1
|
Vura-Weis J. Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes. Annu Rev Phys Chem 2025; 76:455-470. [PMID: 39952644 DOI: 10.1146/annurev-physchem-082720-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3p → 3d transitions for 3d metals and 4f, 5p → 5d transitions in 5d metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.
Collapse
Affiliation(s)
- Josh Vura-Weis
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
2
|
Sakizadeh JD, Weiss R, Scholes GD, Kudisch B. Ultrafast Spectroscopy and Dynamics of Photoredox Catalysis. Annu Rev Phys Chem 2025; 76:203-229. [PMID: 39899834 DOI: 10.1146/annurev-physchem-082423-013952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.
Collapse
Affiliation(s)
- John D Sakizadeh
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Rachel Weiss
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, USA;
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Bryan Kudisch
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, USA;
| |
Collapse
|
3
|
Bäuml L, de Vivie-Riedle R. Coupled Nuclear and Electron Dynamics in Chlorophyll Unraveled by XMS-CASPT2 X-ray Absorption Spectra. J Phys Chem B 2025; 129:2159-2167. [PMID: 39960808 DOI: 10.1021/acs.jpcb.4c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Attosecond spectroscopy, especially time-resolved X-ray absorption spectra (XAS), enables direct observation of ultrafast molecular dynamics. The complementary and even preceding development of theoretical simulations can offer the necessary guidance and stimulate new experiments. In this work, we simulated high-level XAS for the magnesium and nitrogen K-edge of chlorophyll a. In our previous work on the ultrafast relaxation process in the Q-band, our quantum dynamics simulations found the Qx and Qy states to be energetically close and therefore strongly coupled. Here, we analyze the strong coupling between Qx and Qy via XAS, indicating promising possibilities for experimental observation. The excited-state energies, potential energy surfaces, and XAS are computed at the XMS-CASPT2 level of theory to capture the complex multireference character of chlorophyll excitations. In our simulated spectra, we could follow the ultrafast population transfer between Qx and Qy and thus draw conclusions about the strong vibrational coupling between them.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | |
Collapse
|
4
|
Penfold TJ, Curchod BFE. Exploring the Influence of Approximations for Simulating Valence Excited X-ray Spectra. J Phys Chem A 2024; 128:10826-10836. [PMID: 39630609 DOI: 10.1021/acs.jpca.4c06150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of n-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.
Collapse
Affiliation(s)
- Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon-Tyne NE1 7RU, United Kingdom
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Lin Z, Liu J, Zhang C, Zheng X, Cheng L. Elucidating Anomalous Intensity Ratios in Chlorine L-Edge X-ray Absorption Spectroscopy: Multiplet Effects and Core Rydberg Transitions. J Phys Chem A 2024; 128:8373-8383. [PMID: 39312206 DOI: 10.1021/acs.jpca.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A relativistic core-valence-separated equation-of-motion coupled cluster (CVS-EOM-CC) study of chlorine L2,3-edge X-ray absorption near-edge structure (XANES) spectra using CH3Cl and CH2ICl as representative molecules is reported. The nearly identical intensity for the main features in the L2- and L3-edge XANES spectra is attributed to multiplet effects and the overlap between core-valence and core Rydberg transitions. The multiplet effects originating from the interaction between the core hole and the C-Cl σ* orbitals account for around half of the deviation of the L3 and L2 intensity ratio from the 2:1 ratio of the numbers of 2p3/2 and 2p1/2 electrons. The 2p3/2 → 4s core Rydberg transitions are shown to overlap with the 2p1/2 → σ* transitions and contribute to the other half of the intensity anomaly. We demonstrate that triple excitations in CVS-EOM-CC calculations play important roles in accurate simulation of the overlap between the 2p1/2 → σ* and 2p3/2 → 4s transitions.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Ross AD, Hait D, Scutelnic V, Neumark DM, Head-Gordon M, Leone SR. Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L 2,3- edges. COMMUNICATIONS PHYSICS 2024; 7:304. [PMID: 39281307 PMCID: PMC11399099 DOI: 10.1038/s42005-024-01794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
X-ray Transient Absorption Spectroscopy (XTAS) is a powerful probe for ultrafast molecular dynamics. The evolution of XTAS signal is controlled by the shapes of potential energy surfaces of the associated core-excited states, which are difficult to directly measure. Here, we study the vibrational dynamics of Raman activated CCl4 with XTAS targeting the C 1s and Cl 2p electrons. The totally symmetric stretching mode leads to concerted elongation or contraction in bond lengths, which in turn induce an experimentally measurable red or blue shift in the X-ray absorption energies associated with inner-shell electron excitations to the valence antibonding levels. The ratios between slopes of different core-excited potential energy surfaces (CEPESs) thereby extracted agree very well with Restricted Open-Shell Kohn-Sham calculations. The other, asymmetric, modes do not measurably contribute to the XTAS signal. The results highlight the ability of XTAS to reveal coherent nuclear dynamics involving < 0.01 Å atomic displacements and also provide direct measurement of forces on CEPESs.
Collapse
Affiliation(s)
- Andrew D Ross
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Toptica Photonics, Inc., Pittsford, NY 14534 USA
| | - Diptarka Hait
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Department of Chemistry and PULSE Institute, Stanford University, Stanford, CA 94305 USA
| | - Valeriu Scutelnic
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Daniel M Neumark
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Stephen R Leone
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Physics, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
7
|
Maity B, Shoji M, Luo F, Nakane T, Abe S, Owada S, Kang J, Tono K, Tanaka R, Pham TT, Kojima M, Hishikawa Y, Tanaka J, Tian J, Nagama M, Suzuki T, Noya H, Nakasuji Y, Asanuma A, Yao X, Iwata S, Shigeta Y, Nango E, Ueno T. Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography. Nat Commun 2024; 15:5518. [PMID: 38951539 PMCID: PMC11217357 DOI: 10.1038/s41467-024-49814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales. However, the methodology has been mostly applied to natural proteins/enzymes and limited to reactions promoted by synthetic molecules due to structure determination challenges. This work demonstrates the applicability of TR-SFX for investigations of chemical reaction mechanisms of synthetic metal complexes. We fix a light-induced CO-releasing Mn(CO)3 reaction center in porous hen egg white lysozyme (HEWL) microcrystals. By controlling light exposure and time, we capture the real-time formation of Mn-carbonyl intermediates during the CO release reaction. The asymmetric protein environment is found to influence the order of CO release. The experimentally-observed reaction path agrees with quantum mechanical calculations. Therefore, our demonstration offers a new approach to visualize atomic-level reactions of small molecules using TR-SFX with real-space structure determination. This advance holds the potential to facilitate design of artificial metalloenzymes with precise mechanisms, empowering design, control and development of innovative reactions.
Collapse
Affiliation(s)
- Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan.
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Fangjia Luo
- JASRI, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takanori Nakane
- Institute of Protein Research, Osaka University, Osaka, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Shigeki Owada
- JASRI, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | | | - Kensuke Tono
- JASRI, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thuc Toan Pham
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Yuki Hishikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Junko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Jiaxin Tian
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Misaki Nagama
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Taiga Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Hiroki Noya
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Yuto Nakasuji
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Asuka Asanuma
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Xinchen Yao
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan.
- Tohoku University. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan.
| |
Collapse
|
8
|
Gaba NP, de Moura CEV, Majumder R, Sokolov AY. Simulating transient X-ray photoelectron spectra of Fe(CO) 5 and its photodissociation products with multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2024; 26:15927-15938. [PMID: 38805029 DOI: 10.1039/d4cp00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate simulations of transient X-ray photoelectron spectra (XPS) provide unique opportunities to bridge the gap between theory and experiment in understanding the photoactivated dynamics in molecules and materials. However, simulating X-ray photoelectron spectra along a photochemical reaction pathway is challenging as it requires accurate description of electronic structure incorporating core-hole screening, orbital relaxation, electron correlation, and spin-orbit coupling in excited states or at nonequilibrium ground-state geometries. In this work, we employ the recently developed multireference algebraic diagrammatic construction theory (MR-ADC) to investigate the core-ionized states and X-ray photoelectron spectra of Fe(CO)5 and its photodissociation products (Fe(CO)4, Fe(CO)3) following excitation with 266 nm light. The simulated transient Fe 3p and CO 3σ XPS spectra incorporating spin-orbit coupling and high-order electron correlation effects are shown to be in a good agreement with the experimental measurements by Leitner et al. [J. Chem. Phys., 2018, 149, 044307]. Our calculations suggest that core-hole screening, spin-orbit coupling, and ligand-field splitting effects are similarly important in reproducing the experimentally observed chemical shifts in transient Fe 3p XPS spectra of iron carbonyl complexes. Our results also demonstrate that the MR-ADC methods can be very useful in interpreting the transient XPS spectra of transition metal compounds.
Collapse
Affiliation(s)
- Nicholas P Gaba
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
9
|
Leone SR. Reinvented: An Attosecond Chemist. Annu Rev Phys Chem 2024; 75:1-19. [PMID: 38012050 DOI: 10.1146/annurev-physchem-083122-011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Attosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed. The lessons learned, expressed in the meanderings of this autobiographical article, may be of benefit to others who try to reinvent themselves.
Collapse
Affiliation(s)
- Stephen R Leone
- Departments of Chemistry and Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA;
| |
Collapse
|
10
|
Garner SM, Haugen EA, Leone SR, Neuscamman E. Spin Coupling Effect on Geometry-Dependent X-Ray Absorption of Diradicals. J Am Chem Soc 2024; 146:2387-2397. [PMID: 38235992 DOI: 10.1021/jacs.3c08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We theoretically investigate the influence of diradical electron spin coupling on the time-resolved X-ray absorption spectra of the photochemical ring opening of furanone. We predict geometry-dependent carbon K-edge signals involving transitions from core orbitals to both singly and unoccupied molecular orbitals. The most obvious features of the ring opening come from the carbon atom directly involved in the bond breaking through its transition to both the newly formed singly occupied and the available lowest unoccupied molecular orbitals (SOMO and LUMO, respectively). In addition to this primary feature, the singlet spin coupling of four unpaired electrons that arises in the core-to-LUMO states creates additional geometry dependence in some spectral features with both oscillator strengths and relative excitation energies varying observably as a function of the ring opening. We attribute this behavior to a spin-occupancy-induced selection rule, which occurs when singlet spin coupling is enforced in the diradical state. Notably, one of these geometry-sensitive core-to-LUMO transitions excites core electrons from a backbone carbon not involved in the bond breaking, providing a novel nonlocal X-ray probe of chemical dynamics arising from electron spin coupling.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric A Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Segatta F, Aranda D, Aleotti F, Montorsi F, Mukamel S, Garavelli M, Santoro F, Nenov A. Time-Resolved X-ray Absorption Spectroscopy: An MCTDH Quantum Dynamics Protocol. J Chem Theory Comput 2024; 20:307-322. [PMID: 38101807 PMCID: PMC10782456 DOI: 10.1021/acs.jctc.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Expressions for linear and nonlinear spectroscopy simulation in the X-ray window in which the time evolution of a photoexcited molecular system is treated via quantum dynamics are derived. By leveraging on the peculiar properties of core-excited/ionized states, first- and third-order response functions are recast in the limit of time-scale separation between the extremely short core-state lifetime and the (comparably longer) electronic-state transfer and nuclear vibrational motion. This work is a natural extension of Segatta et al. (J. Chem. Theory Comput. 2023, 19, 2075-2091), in which some of the present authors coupled MCTDH quantum dynamics to spectroscopy simulation at different levels of sophistication. Full quantum dynamics and approximate expressions are compared by simulating X-ray transient absorption spectroscopy at the carbon K-edge in the pyrene molecule.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda
- ICMol, Universidad de Valencia, c/Catedrático José
Beltrán,
2, 46980 Paterna, Spain
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Montorsi
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, 92697 California, United States
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
12
|
Bäuml L, Rott F, Schnappinger T, de Vivie-Riedle R. Following the Nonadiabatic Ultrafast Dynamics of Uracil via Simulated X-ray Absorption Spectra. J Phys Chem A 2023; 127:9787-9796. [PMID: 37955656 DOI: 10.1021/acs.jpca.3c06509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The nucleobase uracil exhibits high photostability due to ultrafast relaxation processes mediated by conical intersections (CoIns), where the interplay between nuclear and electron dynamics becomes crucial. In our previous study, we observed seemingly long-lived traces of electronic coherence for the relaxation process through the S2/S1 CoIn by applying our ansatz for coupled nuclear and electron dynamics in molecules (NEMol). In this work, we theoretically investigate how time-dependent transient X-ray absorption spectroscopy can be used to observe this ultrafast dynamics. Therefore, we calculated X-ray absorption spectra (XAS) for the oxygen K-edge, using a multireference protocol in combination with NEMol dynamics. Thus, we have access to both the transient XAS based on the nuclear wavepacket dynamics and the modulation of the signals caused by the electronic coherence induced by the excitation process and the presence of a CoIn seam. In both cases, we were able to qualitatively predict its influence on the resulting XAS.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | - Florian Rott
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | | | |
Collapse
|
13
|
Kaczun T, Dempwolff AL, Huang X, Gelin MF, Domcke W, Dreuw A. Tuning UV Pump X-ray Probe Spectroscopy on the Nitrogen K Edge Reveals the Radiationless Relaxation of Pyrazine: Ab Initio Simulations Using the Quasiclassical Doorway-Window Approximation. J Phys Chem Lett 2023:5648-5656. [PMID: 37310800 DOI: 10.1021/acs.jpclett.3c01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an ab initio theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics. Using the second-order algebraic-diagrammatic construction scheme for excited states, UV pump X-ray probe signals were simulated for the carbon and nitrogen K edges of pyrazine, assuming a duration of 5 fs of the UV pump and X-ray probe pulses. It is predicted that spectra measured at the nitrogen K edge carry much richer information about the ultrafast nonadiabatic dynamics in the valence-excited states of pyrazine than those measured at the carbon K edge.
Collapse
Affiliation(s)
- Tobias Kaczun
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| |
Collapse
|
14
|
Hansen T, Bezriadina T, Popova-Gorelova D. Theoretical Description of Attosecond X-ray Absorption Spectroscopy of Frenkel Exciton Dynamics. Molecules 2023; 28:molecules28114502. [PMID: 37298978 DOI: 10.3390/molecules28114502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency of light-harvesting. Attosecond X-ray pulses are the tool with the necessary temporal resolution to resolve pure electronic processes with atomic sensitivity. We describe how attosecond X-ray pulses can probe coherent electronic processes during Frenkel-exciton transport in molecular aggregates. We analyze time-resolved absorption cross section taking broad spectral bandwidth of an attosecond pulse into account. We demonstrate that attosecond X-ray absorption spectra can reveal delocalization degree of coherent exciton transfer dynamics.
Collapse
Affiliation(s)
- Tim Hansen
- I. Institute for Theoretical Physics, Universität Hamburg, Notkestr. 9, 22607 Hamburg, Germany
| | - Tatiana Bezriadina
- I. Institute for Theoretical Physics, Universität Hamburg, Notkestr. 9, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, Luruper Chaussee 149, 22671 Hamburg, Germany
| | - Daria Popova-Gorelova
- I. Institute for Theoretical Physics, Universität Hamburg, Notkestr. 9, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, Luruper Chaussee 149, 22671 Hamburg, Germany
| |
Collapse
|
15
|
Huang M, Evangelista FA. A study of core-excited states of organic molecules computed with the generalized active space driven similarity renormalization group. J Chem Phys 2023; 158:124112. [PMID: 37003756 DOI: 10.1063/5.0137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
This work examines the accuracy and precision of x-ray absorption spectra computed with a multireference approach that combines generalized active space (GAS) references with the driven similarity renormalization group (DSRG). We employ the x-ray absorption benchmark of organic molecule (XABOOM) set, consisting of 116 transitions from mostly organic molecules [Fransson et al., J. Chem. Theory Comput. 17, 1618 (2021)]. Several approximations to a full-valence active space are examined and benchmarked. Absolute excitation energies and intensities computed with the GAS-DSRG truncated to second-order in perturbation theory are found to systematically underestimate experimental and reference theoretical values. Third-order perturbative corrections significantly improve the accuracy of GAS-DSRG absolute excitation energies, bringing the mean absolute deviation from experimental values down to 0.32 eV. The ozone molecule and glyoxylic acid are particularly challenging for second-order perturbation theory and are examined in detail to assess the importance of active space truncation and intruder states.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Schnack-Petersen AK, Moitra T, Folkestad SD, Coriani S. New Implementation of an Equation-of-Motion Coupled-Cluster Damped-Response Framework with Illustrative Applications to Resonant Inelastic X-ray Scattering. J Phys Chem A 2023; 127:1775-1793. [PMID: 36763003 DOI: 10.1021/acs.jpca.2c08181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We present an implementation of a damped response framework for calculating resonant inelastic X-ray scattering (RIXS) at the equation-of-motion coupled-cluster singles and doubles (CCSD) and second-order approximate coupled-cluster singles and doubles (CC2) levels of theory in the open-source program eT. This framework lays the foundation for future extension to higher excitation methods (notably, the coupled-cluster singles and doubles with perturbative triples, CC3) and to multilevel approaches. Our implementation adopts a fully relaxed ground state and different variants of the core-valence separation projection technique to address convergence issues. Illustrative results are compared with those obtained within the frozen-core core-valence separated approach, available in Q-Chem, as well as with experiment. The performance of the CC2 method is evaluated in comparison with that of CCSD. It is found that, while the CC2 method is noticeably inferior to CCSD for X-ray absorption spectra, the quality of the CC2 RIXS spectra is often comparable to that of the CCSD level of theory, when the same valence excited states are probed. Finally, we present preliminary RIXS results for a solvated molecule in aqueous solution.
Collapse
Affiliation(s)
| | - Torsha Moitra
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiTThe Arctic University of Norway, 9037 Tromsø, Norway
| | - Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
17
|
Moitra T, Konecny L, Kadek M, Rubio A, Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J Phys Chem Lett 2023; 14:1714-1724. [PMID: 36757216 PMCID: PMC9940299 DOI: 10.1021/acs.jpclett.2c03599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump-probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin-orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.
Collapse
Affiliation(s)
- Torsha Moitra
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marius Kadek
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Algorithmiq
Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York New York 10010, United States
- Nano-Bio
Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, 20018 San Sebastian, Spain
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 84104 Bratislava, Slovakia
| |
Collapse
|
18
|
Epshtein M, Tenorio BNC, Vidal ML, Scutelnic V, Yang Z, Xue T, Krylov AI, Coriani S, Leone SR. Signatures of the Bromine Atom and Open-Shell Spin Coupling in the X-ray Spectrum of the Bromobenzene Cation. J Am Chem Soc 2023; 145:3554-3560. [PMID: 36735829 DOI: 10.1021/jacs.2c12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.
Collapse
Affiliation(s)
- Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Marta L Vidal
- DTU Chemistry─Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry─Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Dorner-Kirchner M, Shumakova V, Coccia G, Kaksis E, Schmidt BE, Pervak V, Pugzlys A, Baltuška A, Kitzler-Zeiler M, Carpeggiani PA. HHG at the Carbon K-Edge Directly Driven by SRS Red-Shifted Pulses from an Ytterbium Amplifier. ACS PHOTONICS 2023; 10:84-91. [PMID: 36691427 PMCID: PMC9853858 DOI: 10.1021/acsphotonics.2c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, we introduce a simplified approach to efficiently extend the high harmonic generation (HHG) cutoff in gases without the need for laser frequency conversion via parametric processes. Instead, we employ postcompression and red-shifting of a Yb:CaF2 laser via stimulated Raman scattering (SRS) in a nitrogen-filled stretched hollow core fiber. This driving scheme circumvents the low-efficiency window of parametric amplifiers in the 1100-1300 nm range. We demonstrate this approach being suitable for upscaling the power of a driver with an optimal wavelength for HHG in the highly desirable XUV range between 200 and 300 eV, up to the carbon K-edge. Due to the combination of power scalability of a low quantum defect ytterbium-based laser system with the high conversion efficiency of the SRS technique, we expect a significant increase in the generated photon flux in comparison with established platforms for HHG in the water window. We also compare HHG driven by the SRS scheme with the conventional self-phase modulation (SPM) scheme.
Collapse
Affiliation(s)
| | - Valentina Shumakova
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Christian
Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics, University of Vienna, A-1090 Vienna, Austria
| | - Giulio Coccia
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Istituto
di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR)
and Dipartimento di Fisica-Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Edgar Kaksis
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
| | - Bruno E. Schmidt
- few-Cycle
Inc., 1650 Blvd. Lionel
Boulet, J3X 1P7, Varennes, QC Canada
| | - Vladimir Pervak
- Ludwig-Maximilians-Universität
München, Department of Physics, Am Coulombwall 1, 85748 Garching, Germany
- UltraFast
Innovations GmbH, Am
Coulombwall 1, 85748 Garching, Germany
| | - Audrius Pugzlys
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Center
for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| | - Andrius Baltuška
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
| | | | | |
Collapse
|
20
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
21
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
22
|
Golibrzuch K, Walpole V, Schönemann AM, Wodtke AM. Generation of Sub-nanosecond H Atom Pulses for Scattering from Single-Crystal Epitaxial Graphene. J Phys Chem A 2022; 126:8101-8110. [PMID: 36244013 PMCID: PMC9639161 DOI: 10.1021/acs.jpca.2c05364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Pulsed molecular beams allow high-density gas samples
to be cooled
to low internal temperatures and to produce narrow speed distributions.
They are particularly useful in combination with pulsed-laser-based
detection schemes and have also been used as pump pulses in pump–probe
experiments with neutral matter. The mechanical response of pulsed
valves and chopper wheels limits the duration of these pulses typically
to about 10–100 μs. Bunch compression photolysis has
been proposed as a means to produce atomic pulses shorter than 1 ns—an
experimental capability that would allow new measurements to be made
on chemical systems. This technique employs a spatially chirped femtosecond
duration photolysis pulse that produced an ensemble of H atom photoproducts
that rebunches into a short pulse downstream. To date, this technique
could not produce strong enough beams to allow new experiments to
be carried out. In this paper, we report production of pulsed H atom
beams consistent with a 700 ps pulse duration and with sufficient
intensity to carry out differentially resolved inelastic H scattering
experiments from a graphene surface. We observe surprisingly narrow
angular distributions for H atoms incident normal to the surface.
At low incidence energies quasi-elastic scattering dominates, and
at high incidence energy we observe a strongly inelastic scattering
channel. These results provide the basis for future experiments where
the H atoms synchronously collide with a pulsed-laser-excited surface.
Collapse
Affiliation(s)
- Kai Golibrzuch
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, and Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077Göttingen, Germany
| | - Victoria Walpole
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, and Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077Göttingen, Germany
| | - Anna-Maria Schönemann
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, and Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077Göttingen, Germany
| | - Alec M. Wodtke
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, and Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077Göttingen, Germany
| |
Collapse
|
23
|
Cunha LA, Hait D, Kang R, Mao Y, Head-Gordon M. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J Phys Chem Lett 2022; 13:3438-3449. [PMID: 35412838 DOI: 10.1021/acs.jpclett.2c00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-level spectra of 1s electrons of elements heavier than Ne show significant relativistic effects. We combine advances in orbital-optimized density functional theory (OO-DFT) with the spin-free exact two-component (X2C) model for scalar relativistic effects to study K-edge spectra of third period elements. OO-DFT/X2C is found to be quite accurate at predicting energies, yielding a ∼0.5 eV root-mean-square error versus experiment with the modern SCAN (and related) functionals. This marks a significant improvement over the >50 eV deviations that are typical for the popular time-dependent DFT (TDDFT) approach. Consequently, experimental spectra are quite well reproduced by OO-DFT/X2C, sans empirical shifts for alignment. OO-DFT/X2C combines high accuracy with ground state DFT cost and is thus a promising route for computing core-level spectra of third period elements. We also explored K and L edges of 3d transition metals to identify limitations of the OO-DFT/X2C approach in modeling the spectra of heavier atoms.
Collapse
Affiliation(s)
- Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard Kang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Huang M, Li C, Evangelista FA. Theoretical Calculation of Core-Excited States along Dissociative Pathways beyond Second-Order Perturbation Theory. J Chem Theory Comput 2021; 18:219-233. [PMID: 34964628 DOI: 10.1021/acs.jctc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We extend the multireference driven similarity renormalization (MR-DSRG) method to compute core-excited states by combining it with a GASSCF treatment of orbital relaxation and static electron correlation effects. We consider MR-DSRG treatments of dynamical correlation truncated at the level of perturbation theory (DSRG-MRPT2/3) and iterative linearized approximations with one- and two-body operators [MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects. This approach is calibrated and tested on a series of 16 core-excited states of five closed- and open-shell diatomic molecules containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show excellent agreement with experimental adiabatic transitions energies, with mean absolute errors ranging between 0.17 and 0.35 eV, even for the challenging partially doubly excited states of the N2+ molecule. The vibrational structure of all these transitions, obtained from using a full potential energy scan, shows a mean absolute error as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-LDSRG(2). We generally find that a treatment of dynamical correlation that goes beyond the second-order level in perturbation theory improves the accuracy of the potential energy surface, especially in the bond-dissociation region.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Dobrowolski JC, Dudek WM, Karpińska G, Baraniak A. Substituent Effect in the Cation Radicals of Monosubstituted Benzenes. Int J Mol Sci 2021; 22:6936. [PMID: 34203254 PMCID: PMC8269098 DOI: 10.3390/ijms22136936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/30/2023] Open
Abstract
In 30 monosubstituted benzene cation radicals, studied at the ωB97XD/aug-cc-pVTZ level, the phenyl rings usually adopt a compressed form, but a differently compressed form-equivalent to an elongated one-may coexist. The computational and literature ionization potentials are well correlated. The geometrical and magnetic aromaticity, estimated using HOMA and NICS indices, show the systems to be structurally aromatic but magnetically antiaromatic or only weakly aromatic. The partial charge is split between the substituent and ring and varies the most at C(ipso). In the ring, the spin is 70%, concentrated equally at the C(ipso) and C(p) atoms. The sEDA(D) and pEDA(D) descriptors of the substituent effect in cation radicals, respectively, were determined. In cation radicals, the substituent effect on the σ-electron system is like that in the ground state. The effect on the π-electron systems is long-range, and its propagation in the radical quinone-like ring is unlike that in the neutral molecules. The pEDA(D) descriptor correlates well with the partial spin at C(ipso) and C(p) and weakly with the HOMA(D) index. The correlation of the spin at the ring π-electron system and the pEDA(D) descriptor shows that the electron charge supplied to the ring π-electron system and the spin flow oppositely.
Collapse
Affiliation(s)
- Jan Cz. Dobrowolski
- National Medicines Institute, 00-725 Warsaw, Poland; (G.K.); (A.B.)
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Wojciech M. Dudek
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | | | - Anna Baraniak
- National Medicines Institute, 00-725 Warsaw, Poland; (G.K.); (A.B.)
| |
Collapse
|
26
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Time Resolved Photoelectron Spectroscopy as a Test of Electronic Structure and Nonadiabatic Dynamics. J Phys Chem Lett 2021; 12:5099-5104. [PMID: 34028278 DOI: 10.1021/acs.jpclett.1c00926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We compare different levels of theory for simulating excited state molecular dynamics and use time-resolved photoelectron spectroscopy measurements to benchmark the theory. We perform trajectory surface hopping simulations for uracil excited to the first bright state (ππ*) using three different levels of theory (CASSCF, MRCIS, and XMS-CASPT2) in order to understand the role of dynamical correlation in determining the excited state dynamics, with a focus on the coupling between different electronic states and internal conversion back to the ground state. These dynamics calculations are used to simulate the time-resolved photoelectron spectra. The comparison of the calculated and measured spectra allows us to draw conclusions regarding the relative insights and quantitative accuracy of the calculations at the three different levels of theory, demonstrating that detailed quantitative comparisons of time-resolved photoelectron spectra can be used to benchmark methodology.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
27
|
Loh ZH. Studies of Ultrafast Molecular Dynamics by Femtosecond Extreme Ultraviolet Absorption Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.200940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
28
|
Rankine CD, Penfold TJ. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. J Phys Chem A 2021; 125:4276-4293. [DOI: 10.1021/acs.jpca.0c11267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. D. Rankine
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - T. J. Penfold
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
29
|
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1527] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas A. Besley
- School of Chemistry, University of Nottingham University Park Nottingham UK
| |
Collapse
|
30
|
Fransson T, Brumboiu IE, Vidal ML, Norman P, Coriani S, Dreuw A. XABOOM: An X-ray Absorption Benchmark of Organic Molecules Based on Carbon, Nitrogen, and Oxygen 1s → π* Transitions. J Chem Theory Comput 2021; 17:1618-1637. [PMID: 33544612 PMCID: PMC8023667 DOI: 10.1021/acs.jctc.0c01082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/05/2023]
Abstract
The performance of several standard and popular approaches for calculating X-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges of 40 primarily organic molecules up to the size of guanine has been evaluated, focusing on the low-energy and intense 1s → π* transitions. Using results obtained with CVS-ADC(2)-x and fc-CVS-EOM-CCSD as benchmark references, we investigate the performance of CC2, ADC(2), ADC(3/2), and commonly adopted density functional theory (DFT)-based approaches. Here, focus is on precision rather than on accuracy of transition energies and intensities-in other words, we target relative energies and intensities and the spread thereof, rather than absolute values. The use of exchange-correlation functionals tailored for time-dependent DFT calculations of core excitations leads to error spreads similar to those seen for more standard functionals, despite yielding superior absolute energies. Long-range corrected functionals are shown to perform particularly well compared to our reference data, showing error spreads in energy and intensity of 0.2-0.3 eV and ∼10%, respectively, as compared to 0.3-0.6 eV and ∼20% for a typical pure hybrid. In comparing intensities, state mixing can complicate matters, and techniques to avoid this issue are discussed. Furthermore, the influence of basis sets in high-level ab initio calculations is investigated, showing that reasonably accurate results are obtained with the use of 6-311++G**. We name this benchmark suite as XABOOM (X-ray absorption benchmark of organic molecules) and provide molecular structures and ground-state self-consistent field energies and spectroscopic data. We believe that it provides a good assessment of electronic structure theory methods for calculating X-ray absorption spectra and will become useful for future developments in this field.
Collapse
Affiliation(s)
- Thomas Fransson
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
- Fysikum, Stockholm University, Albanova, 10691 Stockholm, Sweden
| | - Iulia E. Brumboiu
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology, 34141 Daejeon, Korea
| | - Marta L. Vidal
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Patrick Norman
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonia Coriani
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
- Department
of Chemistry, NTNU-Norwegian University
of Science and Technology, N-7991 Trondheim, Norway
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Kotsina N, Townsend D. Improved insights in time-resolved photoelectron imaging. Phys Chem Chem Phys 2021; 23:10736-10755. [DOI: 10.1039/d1cp00933h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review new light source developments and data analysis considerations relevant to the time-resolved photoelectron imaging technique. Case studies illustrate how these themes may enhance understanding in studies of excited state molecular dynamics.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
32
|
Stewart S, Wei Q, Sun Y. Surface chemistry of quantum-sized metal nanoparticles under light illumination. Chem Sci 2020; 12:1227-1239. [PMID: 34163884 PMCID: PMC8179176 DOI: 10.1039/d0sc04651e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Size reduction of metal nanoparticles increases the exposure of metal surfaces significantly, favoring heterogeneous chemistry at the surface of the nanoparticles. The optical properties of metal nanoparticles, such as light absorption, also exhibit a strong dependence on their size. It is expected that there will be strong coupling of light absorption and surface chemistry when the metal nanoparticles are small enough. For instance, metal nanoparticles with sizes in the range of 2–10 nm exhibit both surface plasmon resonances, which can efficiently produce high-energy hot electrons near the surface of the nanoparticles under light illumination, and the Coulomb blockade effect, which favors electron transfer from the metal nanoparticles to the surface adsorbates. The synergy of efficient hot electron generation and electron transfer on the surface of small metal nanoparticles leads to double-faced effects: (i) surface (adsorption) chemistry influences optical absorption in the metal nanoparticles, and (ii) optical absorption in the metal nanoparticles promotes (or inhibits) surface adsorption and heterogeneous chemistry. This review article focuses on the discussion of typical quantum phenomena in metal nanoparticles of 2–10 nm in size, which are referred to as “quantum-sized metal nanoparticles”. Both theoretical and experimental examples and results are summarized to highlight the strong correlations between the optical absorption and surface chemistry for quantum-sized metal nanoparticles of various compositions. A comprehensive understanding of these correlations may shed light on achieving high-efficiency photocatalysis and photonics. Size reduction of metal nanoparticles increases the exposure of metal surfaces significantly, favoring heterogeneous photochemistry at the surface of the nanoparticles.![]()
Collapse
Affiliation(s)
- Shea Stewart
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania 19122 USA
| | - Qilin Wei
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania 19122 USA
| | - Yugang Sun
- Department of Chemistry, Temple University 1901 North 13th Street Philadelphia Pennsylvania 19122 USA
| |
Collapse
|
33
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter Section The Abdus Salam International Center for Theoretical Physics Strada Costiera 11 34151 Trieste Italy
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
| | - Pablo E. Videla
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| | - Micheline B. Soley
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Yale Quantum Institute Yale University P.O. Box 208334 New Haven CT 06520-8263 USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy Max Born Strasse 2A 12489 Berlin Germany
| | - Victor S. Batista
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| |
Collapse
|
34
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X-Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020; 59:20044-20048. [PMID: 32691867 PMCID: PMC7693200 DOI: 10.1002/anie.202007192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1 Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I-CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment.
Collapse
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter SectionThe Abdus Salam International Center for Theoretical PhysicsStrada Costiera 1134151TriesteItaly
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
| | - Pablo E. Videla
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| | - Micheline B. Soley
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Department of Chemistry and Chemical BiologyHarvard University12 Oxford StreetCambridgeMA02138USA
- Yale Quantum InstituteYale UniversityP.O. Box 208334New HavenCT06520-8263USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyMax Born Strasse 2A12489BerlinGermany
| | - Victor S. Batista
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| |
Collapse
|
35
|
|
36
|
Epshtein M, Scutelnic V, Yang Z, Xue T, Vidal ML, Krylov AI, Coriani S, Leone SR. Table-Top X-ray Spectroscopy of Benzene Radical Cation. J Phys Chem A 2020; 124:9524-9531. [PMID: 33107734 DOI: 10.1021/acs.jpca.0c08736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper [Vidal et al. J. Phys. Chem. A. http://dx.doi.org/10.1021/acs.jpca.0c08732], is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals.
Collapse
Affiliation(s)
- Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Vidal ML, Epshtein M, Scutelnic V, Yang Z, Xue T, Leone SR, Krylov AI, Coriani S. Interplay of Open-Shell Spin-Coupling and Jahn-Teller Distortion in Benzene Radical Cation Probed by X-ray Spectroscopy. J Phys Chem A 2020; 124:9532-9541. [PMID: 33103904 DOI: 10.1021/acs.jpca.0c08732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Hait D, Haugen EA, Yang Z, Oosterbaan KJ, Leone SR, Head-Gordon M. Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations. J Chem Phys 2020; 153:134108. [DOI: 10.1063/5.0018833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric A. Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Katherine J. Oosterbaan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Cheng S, Chatterjee G, Tellkamp F, Lang T, Ruehl A, Hartl I, Dwayne Miller RJ. Compact Ho:YLF-pumped ZnGeP 2-based optical parametric amplifiers tunable in the molecular fingerprint regime. OPTICS LETTERS 2020; 45:2255-2258. [PMID: 32287207 DOI: 10.1364/ol.389535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
We report on a compact mid-infrared laser architecture, comprising a chain of $ {\rm ZnGeP}_2 $ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield ($ \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} 60\;\unicode{x00B5} {\rm J} $∼x<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ${\sim}6 $∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.
Collapse
|
40
|
List NH, Dempwolff AL, Dreuw A, Norman P, Martínez TJ. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chem Sci 2020; 11:4180-4193. [PMID: 34122881 PMCID: PMC8152795 DOI: 10.1039/d0sc00840k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S2(ππ*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S1(nπ*) state. Potential intersystem crossing to T1(ππ*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Patrick Norman
- School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology Sweden
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
41
|
Hait D, Head-Gordon M. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn-Sham Approach. J Phys Chem Lett 2020; 11:775-786. [PMID: 31917579 DOI: 10.1021/acs.jpclett.9b03661] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the use of the recently developed square gradient minimization (SGM) algorithm for excited-state orbital optimization to obtain spin-pure restricted open-shell Kohn-Sham (ROKS) energies for core excited states of molecules. The SGM algorithm is robust against variational collapse and offers a reliable route to converging orbitals for target excited states at only 2-3 times the cost of ground-state orbital optimization (per iteration). ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. ROKS/SGM is equally effective at predicting L-edge spectra of third period elements, provided a perturbative spin-orbit correction is employed. This high accuracy can be contrasted with traditional time-dependent density functional theory (TDDFT), which typically has greater than 10 eV error and requires translation of computed spectra to align with experiment. ROKS is computationally affordable (having the same scaling as ground-state DFT and a slightly larger prefactor) and can be applied to geometry optimizations/ab initio molecular dynamics of core excited states, as well as condensed phase simulations. ROKS can also model doubly excited/ionized states with one broken electron pair, which are beyond the ability of linear response based methods.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
42
|
Kotsina N, Candelaresi M, Saalbach L, Zawadzki MM, Crane SW, Sparling C, Townsend D. Short-wavelength probes in time-resolved photoelectron spectroscopy: an extended view of the excited state dynamics in acetylacetone. Phys Chem Chem Phys 2020; 22:4647-4658. [DOI: 10.1039/d0cp00068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy using a vacuum ultraviolet probe brings new insight to the excited state dynamics operating in acetylacetone.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Marco Candelaresi
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Lisa Saalbach
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | | | - Stuart W. Crane
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Chris Sparling
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
43
|
Wei Z, Li J, Zhang H, Lu Y, Yang M, Loh ZH. Ultrafast dissociative ionization and large-amplitude vibrational wave packet dynamics of strong-field-ionized di-iodomethane. J Chem Phys 2019; 151:214308. [PMID: 31822095 DOI: 10.1063/1.5132967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employ few-cycle pulses to strong-field-ionize di-iodomethane (CH2I2) and femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to investigate the subsequent ultrafast dissociative ionization and vibrational wave packet dynamics. Probing in the spectral region of the I 4d core-level transitions, the time-resolved XUV differential absorption spectra reveal the population of several electronic states of CH2I2 + by strong-field ionization. Global analysis reveals three distinct time scales for the observed dynamics: 20 ± 2 fs, 49 ± 6 fs, and 157 ± 9 fs, ascribed to relaxation of the CH2I2 + parent ion from the Franck-Condon region, dissociation of high-lying excited states of CH2I2 + to I+ (3P2), CH2I, and I2 + (2Π3/2,g), and dissociation of CH2I2 + to I (2P3/2) and CH2I+, respectively. Oscillatory features in the time-resolved XUV differential absorption spectra point to the generation of vibrational wave packets in both the residual CH2I2 and the CH2I2 + parent ion. Analysis of the oscillation frequencies and phases reveals, in the case of neutral CH2I2, C-I symmetric stretching induced by bond softening and I-C-I bending driven by a combination of bond softening and R-selective depletion. In the case of CH2I2 +, both the fundamental and first overtone frequencies of the I-C-I bending mode are observed, indicating large-amplitude I-C-I bending motion, in good agreement with results obtained from ab initio simulations of the XUV transition energy along the I-C-I bend coordinate. These results show that femtosecond XUV absorption spectroscopy is well-suited for studying ultrafast photodissociation and vibrational wave packet dynamics.
Collapse
Affiliation(s)
- Zhengrong Wei
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jialin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Huimin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
44
|
Kobayashi Y, Zeng T, Neumark DM, Leone SR. NaI revisited: Theoretical investigation of predissociation via ultrafast XUV transient absorption spectroscopy. J Chem Phys 2019; 151:204103. [DOI: 10.1063/1.5128105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Hua W, Mukamel S, Luo Y. Transient X-ray Absorption Spectral Fingerprints of the S 1 Dark State in Uracil. J Phys Chem Lett 2019; 10:7172-7178. [PMID: 31625754 DOI: 10.1021/acs.jpclett.9b02692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-lying dark nπ* states play an important role in many photophysical and photochemical processes of organic chromophores. Transient X-ray absorption spectroscopy (TXAS) provides a powerful technique for probing the dynamics of valence states by exciting the electrons into high-lying core excited states. We employ multiconfigurational self-consistent field calculations to investigate the TXAS of uracil along its nonradiative photodecay pathways. An open issue is whether dark nπ* state S1 (n is the lone pair localized on an oxygen atom) is accessible when bright ππ* state S2 is selectively excited. Vertical core excitations were calculated along the potential energy surfaces of the three lowest states, S0-S2, interpolated between two minima and two minimum-energy conical intersections. Computed TXAS data from the C, N, and O K edges show distinct spectral fingerprints of the dark state in all spectral regimes. At the O 1s edge, the nπ* state has a very strong absorption at 526-527 eV, while at the C (N) 1s edge, by contrast, there is almost zero (very weak) absorption at 279-282 eV (397-398 eV). All K-edge spectra can be used to sensitively detect the dark states. Our proposed O 1s feature has already been observed in a recent TXAS experiment with thymine. Natural transition orbital analysis is used to interpret all dominant features of the three lowest-valence states along the reaction coordinate and reveal some important valence fine-structure information from the core excitation.
Collapse
Affiliation(s)
- Weijie Hua
- Department of Applied Physics, School of Science , Nanjing University of Science and Technology , 210094 Nanjing , China
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , S-106 91 Stockholm , Sweden
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy , University of California, Irvine , Irvine , California 92697 , United States
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the Microscale , University of Science and Technology of China , 230026 Hefei , China
| |
Collapse
|
46
|
Wang H, Odelius M, Prendergast D. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation. J Chem Phys 2019; 151:124106. [PMID: 31575206 DOI: 10.1063/1.5116816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.
Collapse
Affiliation(s)
- Han Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - David Prendergast
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
47
|
Abstract
A review that summarizes the most recent technological developments in the field of ultrafast structural dynamics with focus on the use of ultrashort X-ray and electron pulses follows. Atomistic views of chemical processes and phase transformations have long been the exclusive domain of computer simulators. The advent of femtosecond (fs) hard X-ray and fs-electron diffraction techniques made it possible to bring such a level of scrutiny to the experimental area. The following review article provides a summary of the main ultrafast techniques that enabled the generation of atomically resolved movies utilizing ultrashort X-ray and electron pulses. Recent advances are discussed with emphasis on synchrotron-based methods, tabletop fs-X-ray plasma sources, ultrabright fs-electron diffractometers, and timing techniques developed to further improve the temporal resolution and fully exploit the use of intense and ultrashort X-ray free electron laser (XFEL) pulses.
Collapse
|