compound. Here, we report the structure and biosynthesis of a new member of the microcin C family of antibiotics, Bsu-McC, produced by Bacillus subtilis MG27, which employs an alternative aminopropylation pathway. Like Eco-McC, Bsu-McC consists of a peptide moiety that facilitates prodrug import into susceptible bacteria and a warhead, a nonhydrolyzable modified isoasparaginyl-adenylate, which, when released into the cytoplasm, binds aspartyl-tRNA synthetase (AspRS) inhibiting translation. In contrast to the Eco-McC, whose warhead carries a single aminopropyl group attached to the phosphate moiety of isoasparaginyl-adenylate, the warhead of Bsu-McC is decorated with a tandem of two aminopropyl groups. Our in silico docking of the Bsu-McC warhead to the AspRS-tRNA complex suggests that two aminopropyl groups form extended interactions with the enzyme and tRNA, stabilizing the enzyme-inhibitor complex. We show that tandem aminopropylation results in a 32-fold increase in the biological activity of peptidyl-adenylate. We also show that B. subtilis adopted an alternative pathway for aminopropylation in which two homologous 3-aminopropyltransferases utilize decarboxylated S-adenosylmethionine as a substrate. Additionally, Bsu-McC biosynthesis alters the social behavior of the B. subtilis producer strain, resulting in a sharp decrease in their ability to form biofilms.
Collapse
Affiliation(s)
- Alexey Kulikovsky
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Eldar Yagmurov
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Anastasiia Grigoreva
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Aleksandr Popov
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Satish K Nair
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
- Center for Bio-physics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Guy Lippens
- Toulouse Biotechnology Institute, Toulouse 31400, France
| | - Marina Serebryakova
- A.N. Belozersky Institute of Physicochemical Biology MSU, Moscow 119992, Russia
| | - Sergei Borukhov
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University School of Osteopathic Medicine institution, Stratford, New Jersey 08084-1501, United States
| | | |
Collapse
|
2
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
3
|
Maes R, Naser Aldine M, Gerstmans H, Michiels C, Masschelein J. Bioactive Specialized Metabolites from Staphylococcus: Diversity, Biosynthesis, and Biotechnological Potential. Chembiochem 2025:e2500105. [PMID: 40139968 DOI: 10.1002/cbic.202500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Staphylococci are a heterogeneous group of bacteria capable of colonizing diverse ecological niches and adopting a wide variety of lifestyles. While several strains are known as notorious, multidrug-resistant human pathogens, others are harmless inhabitants of soil, water, and food products, or beneficial members of the skin microbiota. To survive and remain competitive under challenging environmental conditions, staphylococci have evolved the ability to assemble and secrete a diverse range of ribosomally synthesized and posttranslationally modified peptides, nonribosomal peptides, terpenes, siderophores, and other specialized metabolites with antibiotic, immunomodulating and metal chelating activities. In this review, an overview of the bioactive metabolite arsenal of staphylococci is provided with a focus on their biosynthetic pathway, mode of action, and industrial application potential. Also, unexplored natural product biosynthetic pathways in staphylococci, along with strategies to access this hidden potential, are highlighted.
Collapse
Affiliation(s)
- Ruben Maes
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| | | | - Hans Gerstmans
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, KU Leuven, 3001, Leuven, Belgium
| | - Joleen Masschelein
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| |
Collapse
|
4
|
Feng J, Mo J, Hemu X. Expanding molecular diversity of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products by radical S-adenosylmethionine (SAM) enzymes: recent advances and mechanistic insights. Chin J Nat Med 2025; 23:257-268. [PMID: 40122657 DOI: 10.1016/s1875-5364(25)60845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 03/25/2025]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a vast and diverse family of bioactive peptides. These peptides, synthesized by ribosomes and subsequently modified by various tailoring enzymes, possess a wide chemical space. Among these modifications, radical S-adenosylmethionine (rSAM) enzymes employ unique radical chemistry to introduce a variety of novel peptide structures, which are crucial for their activity. This review examines the major types of modifications in RiPPs catalyzed by rSAM enzymes, incorporating recent advancements in protein structure analysis techniques and computational methods. Additionally, it elucidates the diverse catalytic mechanisms and substrate selectivity of these enzymes through an analysis of the latest crystal structures.
Collapse
Affiliation(s)
- Jiawei Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Jiarong Mo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210098, China.
| |
Collapse
|
5
|
Castelo-Branco R, Pereira JP, Freitas S, Preto M, Vieira AR, Morais J, Leão PN. Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532. JOURNAL OF NATURAL PRODUCTS 2025; 88:86-93. [PMID: 39718459 PMCID: PMC11774001 DOI: 10.1021/acs.jnatprod.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Genome mining has emerged as an important tool for the discovery of natural products and is particularly effective for the swift identification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Among RiPPs, cyanobactins have gained attention due to their diverse structures and bioactive properties. Here, we explored the Microcoleaceae cyanobacterium LEGE 16532 strain and identified the mon biosynthetic gene cluster (BGC), which was predicted to encode cyanobactin-like molecules. This led to the detection of 11 macrocyclic cyanobactins, the monchicamides, some of which feature mono- or diprenylation. One of the compounds was isolated, monchicamides I (9), and its planar structure was established by LC-HRESIMS/MS data as well as 1D and 2D NMR spectroscopy, confirming forward O-prenylation in Tyr. In addition, the absolute configuration of compound 9 was determined by Marfey's method and chiral-phase HPLC. The structures of the additional cyanobactins were proposed from MS/MS data analysis. The bioactivity profile of the isolated compound was also evaluated, but no cytotoxic, antimicrobial, or antiamoebic activity was observed.
Collapse
Affiliation(s)
- Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - João P. Pereira
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Marco Preto
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Ana R. Vieira
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - João Morais
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| |
Collapse
|
6
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
7
|
Hwang HJ, Nam Y, Jang C, Kim EL, Jang ES, Lee YJ, Lee SR. Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptides from Plants: Structures, Therapeutic Potential, and Future Directions. Curr Issues Mol Biol 2024; 47:6. [PMID: 39852121 PMCID: PMC11764418 DOI: 10.3390/cimb47010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Cancer remains a significant medical challenge, necessitating the discovery of novel therapeutic agents. Ribosomally synthesized and post-translationally modified peptides (RiPPs) from plants have emerged as a promising source of anticancer compounds, offering unique structural diversity and potent biological activity. This review identifies and discusses cytotoxic RiPPs across various plant families, focusing on their absolute chemical structures and reported cytotoxic activities against cancer cell lines. Notably, plant-derived RiPPs such as rubipodanin A and mallotumides A-C demonstrated low nanomolar IC50 values against multiple cancer cell types, highlighting their therapeutic potential. By integrating traditional ethnobotanical knowledge with modern genomic and bioinformatic approaches, this study underscores the importance of plant RiPPs as a resource for developing innovative cancer treatments. These findings pave the way for further exploration of plant RiPPs, emphasizing their role in addressing the ongoing challenges in oncology and enhancing the repertoire of effective anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Seoung Rak Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Liang H, Luo Y, van der Donk WA. Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin. Biochemistry 2024; 63:2493-2505. [PMID: 39271288 PMCID: PMC11447909 DOI: 10.1021/acs.biochem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Modification of the N- and C-termini of peptides enhances their stability against degradation by exopeptidases. The biosynthetic pathways of many peptidic natural products feature enzymatic modification of their termini, and these enzymes may represent a valuable pool of biocatalysts. The lantibiotic cacaoidin carries an N,N-dimethylated N-terminal amine group. Its biosynthetic gene cluster encodes the putative methyltransferase Cao4. In this work, we present reconstitution of the activity of the enzyme, which we termed CaoSC following standardized lanthipeptide nomenclature, using a heterologously produced peptide as the model substrate. In vitro methylation of diverse lanthipeptides revealed the substrate requirements of CaoSC. The enzyme accepts peptides of varying lengths and C-terminal sequences but requires dehydroalanine or dehydrobutyrine at the second position. CaoSC-mediated dimethylation of natural lantibiotics resulted in modestly enhanced antimicrobial activity of the lantibiotic haloduracin compared to that of the native compound. Improved activity and/or metabolic stability as a result of methylation illustrates the potential future application of CaoSC in the bioengineering of therapeutic peptides.
Collapse
Affiliation(s)
- Haoqian Liang
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Manley OM, Shriver TJ, Xu T, Melendrez IA, Palacios P, Robson SA, Guo Y, Kelleher NL, Ziarek JJ, Rosenzweig AC. A multi-iron enzyme installs copper-binding oxazolone/thioamide pairs on a nontypeable Haemophilus influenzae virulence factor. Proc Natl Acad Sci U S A 2024; 121:e2408092121. [PMID: 38968106 PMCID: PMC11252979 DOI: 10.1073/pnas.2408092121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024] Open
Abstract
The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.
Collapse
Affiliation(s)
- Olivia M. Manley
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Tucker J. Shriver
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Tian Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Isaac A. Melendrez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Philip Palacios
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Scott A. Robson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Joshua J. Ziarek
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
| |
Collapse
|
11
|
Arias-Orozco P, Zhou L, Yi Y, Cebrián R, Kuipers OP. Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine Synechococcus strains. Microbiol Spectr 2024; 12:e0361123. [PMID: 38088546 PMCID: PMC10783134 DOI: 10.1128/spectrum.03611-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Genome mining studies have revealed the remarkable combinatorial diversity of ribosomally synthesized and post-translationally modified peptides (RiPPs) in marine bacteria, including prochlorosins. However, mining strategies also prove valuable in investigating the genomic landscape of associated genes within biosynthetic gene cluster (BGC) specific to targeted RiPPs of interest. Our study contributes to the enrichment of knowledge regarding prochlorosin diversity. It offers insights into potential mechanisms involved in their biosynthesis and modification, such as hyper-modification, which may give rise to active lantibiotics. Additionally, our study uncovers putative novel promiscuous post-translational enzymes, thereby expanding the chemical space explored within the Synechococcus genus. Moreover, this research extends the applications of mining techniques beyond the discovery of new RiPP-like clusters, allowing for a deeper understanding of genomics and diversity. Furthermore, it holds the potential to reveal previously unknown functions within the intriguing RiPP families, particularly in the case of prochlorosins.
Collapse
Affiliation(s)
- Patricia Arias-Orozco
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Lu Zhou
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Rubén Cebrián
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs.GRANADA, San Cecilio University Hospital, Granada, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| |
Collapse
|
12
|
Li S, Wang X. Design and synthesis of antiviral pseudo-natural products through effective one-step acylmethylation macrocyclization. Chin J Nat Med 2023; 21:721-722. [PMID: 37879790 DOI: 10.1016/s1875-5364(23)60440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Indexed: 10/27/2023]
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Nakashima Y, Kawakami A, Ogasawara Y, Maeki M, Tokeshi M, Dairi T, Morita H. Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism. Nat Commun 2023; 14:4752. [PMID: 37550286 PMCID: PMC10406935 DOI: 10.1038/s41467-023-40232-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
The lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with D-tryptophan at the C-terminus, and is derived from the precursor peptide MslA. MslH, encoded in the MS-271 biosynthetic gene cluster (msl), catalyzes the epimerization at the Cα center of the MslA C-terminal Trp21, leading to epi-MslA. The detailed catalytic process, including the catalytic site and cofactors, has remained enigmatic. Herein, based on X-ray crystallographic studies in association with MslA core peptide analogues, we show that MslH is a metallo-dependent peptide epimerase with a calcineurin-like fold. The crystal structure analysis, followed by site-directed mutagenesis, docking simulation, and ICP-MS studies demonstrate that MslH employs acid/base chemistry to facilitate the reversible epimerization of the C-terminal Trp21 of MslA, by utilizing two pairs of His/Asp catalytic residues that are electrostatically tethered to a six-coordination motif with a Ca(II) ion via water molecules.
Collapse
Affiliation(s)
- Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Masatoshi Maeki
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Manabu Tokeshi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
14
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
16
|
Arias-Orozco P, Yi Y, Ruijne F, Cebrián R, Kuipers OP. Investigating the Specificity of the Dehydration and Cyclization Reactions in Engineered Lanthipeptides by Synechococcal SyncM. ACS Synth Biol 2022; 12:164-177. [PMID: 36520855 PMCID: PMC9872173 DOI: 10.1021/acssynbio.2c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ProcM-like enzymes are class II promiscuous lanthipeptide synthetases that are an attractive tool in synthetic biology for producing lanthipeptides with biotechnological or clinically desired properties. SyncM is a recently described modification enzyme from this family used to develop a versatile expression platform for engineering lanthipeptides. Most remarkably, SyncM can modify up to 79 SyncA substrates in a single strain. Six SyncAs were previously characterized from this pool of substrates. They showed particular characteristics, such as the presence of one or two lanthionine rings, different flanking residues influencing ring formation, and different ring directions, demonstrating the relaxed specificity of SyncM toward its precursor peptides. To gain a deeper understanding of the potential of SyncM as a biosynthetic tool, we further explored the enzyme's capabilities and limits in dehydration and ring formation. We used different SyncA scaffolds for peptide engineering, including changes in the ring's directionality (relative position of Ser/Thr to Cys in the peptide) and size. We further aimed to rationally design mimetics of cyclic antimicrobials and introduce macrocycles in prochlorosin-related and nonrelated substrates. This study highlights the largest lanthionine ring with 15 amino acids (ring-forming residues included) described to date. Taking advantage of the amino acid substrate tolerance of SyncM, we designed the first single-SyncA-based antimicrobial. The insights gained from this work will aid future bioengineering studies. Additionally, it broadens SyncM's application scope for introducing macrocycles in other bioactive molecules.
Collapse
Affiliation(s)
- Patricia Arias-Orozco
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Yunhai Yi
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Fleur Ruijne
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Rubén Cebrián
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands,Department
of Clinical Microbiology, Instituto de Investigación Biosanitaria,
ibs. GRANADA, San Cecilio University Hospital, Av. De la Innovación s/n, 18016 Granada, Spain
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
17
|
Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides. Int J Mol Sci 2022; 23:ijms23137231. [PMID: 35806232 PMCID: PMC9266682 DOI: 10.3390/ijms23137231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the macrolactam cyclization by an ATP-dependent macrolactam synthetase. Recently, advanced bioinformatic tools combined with genome mining have paved the way to uncover a rapidly growing number of lasso peptides as well as a series of PTMs other than the general class-defining processes. Despite abundant reviews focusing on lasso peptide discoveries, structures, properties, and physiological functionalities, few summaries concerned their unique PTMs. In this review, we summarized all the unique PTMs of lasso peptides uncovered to date, shedding light on the related investigations in the future.
Collapse
|
18
|
Kim WE, Ishikawa F, Re RN, Suzuki T, Dohmae N, Kakeya H, Tanabe G, Burkart MD. Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chem Biol 2022; 3:312-319. [PMID: 35359491 PMCID: PMC8905534 DOI: 10.1039/d2cb00005a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are complex multi-modular enzymes containing catalytic domains responsible for the loading and incorporation of amino acids into natural products. These unique molecular factories can produce peptides with nonproteinogenic d-amino acids in which the epimerization (E) domain catalyzes the conversion of l-amino acids to d-amino acids, but its mechanism remains not fully understood. Here, we describe the development of pantetheine crosslinking probes that mimic the natural substrate l-Phe of the initiation module of tyrocidine synthetase, TycA, to elucidate and study the catalytic residues of the E domain. Mechanism-based crosslinking assays and MALDI-TOF MS were used to identify both H743 and E882 as the crosslinking site residues, demonstrating their roles as catalytic bases. Mutagenesis studies further validated these results and allowed the comparison of reactivity between the catalytic residues, concluding that glutamate acts as the dominant nucleophile in the crosslinking reaction, resembling the deprotonation of the Cα-H of amino acids in the epimerization reaction. The crosslinking probes employed in these studies provide new tools for studying the molecular details of E domains, as well as the potential to study C domains. In particular, they would elucidate key information for how these domains function and interact with their substrates in nature, further enhancing the knowledge needed to assist combinatorial biosynthetic efforts of NRPS systems to produce novel compounds.
Collapse
Affiliation(s)
- Woojoo E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
19
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Wang C, Lu J, Zhang Y, Zheng J, Sun S, Huang S, Wang H. Substrate plasticity of dehydratase SpaKC from the biosynthesis of thiosparsoamide. J Pept Sci 2021; 28:e3388. [PMID: 34931400 DOI: 10.1002/psc.3388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Thioamitides are a group of ribosomally synthesized and post-translationally modified peptides that possess diverse bioactivities and are usually featured by thioamide and 2-aminovinyl-cysteine (AviCys) motifs. In natural product thiosparsoamide, the AviCys motif is formed by an enzyme cascade formed by the flavin-dependent decarboxylase SpaD and dehydratase SpaKC. SpaKC is a lanthipeptide synthetase homolog located outside the thiosparsoamide biosynthetic gene cluster. In this study, we show that SpaKC does not strictly require the N-terminal leader peptide of precursor peptide SpaA for substrate recognition and dehydration. The C-terminal seven residues serve as a minimal structural element for enzyme recognition. Through a systematic mutagenesis experiments, our study demonstrates the relaxed substrate specificity of SpaKC as a dehydratase and potentially as an enzymatic tool to install dehydroalanine or dehydrobutyrine motifs in peptides.
Collapse
Affiliation(s)
- Ciji Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yingying Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shanqing Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
22
|
Zhang M, He P, Li Y. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
24
|
Patel KP, Silsby LM, Li G, Bruner SD. Structure-Based Engineering of Peptide Macrocyclases for the Chemoenzymatic Synthesis of Microviridins. J Org Chem 2021; 86:11212-11219. [PMID: 34263606 DOI: 10.1021/acs.joc.1c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microviridins are cyanobacterial tricyclic depsipeptides with unique ring architectures and function as serine protease inhibitors. In this study, we explore two strategies to probe the structure and mechanism of macrocyclases involved in microviridin biosynthesis. The results both provide approaches for in vitro chemoenzymatic synthesis and insight into the molecular interactions and function of the biosynthetic enzymes. The first strategy involves generating constitutively activated macrocyclases whereby the leader portion of the substrate peptide is covalently attached to the ATP-grasp ligases to examine leader peptide/enzyme interactions. The second strategy uses a structure-based design to create disulfide cross-linked peptide/enzyme complexes. Together, the strategies provide constitutively active enzymes and tools to study the catalysis of the macrocyclizations on synthetic core peptides.
Collapse
Affiliation(s)
- Krishna P Patel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lily M Silsby
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Gengnan Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
25
|
Benjdia A, Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front Chem 2021; 9:678068. [PMID: 34350157 PMCID: PMC8326336 DOI: 10.3389/fchem.2021.678068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| |
Collapse
|
26
|
Uzunov B, Stefanova K, Radkova M, Descy JP, Gärtner G, Stoyneva-Gärtner M. First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins (Basel) 2021; 13:toxins13070448. [PMID: 34203459 PMCID: PMC8310014 DOI: 10.3390/toxins13070448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bulgaria, situated on the Balkan Peninsula, is rich in small and shallow, natural and man-made non-lotic waterbodies, which are threatened by blooms of Cyanoprokaryota/Cyanobacteria. Although cyanotoxins in Bulgarian surface waters are receiving increased attention, there is no information on microviridins and their producers. This paper presents results from a phytoplankton study, conducted in August 2019 in three lakes (Durankulak, Vaya, Uzungeren) and five reservoirs (Duvanli, Mandra, Poroy, Sinyata Reka, Zhrebchevo) in which a molecular-genetic analysis (PCR based on the precursor mdnA gene and subsequent translation to amino acid alignments), combined with conventional light microscopy and an HPLC analysis of marker pigments, were applied for the identification of potential microviridin producers. The results provide evidence that ten strains of the genus Microcystis, and of its most widespread species M. aeruginosa in particular, are potentially toxigenic in respect to microviridins. The mdnA sequences were obtained from all studied waterbodies and their translation to amino-acid alignments revealed the presence of five microviridin variants (types B/C, Izancya, CBJ55500.1 (Microcystis 199), and MC19, as well as a variant, which was very close to type A). This study adds to the general understanding of the microviridin occurrence, producers, and sequence diversity.
Collapse
Affiliation(s)
- Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| | - Katerina Stefanova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Jean-Pierre Descy
- Unité d’Océanographie Chimique, Université de Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Georg Gärtner
- Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria;
| | - Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| |
Collapse
|
27
|
Bothwell IR, Caetano T, Sarksian R, Mendo S, van der Donk WA. Structural Analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 Reveals an Unusual Ring Pattern. ACS Chem Biol 2021; 16:1019-1029. [PMID: 34085816 PMCID: PMC9845027 DOI: 10.1021/acschembio.1c00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide natural products characterized by the presence of lanthionine and methyllanthionine cross-linked amino acids formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a cosubstrate to glutamylate Ser/Thr followed by glutamate elimination. A vast majority of lanthipeptides identified from class I synthase systems have been from Gram-positive bacteria. Herein, we report the heterologous expression and modification in Escherichia coli of two lanthipeptides from the Gram-negative Bacteroidetes Pedobacter lusitanus NL19. These peptides are representative of a group of compounds frequently encoded in Pedobacter genomes. Structural characterization of the lanthipeptides revealed a novel ring pattern as well as an unusual ll-lanthionine stereochemical configuration and a cyclase that lacks the canonical zinc ligands found in most LanC enzymes.
Collapse
Affiliation(s)
- Ian R Bothwell
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| | - Tânia Caetano
- Molecular Biotechnology Laboratory, CESAM, and Departamento de Biologia|Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Raymond Sarksian
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| | - Sónia Mendo
- Molecular Biotechnology Laboratory, CESAM, and Departamento de Biologia|Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| |
Collapse
|
28
|
Zhao G, Kosek D, Liu HB, Ohlemacher SI, Blackburne B, Nikolskaya A, Makarova KS, Sun J, Barry Iii CE, Koonin EV, Dyda F, Bewley CA. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product. J Am Chem Soc 2021; 143:8056-8068. [PMID: 34028251 DOI: 10.1021/jacs.1c02316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products, "graspetides" (formerly known as microviridins) contain macrocyclic esters and amides that are formed by ATP-grasp ligase tailoring enzymes using the side chains of Asp/Glu as acceptors and Thr/Ser/Lys as donors. Graspetides exhibit diverse patterns of macrocylization and connectivities exemplified by microviridins, that have a caged tricyclic core, and thuringin and plesiocin that feature a "hairpin topology" with cross-strand ω-ester bonds. Here, we characterize chryseoviridin, a new type of multicore RiPP encoded by Chryseobacterium gregarium DS19109 (Phylum Bacteroidetes) and solve a 2.44 Å resolution crystal structure of a quaternary complex consisting of the ATP-grasp ligase CdnC bound to ADP, a conserved leader peptide and a peptide substrate. HRMS/MS analyses show that chryseoviridin contains four consecutive five- or six-residue macrocycles ending with a microviridin-like core. The crystal structure captures respective subunits of the CdnC homodimer in the apo or substrate-bound state revealing a large conformational change in the B-domain upon substrate binding. A docked model of ATP places the γ-phosphate group within 2.8 Å of the Asp acceptor residue. The orientation of the bound substrate is consistent with a model in which macrocyclization occurs in the N- to C-terminal direction for core peptides containing multiple Thr/Ser-to-Asp macrocycles. Using systematically varied sequences, we validate this model and identify two- or three-amino acid templating elements that flank the macrolactone and are required for enzyme activity in vitro. This work reveals the structural basis for ω-ester bond formation in RiPP biosynthesis.
Collapse
Affiliation(s)
- Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hong-Bing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Brittney Blackburne
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Anastasia Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
29
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
30
|
|
31
|
Travin DY, Severinov K, Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem Biol 2021; 2:468-485. [PMID: 34382000 PMCID: PMC8323819 DOI: 10.1039/d0cb00208a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
- Waksman Institute for Microbiology, Rutgers, Piscataway New Jersey USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
32
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
33
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
34
|
Current Knowledge on Microviridin from Cyanobacteria. Mar Drugs 2021; 19:md19010017. [PMID: 33406599 PMCID: PMC7823629 DOI: 10.3390/md19010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites with a vast biotechnological potential. These compounds have intrigued the scientific community due their uniqueness and diversity, which is guaranteed by a rich enzymatic apparatus. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are among the most promising metabolite groups derived from cyanobacteria. They are interested in numerous biological and ecological processes, many of which are entirely unknown. Microviridins are among the most recognized class of ribosomal peptides formed by cyanobacteria. These oligopeptides are potent inhibitors of protease; thus, they can be used for drug development and the control of mosquitoes. They also play a key ecological role in the defense of cyanobacteria against microcrustaceans. The purpose of this review is to systematically identify the key characteristics of microviridins, including its chemical structure and biosynthesis, as well as its biotechnological and ecological significance.
Collapse
|
35
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
36
|
Zdouc MM, Alanjary MM, Zarazúa GS, Maffioli SI, Crüsemann M, Medema MH, Donadio S, Sosio M. A biaryl-linked tripeptide from Planomonospora reveals a widespread class of minimal RiPP gene clusters. Cell Chem Biol 2020; 28:733-739.e4. [PMID: 33321099 DOI: 10.1016/j.chembiol.2020.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Microbial natural products impress by their bioactivity, structural diversity, and ingenious biosynthesis. While screening the less exploited actinobacterial genus Planomonospora, two cyclopeptides were discovered, featuring an unusual Tyr-His biaryl bridging across a tripeptide scaffold, with the sequences N-acetyl-Tyr-Tyr-His and N-acetyl-Tyr-Phe-His. Planomonospora genomes pointed toward a ribosomal synthesis of the cyclopeptide from a pentapeptide precursor encoded by 18-bp bytA, to our knowledge the smallest coding gene ever reported. Closely linked to bytA is bytO, encoding a cytochrome P450 monooxygenase likely responsible for biaryl installment. In Streptomyces, the bytAO segment was sufficient to direct production of the crosslinked N-acetylated Tyr-Tyr-His tripeptide. Bioinformatic analysis of related cytochrome P450 monooxygenases indicated that they constitute a widespread family of enzymes, and the corresponding genes are closely linked to 5-amino acid coding sequences in approximately 200 (actino)bacterial genomes, all with potential for biaryl linkage between amino acids 1 and 3. We propose the named biarylitides this family of RiPPs.
Collapse
Affiliation(s)
- Mitja M Zdouc
- Naicons Srl., Viale Ortles 22/4, 20139 Milano, Italy; Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH 1098, the Netherlands.
| | - Mohammad M Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, the Netherlands
| | - Guadalupe S Zarazúa
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, Nußallee 6, Bonn 53115, Germany
| | | | - Max Crüsemann
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, Nußallee 6, Bonn 53115, Germany
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, the Netherlands
| | | | | |
Collapse
|
37
|
Sikandar A, Lopatniuk M, Luzhetskyy A, Koehnke J. Non-Heme Monooxygenase ThoJ Catalyzes Thioholgamide β-Hydroxylation. ACS Chem Biol 2020; 15:2815-2819. [PMID: 32965102 DOI: 10.1021/acschembio.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thioviridamide-like compounds, including thioholgamides, are ribosomally synthesized and post-translationally modified peptide natural products with potent anticancer cell activity and an unprecedented structure. Very little is known about their biosynthesis, and we were intrigued by the β-hydroxy-N1, N3-dimethylhistidinium moiety found in these compounds. Here we report the construction of a heterologous host capable of producing thioholgamide with a 15-fold increased yield compared to the wild-type strain. A knockout of thoJ, encoding a predicted nonheme monooxygenase, shows that ThoJ is essential for thioholgamide β-hydroxylation. The crystal structure of ThoJ exhibits a typical mono/dioxygenase fold with conserved key active-site residues. Yet, ThoJ possesses a very large substrate binding pocket that appears suitable to receive a cyclic thioholgamide intermediate for hydroxylation. The improved production of the heterologous host will enable the dissection of the individual biosynthetic steps involved in biosynthesis of this exciting RiPP family.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Maria Lopatniuk
- Department Microbial Natural Products, Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, CampusC2.3, 66123 Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department Microbial Natural Products, Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, CampusC2.3, 66123 Saarbrücken, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
38
|
Hudson GA, Hooper AR, DiCaprio AJ, Sarlah D, Mitchell DA. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products. Org Lett 2020; 23:253-256. [PMID: 32845158 DOI: 10.1021/acs.orglett.0c02699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural and functional characterization of natural products is vastly outpaced by the bioinformatic identification of biosynthetic gene clusters (BGCs) that encode such molecules. Uniting our knowledge of bioinformatics and enzymology to predict and synthetically access natural products is an effective platform for investigating cryptic/silent BGCs. We report the identification, biosynthesis, and total synthesis of a minimalistic class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with the responsible BGCs encoding a subset of enzymes known from thiopeptide biosynthesis. On the basis of the BGC content, these RiPPs were predicted to undergo enzymatic dehydration of serine followed by [4+2]-cycloaddition to produce a trisubstituted, pyridine-based macrocycle. These RiPPs, termed "pyritides", thus contain the same six-membered, nitrogenous heterocycle that defines the thiopeptide RiPP class but lack the ubiquitous thiazole/thiazoline heterocycles, suggesting that thiopeptides should be reclassified as a more elaborate subclass of the pyritides. One pyritide product was obtained using an 11-step synthesis, and the structure verified by an orthogonal chemoenzymatic route using the precursor peptide and cognate pyridine synthase. This work exemplifies complementary bioinformatics, enzymology, and synthesis to characterize a minimalistic yet structurally intriguing scaffold that, unlike most thiopeptides, lacks growth-suppressive activity toward Gram-positive bacteria.
Collapse
Affiliation(s)
- Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Annie R Hooper
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Adam J DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - David Sarlah
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. RESULTS Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. CONCLUSION Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM, 87131, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kenton J Hetrick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Sarah E Ackenhusen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
40
|
Kubatova N, Pyper DJ, Jonker HRA, Saxena K, Remmel L, Richter C, Brantl S, Evguenieva‐Hackenberg E, Hess WR, Klug G, Marchfelder A, Soppa J, Streit W, Mayzel M, Orekhov VY, Fuxreiter M, Schmitz RA, Schwalbe H. Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of Small Proteins from Bacteria and Archaea. Chembiochem 2020; 21:1178-1187. [PMID: 31705614 PMCID: PMC7217052 DOI: 10.1002/cbic.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.
Collapse
Affiliation(s)
- Nina Kubatova
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Laura Remmel
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Sabine Brantl
- AG BakteriengenetikMatthias-Schleiden-InstitutPhilosophenweg 1207743JenaGermany
| | - Elena Evguenieva‐Hackenberg
- Institute for Microbiology and Molecular BiologyJustus Liebig University GiessenHeinrich-Buff-Ring 2635392GiessenGermany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental BioinformaticsAlbert Ludwigs University FreiburgSchänzlestrasse 179104FreiburgGermany
| | - Gabriele Klug
- Institute for Microbiology and Molecular BiologyJustus Liebig University GiessenHeinrich-Buff-Ring 2635392GiessenGermany
| | | | - Jörg Soppa
- Institute for Molecular BiosciencesJohann Wolfgang Goethe UniversityMax-von-Laue-Strasse 960438Frankfurt am MainGermany
| | - Wolfgang Streit
- Department of Microbiology and BiotechnologyUniversity of HamburgOhnhorststrasse 1822609HamburgGermany
| | - Maxim Mayzel
- Swedish NMR CentreUniversity of GothenburgP. O. Box 46540530GothenburgSweden
| | - Vladislav Y. Orekhov
- Swedish NMR CentreUniversity of GothenburgP. O. Box 46540530GothenburgSweden
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GothenburgSweden
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein DynamicsDepartment of Biochemistry and Molecular BiologyUniversity of DebrecenNagyerdei krt 984032DebrecenHungary
| | - Ruth A. Schmitz
- Institute for General MicrobiologyChristian Albrechts University KielAm Botanischen Garten 1–924118KielGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| |
Collapse
|
41
|
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc 2019; 141:16790-16801. [PMID: 31568727 DOI: 10.1021/jacs.9b07396] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a β-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a β-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ian R Bothwell
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linna An
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Abby Trouth
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Clara Frazier
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
42
|
Precord TW, Mahanta N, Mitchell DA. Reconstitution and Substrate Specificity of the Thioether-Forming Radical S-Adenosylmethionine Enzyme in Freyrasin Biosynthesis. ACS Chem Biol 2019; 14:1981-1989. [PMID: 31449382 DOI: 10.1021/acschembio.9b00457] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical non-α-carbon thioether peptides (ranthipeptides) are a newly described class of ribosomally synthesized and post-translationally modified peptide (RiPP). Ranthipeptide biosynthetic gene clusters are characterized by a Cys-rich precursor peptide and a radical S-adenosylmethionine (rSAM)-dependent enzyme that forms a thioether linkage between a Cys donor and an acceptor residue. Unlike the sulfur-to-α-carbon linked thioether peptides (sactipeptides), known ranthipeptides contain thioethers to either the β- or γ-carbon (i.e., non-α-carbon) of an acceptor residue. Recently, we reported the discovery of freyrasin, a ranthipeptide from Paenibacillus polymyxa, which contains six thioethers from Cys-X3-Asp motifs present in the precursor peptide (PapA). The linkages are exclusively to the β-carbon of Asp (S-Cβ). In this report, we performed mutational analysis of PapA and the cognate thioether-forming rSAM enzyme (PapB) to define the substrate scope. Using a mass spectrometry-based activity assay, our data show that PapB is intolerant toward Ala and Asn in the acceptor position but tolerates Glu-containing variants. NMR spectroscopic data of a Glu variant demonstrated that the thioether linkage was to the 4-position of Glu (S-Cγ). Furthermore, we demonstrate that PapB is intolerant to expansion and contraction of the thioether motifs (Cys-Xn-Asp, n = 2 or 4), although a minimal substrate featuring only one Cys-X3-Asp motif was competent for thioether formation. Akin to the sactipeptides, PapB was dependent on a RiPP recognition element (RRE) to bind the cognate precursor peptide, with deletion resulting in loss-of-function in vivo. The activity of PapB could be restored in vivo by supplying the excised RRE in trans. Finally, we reconstituted the activity of PapB in vitro, which led to modification of all six Cys residues in PapA. These studies provide insights into ranthipeptide biosynthesis and expand our understanding of rSAM enzyme chemistry in natural product biosynthesis.
Collapse
Affiliation(s)
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | | |
Collapse
|
43
|
Lu J, Li J, Wu Y, Fang X, Zhu J, Wang H. Characterization of the FMN-Dependent Cysteine Decarboxylase from Thioviridamide Biosynthesis. Org Lett 2019; 21:4676-4679. [PMID: 31184189 DOI: 10.1021/acs.orglett.9b01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biosynthesis of thioviridamide-like compounds has not been elucidated. Herein, we report that TvaF from the thioviridamide biosynthetic gene cluster is an FMN-dependent cysteine decarboxylase that transforms the C-terminal cysteine of precursor peptides into a thioenol motif and exhibits high substrate flexibility. We resolved the crystal structure of TvaF bound with FMN at 2.24 Å resolution. Key residues for FMN binding and catalytic activity of TvaF have been identified and evaluated by mutagenesis studies.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jiao Li
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yuan Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
44
|
Scheidler CM, Kick LM, Schneider S. Ribosomal Peptides and Small Proteins on the Rise. Chembiochem 2019; 20:1479-1486. [PMID: 30648812 DOI: 10.1002/cbic.201800715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/05/2022]
Abstract
Genetically encoded and ribosomally synthesised peptides and small proteins act as important regulators in fundamental cellular processes, including gene expression, development, signalling and metabolism. Moreover, they also play a crucial role in eukaryotic and prokaryotic defence against microorganisms. Extremely diverse in size and structure, they are often subject to extensive post-translational modification. Recent technological advances are now allowing the analysis of the whole cellular transcriptome and proteome, revealing the presence of hundreds of long-overlooked alternative and short open reading frames (short ORFs, or sORFs) in mRNA and supposedly noncoding RNAs. However, in many instances the biological roles of their translational products remain to be elucidated. Here we provide an overview on the intriguing structural and functional diversity of ribosomally synthesised peptides and newly discovered peptides and small proteins.
Collapse
Affiliation(s)
- Christopher M Scheidler
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Leonhard M Kick
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
45
|
Abstract
ABSTRACT
Peptides, biologically occurring oligomers of amino acids linked by amide bonds, are essential for living organisms. Many peptides isolated as natural products have biological functions such as antimicrobial, antivirus and insecticidal activities. Peptides often possess structural features or modifications not found in proteins, including the presence of nonproteinogenic amino acids, macrocyclic ring formation, heterocyclization, N-methylation and decoration by sugars or acyl groups. Nature employs various strategies to increase the structural diversity of peptides. Enzymes that modify peptides to yield mature natural products are of great interest for discovering new enzyme chemistry and are important for medicinal chemistry applications. We have discovered novel peptide modifying enzymes and have identified: (i) a new class of amide bond forming-enzymes; (ii) a pathway to biosynthesize a carbonylmethylene-containing pseudodipeptide structure; and (iii) two distinct peptide epimerases. In this review, an overview of our findings on peptide modifying enzymes is presented.
Collapse
|
46
|
Maaskant RV, Roelfes G. Bioorthogonal Metalloporphyrin-Catalyzed Selective Methionine Alkylation in the Lanthipeptide Nisin. Chembiochem 2019; 20:57-61. [PMID: 30246492 PMCID: PMC6680192 DOI: 10.1002/cbic.201800493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Bioorthogonal catalytic modification of ribosomally synthesized and post-translationally modified peptides (RiPPs) is a promising approach to obtaining novel antimicrobial peptides with improved properties and/or activities. Here, we present the serendipitous discovery of a selective and rapid method for the alkylation of methionines in the lanthipeptide nisin. Using carbenes, formed from water-soluble metalloporphyrins and diazoacetates, methionines are alkylated to obtain sulfonium ions. The formed sulfonium ions are stable, but can be further reacted to obtain functionalized methionine analogues, expanding the toolbox of chemical posttranslational modification even further.
Collapse
Affiliation(s)
- Ruben V. Maaskant
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
47
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
48
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
49
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
50
|
Di Costanzo L, Dutta S, Burley SK. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018; 109:e23230. [PMID: 30368772 DOI: 10.1002/bip.23230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Extensive efforts invested in understanding the rules of protein folding are now being applied, with good effect, in de novo design of proteins/peptides. For proteins containing standard α-amino acids alone, knowledge derived from experimentally determined three-dimensional (3D) structures of proteins and biologically active peptides are available from the Protein Data Bank (PDB), and the Cambridge Structural Database (CSD). These help predict and design protein structures, with reasonable confidence. However, our knowledge of 3D structures of biomolecules containing backbone modified amino acids is still evolving. A major challenge in de novo protein/peptide design concerns the engineering of conformationally constrained molecules with specific structural elements and chemical groups appropriately positioned for biological activity. This review explores four classes of amino acid modifications that constrain protein/peptide backbone structure. Systematic analysis of peptidic molecule structures (eg, bioactive peptides, inhibitors, antibiotics, and designed molecules), containing these backbone-modified amino acids, found in the PDB and CSD are discussed. The review aims to provide structure-function insights that will guide future design of proteins/peptides.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, U.S.A.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| |
Collapse
|