1
|
Banerjee A, Ramesh NG. Synthesis of 2-amino-imidazolium glycosides as precursors for novel chiral N-heterocyclic carbenes. Carbohydr Res 2025; 552:109480. [PMID: 40209663 DOI: 10.1016/j.carres.2025.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Synthesis of novel 2-amino-imidazolium glycosides in two steps from readily available tri-O-benzyl-d-glucal has been reported. Tri-O-benzyl-d-glucal was initially converted into 1,2-dideoxy-2-iodo-1-N-(p-toluenesulfonamido)-d-glucose following the procedure developed in our lab earlier, which on refluxing with various N-substituted imidazoles in acetonitrile resulted in a facile formation of 2-amino-imidazolium glycosides in excellent yields. The synthesis involves an initial formation of an unstable C1-C2 aziridine ring which was followed by stereoselective attack of substituted imidazoles at the C1 position to afford 2-amino- imidazolium glycosides that also results in the transposition of amino group from C1 to C2 position. The reaction proceeds without the need of any activator; works with equal ease in presence of a variety of N-substituted imidazoles and the products could be obtained in pure form through multiple crystallization without the need for column chromatography. N-Heterocyclic carbenes derived from these 2-amino-imidazolium glycosides may find applications as new catalysts for enantioselective organic transformations.
Collapse
Affiliation(s)
- Adrika Banerjee
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Pan M, Wang Q, Zheng P, Chi YR. Reductive N-Heterocyclic Carbene Catalysis via Hydride Transfer: Generating Homoenolates from Unsaturated Esters. Org Lett 2025. [PMID: 40420662 DOI: 10.1021/acs.orglett.5c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In N-heterocyclic carbene (NHC) catalysis, the reduction of NHC-bound acyl azolium species is achieved with progress limited to the generation of ketyl radical intermediates. Here, we report a novel NHC-catalyzed reductive mode for acyl azolium intermediates, which accept a hydride to generate the Breslow intermediate. Then, the reaction of the Breslow intermediate with chalcone results in the formation of cyclopentene, demonstrating a classic umpolung transformation. We expect that this catalytic reductive mode will open new avenues for synthetic transformations.
Collapse
Affiliation(s)
- Mingyi Pan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
3
|
Huang Y, Li XN, Wang XH, Wang ZX, Ye S, Zhang CL. Atroposelective Construction of C─B Axial Chirality via N-Heterocyclic Carbene-Catalyzed Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2025; 64:e202501991. [PMID: 40088208 DOI: 10.1002/anie.202501991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/17/2025]
Abstract
C─B axially chiral architectures are valuable in materials science and medicinal chemistry, but their enantioselective synthesis remains a challenge. Herein, we report an efficient method for the enantioselective synthesis of C─B axially chiral 1,2-azaborines through N-heterocyclic carbene-catalyzed dynamic kinetic resolution. The treatment of racemic 1,2-azaborine-based arylaldehyde with a chiral N-heterocyclic carbene catalyst under oxidative conditions in the presence of an alcohol leads to atroposelective esterification with up to 97% yield and 98% ee. The practicality of this method has been demonstrated by the late-stage functionalization, gram-scale synthesis, and further synthetic transformations. Mechanistic studies indicate that the chiral N-heterocyclic carbene catalyst differentiates between rapidly equilibrating atropoisomeric 1,2-azaborine-based arylaldehyde. DFT studies suggest that the formation of the Breslow intermediate via [Cs]HCO3-assisted [1,2]-proton transfer is the enantioselectivity-determining step.
Collapse
Affiliation(s)
- Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Han Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Li T, Chen YT, Zhang XB, Du RR, Ma LN, Lan YQ. Asymmetric heterogeneous catalysis using crystalline porous materials. Chem Soc Rev 2025. [PMID: 40384435 DOI: 10.1039/d4cs00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Asymmetric catalysis has emerged as a pivotal strategy in the synthesis of chiral compounds, offering significant advantages in selectivity and efficiency. In recent years, heterogeneous catalysis has become a focal point in the fields of organic synthesis and materials science due to continuous advancements in science and technology, especially the use of crystalline porous materials (CPMs) as catalysts. This review summarizes recent advances in using CPMs, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolites, as promising supports for asymmetric catalysts. These materials provide high surface areas, tunable porosity, and the ability to host active catalytic sites, which enhance reaction rates and selectivity. In this review, we summarize the stereostructural properties of chiral CPMs to guide the future design of asymmetric heterogeneous catalysts and the study of catalytic mechanisms. Moreover, we discuss various strategies for incorporating catalytic moieties into these frameworks, including direct synthesis, post-synthesis modification and induced synthesis methods. Additionally, we highlight recent examples where CPMs have been successfully applied in asymmetric transformations, examining their mechanistic insights and the role of substrate diffusion in achieving high enantioselectivity. This review concludes with a perspective on the challenges and future directions in this rapidly evolving field, emphasizing the need for further integration of advanced artificial intelligence techniques and design principles to optimize the synthesis and catalytic performance of chiral CPMs.
Collapse
Affiliation(s)
- Teng Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Yan-Ting Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Xiao-Bin Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Rong-Rong Du
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Lin-Na Ma
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
5
|
Kumar M, Paul V, Gamidi RK, Senthilkumar B. Accessing polysubstituted 2-cyclopentenones via base-mediated annulation of β-keto esters and phenacyl bromides. Org Biomol Chem 2025; 23:4519-4524. [PMID: 40230246 DOI: 10.1039/d4ob02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
A transition metal-free method is demonstrated for the synthesis of polysubstituted 2-cyclopentenone compounds, which involves the direct annulation of phenacyl bromide with β-keto esters in a single step. This process proceeds through a base-mediated SN2 nucleophilic substitution, followed by an intramolecular aldol condensation, resulting in the formation of three C-C bonds and one ring in a cascade manner. The experimental results achieved a record high yield of highly substituted diverse 2-cyclopentenone analogues, which exhibit very good structural resemblance to biologically significant natural compounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vincent Paul
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
| | - Rama Krishna Gamidi
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
| | - Beeran Senthilkumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Ren Y, Lin C, Zhang H, Liu Z, Wei D, Feng J, Du D. Organocatalytic atroposelective de novo construction of monoaxially and 1,4-diaxially chiral fused uracils with potential antitumor activity. Chem Sci 2025; 16:7876-7883. [PMID: 40191121 PMCID: PMC11966538 DOI: 10.1039/d5sc00452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing relevance to materials science, pharmaceuticals, and catalysis. However, the catalytic enantioselective construction of these atropisomers in a single step remains synthetically challenging. We herein report the first NHC-organocatalytic enantioselective synthesis of a new class of monoaxially and 1,4-diaxially chiral fused uracil scaffolds. Preliminary studies on the antitumor activity of selected compounds demonstrated that this new class of axially chiral uracil derivatives may have potential applications in the discovery of new lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Yuzhi Ren
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Chen Lin
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Han Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Zuquan Liu
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Jie Feng
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
7
|
Barik S, Paravakkal FD, Gupta P, Roy P, Biju AT. Control over S(VI)-Stereogenic Center: NHC-Catalyzed Enantioselective Synthesis of N-Acyl Cyclic Sulfonimidamides. Angew Chem Int Ed Engl 2025:e202506929. [PMID: 40276817 DOI: 10.1002/anie.202506929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
The catalytic enantioselective synthesis of aza-sulfur(VI) compounds holds significant potential in pharmaceuticals owing to their broad spectrum of biological properties. Herein, we report the first N-heterocyclic carbene (NHC)-catalyzed enantioselective synthesis of cyclic sulfonimidamides (SIAs). The free N-H containing SIAs often exhibit configurational lability through tautomerization. We investigated this by demonstrating their nonsymmetric nature in both solid state and solution. The in situ generated chiral acylazolium intermediates from easily accessible aldehydes in the presence of NHC and oxidant were trapped with the prochiral cyclic SIA anions, allowing the enantioselective synthesis of configurationally stable N-acyl cyclic SIAs. Mechanistic studies reveal that the present strategy proceeds via the desymmetrization of the prochiral SIA anions. Moreover, the derivatization of the synthesized N-acyl SIAs highlights the practical utility of the present methodology.
Collapse
Affiliation(s)
- Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Priyanshu Gupta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
8
|
Yu X, An H, Wu W, Xue F, Jiang Y, Chan SY, Tu Z, Lu S. Enantioselective Cascade Annulation of 1,2,3-Triazoles and Enals Enabled by Sequential Rhodium and Oxidative NHC Catalysis Involving Cleavage, Migration, and Cyclization. Org Lett 2025; 27:2383-2388. [PMID: 40021472 DOI: 10.1021/acs.orglett.5c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The in situ-generated pyrrolin-3-ones serve as novel and versatile synthons, being employed as intermediates for the efficient production of pyrrole-fused lactones with high yield and excellent enantioselectivity. Herein, we introduce emerging rhodium and oxidative N-heterocyclic carbene relay catalysis that enables a highly enantioselective cascade annulation between easily available 1,2,3-triazoles and enals. In this proof-of-concept study, the in situ-generated pyrrolin-3-ones engage α,β-unsaturated acylazolium intermediates generated from enals via oxidative N-heterocyclic carbene catalysis.
Collapse
Affiliation(s)
- Xiaoyi Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wenbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Fei Xue
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yina Jiang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore 138634
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
9
|
Liu B, Liu Q, Wei G, Yang Z, He Q, Wang RH, Yang C, Zhang T, Kong X, Huang J, Liao W, Wang J, Tang L. Access to Chiral Dihydro-1,4-Benzoxazine-2-Carboxylates through NHC-Catalyzed Dynamic Kinetic Resolution. Org Lett 2025; 27:2340-2345. [PMID: 40000926 DOI: 10.1021/acs.orglett.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A chiral carbene-catalyzed dynamic kinetic resolution for the facile synthesis of enantioenriched dihydro-1,4-benzoxazine-2-carboxylates is disclosed. The reaction conditions are mild, and a diversity of substituents are well-tolerated in this transformation. In addition, our methodology also provides an efficient strategy for building chiral chromane-2-carboxylate and 2,3-dihydro-1,4-benzodioxane-2-carboxylate. The optically pure products generated from this protocol can be easily derived as the key intermediates of chiral drugs and bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Guanbin Wei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Rong-Hua Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chao Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiayu Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
10
|
Maji U, Baidya A, Das S, Guin J. Bifunctional NHC-Catalyzed Asymmetric Intramolecular Conjugate Addition via Noncovalent Interaction. Org Lett 2025; 27:2423-2428. [PMID: 40020081 DOI: 10.1021/acs.orglett.5c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Herein, we report a novel squaramide containing chiral bifunctional N-heterocyclic carbene (NHC) and its utilization in developing asymmetric intramolecular conjugate addition involving noncovalent interaction. Via concomitant activation of both electrophilic and nucleophilic centers of substrates, the reaction proceeds through a well-organized transition state, thereby affording products with up to 94% ee and a broad scope. The process is found to be scalable. The initial mechanistic study supports the bifunctional nature of the newly designed NHC.
Collapse
Affiliation(s)
- Ujjwal Maji
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arpita Baidya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Supriyo Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Li J, Luo B, Huang P, Sun Y, Huang P, Wen S, Zhu D. Meta-, Regioselective Amination of Cyclic Diaryliodoniums through C-I and C-O Bond Cleavages: An Access to Functionalized Coumarins. J Org Chem 2025; 90:3128-3139. [PMID: 40012111 DOI: 10.1021/acs.joc.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Despite the widespread ortho-functionalization of cyclic diaryliodoniums in organic chemistry, the corresponding meta-functionalization is less explored. Herein, we report a practical meta-selective activation of cyclic hypervalent iodoniums for the synthesis of 4-amino coumarin derivatives in a broad functional group tolerance and environmentally friendly manner. The practicability of this protocol was further highlighted by the late-stage modification of some common pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Jiadi Li
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou, 510006, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Peisen Huang
- Guangzhou Foreign Language School, Guangzhou, 511455, P. R. China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| |
Collapse
|
12
|
Barik S, Kunhiraman AA, Das RC, Biju AT. N-Heterocyclic-Carbene-Catalyzed Imine Umpolung for the Cross-Coupling of Quinoxalin-2-ones with Isatins. JACS AU 2025; 5:948-954. [PMID: 40017773 PMCID: PMC11862942 DOI: 10.1021/jacsau.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
The N-heterocyclic carbene (NHC)-catalyzed umpolung of aldimines using quinoxalin-2-ones for intermolecular reactions is demonstrated. Specifically, NHC-catalyzed cross-coupling of quinoxalin-2-ones with isatins proceeds via the generation of aza-Breslow intermediates by the addition of carbene to the C=N moiety of quinoxalinones followed by interception with isatins to afford diverse oxindoles in moderate to good yields and good functional group compatibility. Moreover, detailed mechanistic studies involving the isolation and characterization of the imidoyl azoliums (oxidized form of the aza-Breslow intermediates) are provided. Considering the significance of scaffolds bearing both quinoxalin-2-one and oxindole moieties in medicine and natural products, the synthesized molecules employing the NHC-catalyzed imine umpolung strategy are likely to find promising applications.
Collapse
Affiliation(s)
| | | | - Rohan Chandra Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Liu Z, Li C, Zhang S, Du D. Divergent Synthesis of Axially Chiral 2-Pyranones and Fused 2-Pyridones via N-Heterocyclic Carbene-Catalyzed Atroposelective [3 + 3] Annulation. J Org Chem 2025; 90:1934-1939. [PMID: 39854173 DOI: 10.1021/acs.joc.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
An N-heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.
Collapse
Affiliation(s)
- Zuquan Liu
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chenxing Li
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
15
|
Huang Y, Han YF, Zhang CL, Ye S. Regioselective Alkylacylation of 1,3-Dienes by Merging N-Heterocyclic Carbene Catalysis with Photoinduced Palladium Catalysis. Org Lett 2025; 27:415-420. [PMID: 39689368 DOI: 10.1021/acs.orglett.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Herein, we develop a dual catalytic platform for the 1,2- or 1,4-alkylacylation reaction of 1,3-dienes with readily available alkyl halides and aldehydes by merging N-heterocyclic carbene catalysis with photoinduced palladium catalysis. A series of β,γ-unsaturated ketones are obtained in good to high yields. Mechanistic studies suggest that this reaction involves a radical process. The direct synthesis of flavanone from salicylaldehyde exemplified the potential capability of this dual catalytic platform.
Collapse
Affiliation(s)
- Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
He Y, Chen J, Jiang Y, Fang X, Liu J, Yan JL. N-Heterocyclic Carbene Catalyzed Reactions Involving Acetylenic Breslow and/or Acylazolium as Key Intermediates. CHEM REC 2024; 24:e202400165. [PMID: 39558761 DOI: 10.1002/tcr.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Indexed: 11/20/2024]
Abstract
N-heterocyclic carbene (NHC) organocatalysis has been developed as a powerful tool in modern synthetic chemistry. NHC catalytic activation of ynals and alkynoic acid derivatives provided versatile reactions that involve acetylenic Breslow and/or acylazolium as key intermediates, and diverse transformations have been established for access to molecules with unique skeletons in efficient fashions. Herein we summarize the recent achievements in NHC-catalyzed reactions involving acetylenic Breslow and/or acylazolium intermediates. Different reactions belonging to three catalytic modes, including (1) conjugate additions to acetylenic Breslow derived α,β-unsaturated acylazolium intermediates, (2) β-umpolung of ynals via acetylenic Breslow intermediates, and (3) conjugate additions to acetylenic acylazolium intermediates, are emphasized with examples and plausible mechanisms cited to guide a better understanding.
Collapse
Affiliation(s)
- Yujie He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jintao Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yu Jiang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xiaoyu Fang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Junyang Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jia-Lei Yan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
17
|
Zhou B, Gao Z, Yang Y, Hu Y. Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor. Org Biomol Chem 2024; 22:9058-9062. [PMID: 39436311 DOI: 10.1039/d4ob01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Miao Y, Qi J, Li Y, Pan A, Duan XY. N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of Enals with Aminonaphthoquinones for the Synthesis of Functionalized Aza-anthraquinones. J Org Chem 2024; 89:16433-16443. [PMID: 39494963 DOI: 10.1021/acs.joc.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Rapid construction of functionalized aza-anthraquinones has been successfully developed via NHC-catalyzed formal [3 + 3] annulation of 2-aminoquinones with enals. This reaction features several advantages, such as readily available starting materials, mild reaction conditions, and flexible product transformations. The study on the atroposelective version of this strategy was also carried out, and several C-N axial chiral aza-anthraquinones were synthesized in moderate yields with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Yuehua Miao
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Ao Pan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
19
|
Sarkar S, Das S, Gandhi S. Catalytic Synthesis of 1 H-Benzoxazolo[3,2- a]pyridin-1-ones via Formal [3 + 3] Annulations of NHC-Generated Alkynyl Acylazoliums with Benzoxazolyl Acetates and Their Photophysical Studies. J Org Chem 2024; 89:15559-15567. [PMID: 39431487 DOI: 10.1021/acs.joc.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We disclose the synthesis of a tricyclic fused N-heterocycle via the NHC-catalyzed annulation of either a ynal or an alkynyl ester with readily accessible benzoxazolyl acetate. While the annulation with ynals requires an oxidant, the reaction with alkynyl esters proceeds via the direct generation of alkynyl acylazolium intermediates with an NHC. With the dearth of catalytic processes to access these 1H-benzoxazolo[3,2-a]pyridin-1-ones from simple starting materials, this method is especially important. The photophysical properties of the products have also been evaluated.
Collapse
Affiliation(s)
- Sibasis Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| | - Suravi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| |
Collapse
|
20
|
Ren X, Duan XY, Feng Y, Li Y, Li J, Qi J. Highly Enantioselective Synthesis of Polycyclic Dihydroisoquinolinones via NHC-Catalyzed [4 + 2] Annulations. J Org Chem 2024; 89:14135-14140. [PMID: 39267456 DOI: 10.1021/acs.joc.4c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The NHC-catalyzed enantioselective [4 + 2] annulation of 9H-fluorene-1-carbaldenydes with cyclic imines was successfully developed. A series of optically enriched polycyclic dihydroisoquinolinones were synthesized in moderate to excellent yields with good to excellent enantioselectivities. In addition, this efficient method could also be amenable to the synthesis of spirocyclic compounds by using isatin-derived ketimines as the electrophiles.
Collapse
Affiliation(s)
- Xiaojie Ren
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yuxuan Feng
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Jiahan Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
21
|
Feng S, Zhang H, Liu J, Shi D, Yang W, Zhu H, Zhang X, Fu Z. Carbene-Catalyzed [3 + 3] Annulation of Enals and Vinyl Sulfoxonium Ylides. J Org Chem 2024; 89:14537-14542. [PMID: 39323184 DOI: 10.1021/acs.joc.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Carbene-catalyzed [3 + 3] annulation of enals and vinyl sulfoxonium ylides has been demonstrated. This method efficiently synthesizes a range of 2-sulfenylidene-3-cyclohexen-1-ones with high atom economy. Notably, the presence of the sulfoxonium ylide moiety in the obtained products significantly enhances their potential for further synthetic transformations.
Collapse
Affiliation(s)
- Siru Feng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dongping Shi
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Weiqi Yang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Haibin Zhu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
22
|
Wang ZY, Ma G, Xu Y, Wang Q, Zhang M, Ma X, Ma C, Sun A, Xia R, Liu H. One-pot synthesis of functionalized dihydropyridin-2-ones via carbene-catalyzed base-controlled [3+3] annulation reaction. Chem Commun (Camb) 2024; 60:11327-11330. [PMID: 39297768 DOI: 10.1039/d4cc03521f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, we have described a novel organocatalytic approach to access biologically important dihydropyridin-2-ones in a one-pot way with generally high yields (up to 99%) and excellent enantioselectivities (up to 99% ee). This reaction proceeded via a new dual activation mode, including in situ-generated α,β-unsaturated acylazoliums and 4-dimethylaminopyridinium salts that underwent a Michael addition/1,4-H migration/lactamization sequence. The base-triggered 4-dimethylaminopyridinium ylide formation pathway over the competing substitution reaction pathway of vicinal haloamines is noteworthy.
Collapse
Affiliation(s)
- Zhan-Yong Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Guoyang Ma
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yaoyao Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Qingqing Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Mengru Zhang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Xueji Ma
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Chenyang Ma
- Henan Run Catalysts Co., Ltd, Xinxiang 453003, China
| | - Aili Sun
- Puyang Institute of Technology, Henan University, Puyang 457000, China
| | - Ran Xia
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Zhang ZF, Zhang CL, Ye S. N-Heterocyclic Carbene/Transition Metal Dual Catalysis. Chemistry 2024; 30:e202402259. [PMID: 39013831 DOI: 10.1002/chem.202402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
N-heterocyclic carbene catalysis has been developed as a versatile method for the enantioselective synthesis of complex organic molecules in organic chemistry. Merging of N-heterocyclic carbene catalysis with transition metal catalysis holds the potential to achieve unprecedented transformations with broad substrate scope and excellent stereoselectivity, which are unfeasible with individual catalyst. Thus, this dual catalysis has attracted increasing attention, and numerous elegant dual catalytic systems have been established. In this review, we summarize the recent achievements of dual NHC/transition metal catalysis, including the reaction design, mechanistic studies and practical applications.
Collapse
Affiliation(s)
- Zhao-Fei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Li E, Liao X, Guo F, Huang Y, Chen J. N-Heterocyclic Carbene-Catalyzed Asymmetric S N2 Alkylation via Noncovalent Activation. Org Lett 2024; 26:7479-7483. [PMID: 39092835 DOI: 10.1021/acs.orglett.4c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The field of asymmetric catalysis has been developed by exploring noncovalent interactions, particularly within N-heterocyclic carbene-mediated processes. Despite challenges due to the limited number of compatible electrophiles (predominantly π-acceptors), this study introduces the first asymmetric α-alkylation of 3-aryl oxindoles using Csp3 electrophiles. The innovative protocol integrates diverse oxindoles and alkyl, allyl, and propargyl electrophiles, achieving high yields and enantioselectivities. Preliminary mechanistic explorations support a noncovalent catalytic mechanism, enhancing the tool kit for constructing complex chiral molecules with potential applications.
Collapse
Affiliation(s)
- En Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyun Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
25
|
Li B, Hu J, Liao M, Xiong Q, Zhang Y, Chi YR, Zhang X, Wu X. Catalyst Control over S(IV)-stereogenicity via Carbene-derived Sulfinyl Azolium Intermediates. J Am Chem Soc 2024; 146:25350-25360. [PMID: 39219070 DOI: 10.1021/jacs.4c10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stereoselective synthesis utilizing small-molecule catalysts, particularly N-heterocyclic carbene (NHC), has facilitated swift access to enantioenriched molecules through diverse activation modes and NHC-bound reactive intermediates. While carbonyl derivatives, imines, and "activated" alkenes have been extensively investigated, the exploration of heteroatom-centered analogues of NHC-bound intermediates has long been neglected, despite the significant potential for novel chemical transformations they offer once recognized. Herein, we disclose a carbene-catalyzed new activation mode by generating unique sulfinyl azolium intermediates from carbene nucleophilic addition to in situ-generated mixed sulfinic anhydride intermediates. Combined experimental and computational mechanistic investigations pinpoint the chiral NHC-catalyzed formation of sulfinyl azolium intermediate as the enantio-determining step. The novel "S"-based carbene reactive intermediate imparts high efficiency for the catalytic construction of sulfur-stereogenic compounds, giving rise to sulfinate esters with high yields and enantioselectivities under mild conditions. Notably, distinct from most of the NHC-catalyzed enantioselective transformations focusing on the "C" central chiral products, our study realizes a unique carbene-catalyst control over chiral "S" stereocenters via direct asymmetric S-O bond formation for the first time. Furthermore, these sulfinyl-containing products could serve as versatile synthetic platforms for enantioenriched S-stereogenic functional molecules and exhibit remarkable antibacterial activities against rice plant pathogens, which is valuable for the development of novel agrochemical agents.
Collapse
Affiliation(s)
- Benpeng Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Junyuan Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qin Xiong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yaqi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632, Singapore
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
26
|
Yu M, Huang J, Zhu H, Shi D, Yang W, Liu Y, Ji Y, Fu Z. Facile construction of 2-pyrones under carbene catalysis. RSC Adv 2024; 14:28585-28595. [PMID: 39247504 PMCID: PMC11378031 DOI: 10.1039/d4ra05596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
2-Pyrones are valuable structural motifs in organic chemistry, found in numerous natural products and pharmaceuticals. The synthesis of these heterocycles has been significantly advanced by the application of N-Heterocyclic Carbene (NHC) catalysis. This review examines the recent advancements in NHC-catalyzed synthesis of 2-pyrones, highlighting key methodologies, mechanisms, and synthetic applications. NHC catalysis has revolutionized the synthesis of 2-pyrones, providing efficient, selective, and versatile methods for constructing these valuable heterocycles.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Haibin Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Dongping Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Weiqi Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Yingjie Liu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Yubin Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
27
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
28
|
Dočekal V, Niderer Y, Kurčina A, Císařová I, Veselý J. Regio- and Enantioselective N-Heterocyclic Carbene-Catalyzed Annulation of Aminoindoles Initiated by Friedel-Crafts Alkylation. Org Lett 2024; 26:6993-6998. [PMID: 39115978 PMCID: PMC11348421 DOI: 10.1021/acs.orglett.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Chiral indoles annulated on the benzene ring are unique and significant in natural and medicinal compounds. However, accessing these enantioenriched molecules has often been overlooked. The present study introduces an organocatalytic protocol to access these compounds efficiently, demonstrated by substrate scope, functional group tolerance, and using only 1 mol % of a chiral conjugated acid catalyst. Additionally, the study explores regioselectivity, gram-scale reactions, and follow-up transformations, underscoring the method's potential.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Yaroslava Niderer
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
- Faculty
of Sciences, Aix-Marseille University, 52 Av. Escadrille Normandie Niemen, 13013 Marseille, France
| | - Adam Kurčina
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
29
|
Lu F, Su F, Pan S, Wu X, Wu X, Chi YR. N-Heterocyclic Carbene Enabled Functionalization of Inert C(Sp 3)-H Bonds via Hydrogen Atom Transfer (HAT) Processes. Chemistry 2024; 30:e202401811. [PMID: 39092881 DOI: 10.1002/chem.202401811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 08/04/2024]
Abstract
Developing methods to directly transform C(sp3) -H bonds is crucial in synthetic chemistry due to their prevalence in various organic compounds. While conventional protocols have largely relied on transition metal catalysis, recent advancements in organocatalysis, particularly with radical NHC catalysis have sparked interest in the direct functionalization of "inert" C(sp3) -H bonds for cross C-C coupling with carbonyl moieties. This strategy involves selective cleavage of C(sp3) -H bonds to generate key carbon radicals, often achieved via hydrogen atom transfer (HAT) processes. By leveraging the bond dissociation energy (BDE) and polarity effects, HAT enables the rapid functionalization of diverse C(sp3)-H substrates, such as ethers, amines, and alkanes. This mini-review summarizes the progress in carbene organocatalytic functionalization of inert C(sp3)-H bonds enabled by HAT processes, categorizing them into two sections: 1) C-H functionalization involving acyl azolium intermediates; and 2) functionalization of C-H bonds via reductive Breslow intermediates.
Collapse
Grants
- U23A20201, 22071036 National Natural Science Foundation of China
- 2022YFD1700300 National Key Research and Development Program of China
- (2022)47) National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW, the starting grant of Guizhou University
- [Qiankehejichu-ZK[2024]yiban030 Science and Technology Department of Guizhou Province
- 111 Program, D20023 Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- [Qianjiaohe KY (2020)004] Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- MOE AcRF Tier 1 Award (RG84/22, RG70/21), MOE AcRF Tier 2 (MOE-T2EP10222-0006), and MOE AcRF Tier 3 Award (MOE2018-T3-1-003) Ministry of Education, Singapore
Collapse
Affiliation(s)
- Fengfei Lu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fen Su
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Shijie Pan
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xiuli Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
30
|
Luo Z, Liao M, Li W, Zhao S, Tang K, Zheng P, Chi YR, Zhang X, Wu X. Ionic Hydrogen Bond-Assisted Catalytic Construction of Nitrogen Stereogenic Center via Formal Desymmetrization of Remote Diols. Angew Chem Int Ed Engl 2024; 63:e202404979. [PMID: 38745374 DOI: 10.1002/anie.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.
Collapse
Grants
- National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW
- the starting grant of Guizhou University [(2022)47)]
- National Natural Science Foundation of China (21732002, 22061007, 22071036, and 22207022)
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules
- Department of Education, Science and Technology Department of Guizhou Province [Qiankehe-jichu-ZK[2022]zhongdian024]
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG70/21), MOE AcRF Tier 2 (MOE2019-T2-2-117)
- a Chair Professorship Grant, and Nanyang Technological University
- (2022)47 starting grant of Guizhou University
- 21732002 National Natural Science Foundation of China
- 22061007 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
- 22207022 National Natural Science Foundation of China
- Qiankehe-jichu-ZK[2022]zhongdian024 Department of Education, Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2024]yiban030 Department of Education, Science and Technology Department of Guizhou Province
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- Chair Professorship Grant, and Nanyang Technological University
- C210812008 Agency for Science, Technology and Research (A*STAR) under its Career Development Fund
- M22K3c0091 Manufacturing, TradeConnectivity (MTC) Young Individual Research Grants.
Collapse
Affiliation(s)
- Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Sha Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), A*STAR, Singapore, 138632, Singapore
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
31
|
Zhang Y, Wang Q, Long Z, Zuo Y, Liu L, Yan L. Synthesis of Quinolinoneylnitrones and Coumarinylnitrones via a Cascade Hydroamination and Aza-MBH-Type Reaction. J Org Chem 2024; 89:10327-10332. [PMID: 38961650 DOI: 10.1021/acs.joc.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nitrones are quite useful intermediates and have been broadly applied in organic synthesis, drug discovery, and photochemistry research. Many functional nitrones have been successfully prepared using various strategies. In this work, an efficient method for synthesizing novel quinolinoneylnitrone and coumarinylnitrone derivatives was developed. Preliminary mechanistic research suggests that this protocol included a cascade hydroamination and aza-MBH-type reaction.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Qingtao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Li Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
32
|
Mroczyńska K, Dobrzańska L, Rafiński Z. Enantioselective synthesis of C3-functionalized 2,1-benzothiazine 2,2-dioxides by N-heterocyclic carbene catalysis. Chem Commun (Camb) 2024; 60:7176-7179. [PMID: 38904356 DOI: 10.1039/d4cc01754d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We present herein an approach for the enantioselective C3-functionalization of 2,1-benzothiazine 2,2-dioxides using N-heterocyclic carbene (NHC) catalysis. Our method involves a sequence of [3+3] cycloaddition and ring-opening reactions with different N- and O-nucleophiles, followed by silylation. Overcoming the challenge of selectivity targeting the C3 position, this protocol demonstrates a broad substrate scope and high enantioselectivity. This marks a significant advancement in the field of NHC-catalyzed transformations.
Collapse
Affiliation(s)
- Karina Mroczyńska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Liliana Dobrzańska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| | - Zbigniew Rafiński
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland.
| |
Collapse
|
33
|
Liang YJ, Gao YY, Han HB, Li L, Liu L. Enantioselective synthesis of 4-aryl-3,4-dihydrocoumarins via N-heterocyclic carbene catalyzed β-arylation/cyclization of α-bromoenals. Org Biomol Chem 2024; 22:5101-5104. [PMID: 38859801 DOI: 10.1039/d4ob00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
4-Aryl-3,4-dihydrocoumarins are one of the most important structural motifs. Herein, we disclose an enantioselective N-heterocyclic carbene catalyzed β-arylation/cyclization of α-bromoenals with 3-aminophenols under mild conditions. The protocol allows for the rapid preparation of 4-aryl-3,4-dihydrocoumarins in acceptable yields with good enantioselectivities. The products of this reaction could be converted into chiral diarylpropanoic acid derivatives without erosion of the enantioselectivity.
Collapse
Affiliation(s)
- Yu-Jing Liang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuan-Yuan Gao
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Hua-Bo Han
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Lu Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
34
|
Ewing PMDA, Majhi PK, Prentice C, Young CM, van Rees K, Arnold PL, Zysman-Colman E, Smith AD. α-Phenylthioaldehydes for the effective generation of acyl azolium and azolium enolate intermediates. Chem Sci 2024; 15:9369-9375. [PMID: 38903219 PMCID: PMC11186317 DOI: 10.1039/d3sc06879j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
α-Phenylthioaldehydes are readily prepared using a simple multi-step procedure and herein are introduced as a new precursor for the NHC-catalysed generation of acyl azolium and azolium enolate intermediates that are of widespread synthetic interest and utility. Treatment of α-phenylthioaldehydes with an NHC precatalyst and base produces an efficient redox rearrangement via a Breslow intermediate, elimination of thiophenolate, and subsequent rebound addition to the generated acyl azolium to give the corresponding thiol ester. In the presence of an external alcohol, competition between redox rearrangement and redox esterification can be controlled through judicious choice of the N-aryl substituent within the NHC precatalyst and the base used in the reaction. With NEt3 as base, NHCs bearing electron-withdrawing (N-C6F5 or N-C6H2Cl3) substituents favour redox rearrangement, while triazolium precatalysts with electron-rich N-aryl substituents (N-Ph, N-Mes) result in preferential redox esterification. Using DBU, redox esterification is preferred due to transesterification of the initially formed thiol ester product. Additionally, α-phenylthioaldehyde-derived azolium enolates have been used in enantioselective formal [4 + 2]-cycloaddition reactions to access dihydropyridinone heterocycles with high enantioselectivity (up to >95 : 5 dr, 98 : 2 er).
Collapse
Affiliation(s)
- Paul M D A Ewing
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
- EaStCHEM, School of Chemistry, University of Edinburgh EH9 3JF UK
| | - Pankaj Kumar Majhi
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
| | - Callum Prentice
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
| | | | - Polly L Arnold
- Dept of Chemistry, University of California Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Eli Zysman-Colman
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
| |
Collapse
|
35
|
Pu Y, Wang M, Tian W, Ge X, Zhu D, Wang C, Zeng Y, Tao F, Deng Y, Lu J. N-heterocyclic carbene catalyzed [2 + 3] annulation reaction for the synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactam. RSC Adv 2024; 14:18453-18458. [PMID: 38860250 PMCID: PMC11163332 DOI: 10.1039/d4ra02252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Asymmetric catalytic processes promoted by N-heterocyclic carbenes (NHCs) hold great potential for the sustainable preparation of chiral molecules. However, catalyzing the reactions by manipulating the reactive intermediates is challenging. We report herein that the known NHC-catalyzed [3 + 2] annulation reaction between ketimine and enal can also be turned into a [2 + 3] annulation reaction for the highly enantioselective direct synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactams (4) through timely catalysis of the intermediates. DFT calculations revealed that this transformation included the key step of the nucleophilic attack of the Breslow intermediate M2 derived from NHC and enal (2) to the unattacked ketimine (1). Our study demonstrates that it is possible to tune the desired selectivities through the dynamic catalysts of the reactive intermediates.
Collapse
Affiliation(s)
- Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College Shantou Guangdong Province 515000 China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Xian Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Dikai Zhu
- Research and Development Centre, China Tobacco Sichuan Industrial Co. Ltd Chengdu 610066 China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Feiyan Tao
- Research and Development Centre, China Tobacco Sichuan Industrial Co. Ltd Chengdu 610066 China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| |
Collapse
|
36
|
Jin Z, Yang Y, He Z, Huang Z, Hu Y, Jin H, Zhou B. Nickel-Catalyzed Cross-Coupling Reaction of Aryl Bromides/Nitriles with Imidazolium Salts Involving Inert C-N Bond Cleavage. Org Lett 2024; 26:4520-4525. [PMID: 38752885 DOI: 10.1021/acs.orglett.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We herein present a nickel-catalyzed cross-coupling reaction of aryl halides and nitriles with imidazolium salts. A series of 2-arylated imidazoles could be obtained in moderate to good yields through inert C-N bond cleavage. The imidazolium salt in this reaction acts as both a coupling partner and N-heterocyclic carbene (NHC) ligand precursor. Mechanistic studies reveal that consecutive steps of migratory insertion of the NHC into the aryl C-Ni bond and β-C elimination might be involved in the proposed reaction mechanism.
Collapse
Affiliation(s)
- Zhou Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanhao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhichang He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Eco-industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, China
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
37
|
Liu B, Zhou X, Liu Q, Yang Z, Mao Y, He Q, Zhang T, Kong X, Zhang J, Liao W, Tang L. Carbene-Catalyzed [4+2] Cycloaddition of Cyclobutenones and Isatins for Quick Access to Chiral Chlorine-Containing Spirocyclic δ-Lactones. J Org Chem 2024; 89:7286-7294. [PMID: 38696309 DOI: 10.1021/acs.joc.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xian Zhou
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuanhu Mao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
38
|
Barańska I, Ośmiałowski B, Rafińska K, Rafiński Z. Construction of Highly Functionalized 2-Styrylfurans by N-Heterocyclic Carbene/Brønsted Acid Catalysis. Org Lett 2024; 26:3514-3518. [PMID: 38651753 PMCID: PMC11077487 DOI: 10.1021/acs.orglett.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
This research presents an original method for synthesizing styrylfurans using N-heterocyclic carbenes (NHCs) and Brønsted acid catalysis. By exploiting 2,4-dioxoesters as conjugated 1,3-dicarbonyls, we have developed a technique allowing the efficient formation of highly functionalized styrylfurans with interesting photochemical properties, through a NHC-catalyzed cross-benzoin reaction followed by a Brønsted acid-driven Paal-Knorr-like condensation. This approach permits the integration of various substituents on the furan ring, with preliminary biological studies indicating potential as fluorescent dyes.
Collapse
Affiliation(s)
- Izabela Barańska
- Nicolaus Copernicus University
in Torun, Faculty of Chemistry, 7 Gagarin Street, Torun 87-100, Poland
| | - Borys Ośmiałowski
- Nicolaus Copernicus University
in Torun, Faculty of Chemistry, 7 Gagarin Street, Torun 87-100, Poland
| | - Katarzyna Rafińska
- Nicolaus Copernicus University
in Torun, Faculty of Chemistry, 7 Gagarin Street, Torun 87-100, Poland
| | - Zbigniew Rafiński
- Nicolaus Copernicus University
in Torun, Faculty of Chemistry, 7 Gagarin Street, Torun 87-100, Poland
| |
Collapse
|
39
|
Bag D, Sawant SD. Diastereoselective synthesis of functionalized spiroindolines via intramolecular ipso-iodocyclization/nucleophile addition cascade reactions of indole-tethered ynones. Org Biomol Chem 2024; 22:3415-3419. [PMID: 38595312 DOI: 10.1039/d4ob00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we describe a highly diastereoselective approach for synthesizing polyfunctionalized spiroindolines from indolyl-ynones involving an ipso-iodocyclization/nucleophile addition cascade. The developed strategy allows the formation of a spirocyclic core and the installation of two functional groups in a single operation. Also this strategy is accompanied by the generation of two C-C and one C-I bonds and two contiguous stereocenters.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
40
|
Bacaicoa S, Stenkvist S, Sundén H. Redox Active N-Heterocyclic Carbenes in Oxidative NHC Catalysis. Org Lett 2024; 26:3114-3118. [PMID: 38551486 DOI: 10.1021/acs.orglett.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An N-heterocyclic carbene (NHC) covalently linked to a quinone introduces a novel avenue for internal oxidations within oxidative NHC catalysis. The deployment of this hybrid NHC class promotes intramolecular electronic flow in the oxidation of the Breslow intermediate to acyl azolium. The use of the redox active NHC as a catalyst is facilitated by employing aerobic regeneration, yielding carboxylic esters with efficiencies of ≤99%, while generating water as the sole byproduct.
Collapse
Affiliation(s)
- Sara Bacaicoa
- University of Gothenburg, Medicinaregatan 19, 413 90 Gothenburg, Sweden
| | - Simon Stenkvist
- University of Gothenburg, Medicinaregatan 19, 413 90 Gothenburg, Sweden
| | - Henrik Sundén
- University of Gothenburg, Medicinaregatan 19, 413 90 Gothenburg, Sweden
| |
Collapse
|
41
|
Barik S, Sankar G, Biju AT. Enantioselective synthesis of tricyclic oxoquinolines via NHC-catalyzed Michael-aldol-lactamization-dehydration cascade. Chem Commun (Camb) 2024; 60:4290-4293. [PMID: 38445724 DOI: 10.1039/d4cc00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The enantioselective synthesis of tricyclic oxoquinolines via NHC-catalyzed cascade reaction of enals with malonates bearing a 2-aminophenyl group is reported. The chiral α,β-unsaturated acylazoliums underwent a smooth Michael-aldol-lactamization-dehydration quadruple cascade with the amino malonate derivative to afford the desired tricyclic products.
Collapse
Affiliation(s)
- Shilpa Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Ganga Sankar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
42
|
Barańska I, Dobrzańska L, Rafiński Z. Enantioselective [3 + 3] Annulation-Deoxalation Strategy for Rapid Access to δ-Oxoesters via N-Heterocyclic Carbene Catalysis. Org Lett 2024; 26:1207-1211. [PMID: 38325001 PMCID: PMC10877609 DOI: 10.1021/acs.orglett.3c04397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
A new and unprecedented stereoselective synthetic approach to δ-oxoesters derivatives from readily available starting materials has been developed. This method, catalyzed by N-heterocyclic carbene, involves an annulation-deoxalation reaction of alkynyl aldehydes with 2,4-diketoesters and proceeds via the chiral α,β-unsaturated acylazolium intermediates. The annulation includes the in situ formation of dihydropyranones, which undergo ring-opening methanolysis with Lewis acid activation, followed by deoxalation to afford chiral 1,5-ketoesters in moderate to good yields.
Collapse
Affiliation(s)
- Izabela Barańska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Liliana Dobrzańska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Zbigniew Rafiński
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| |
Collapse
|
43
|
An H, Liu S, Wang SJ, Yu X, Shi C, Lin H, Poh SB, Yang H, Wong MW, Zhao Y, Tu Z, Lu S. Kinetic Resolution of Acyclic Tertiary Propargylic Alcohols by NHC-Catalyzed Enantioselective Acylation. Org Lett 2024; 26:702-707. [PMID: 38206074 DOI: 10.1021/acs.orglett.3c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
We report herein an efficient NHC-catalyzed kinetic resolution of acyclic tertiary propargylic alcohols that provides them in high to excellent enantioselectivity. This is the first example of kinetic resolution realized by enantioselective acylation. The recovered enantioenriched alcohols can be facilely converted into other valuable compounds such as densely functionalized tertiary alcohols and carbmates in high yields and excellent stereopurity. Density functional theory calculations were performed to determine the reaction mechanism and to understand the origin of enantiodiscrimination.
Collapse
Affiliation(s)
- Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shifei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoyi Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Chenqi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Haonan Lin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
44
|
Mondal BD, Gorai S, Nath R, Paul A, Guin J. Enantioselective Amination of 3-Substituted-2-benzofuranones via Non-covalent N-Heterocyclic Carbene Catalysis. Chemistry 2024; 30:e202303115. [PMID: 37997460 DOI: 10.1002/chem.202303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Herein, an efficient method for asymmetric α-amination of 2-benzofuranones with N-heterocyclic carbene (NHC) catalysis is reported. The process is based on non-covalent interaction of NHC with substrate, facilitating the formation of a chiral ion-pair that encompasses enolate and azolium salt. The activated enolate adds to an electrophilic amine source with sufficient facial control to furnish an enantioenriched product having an amine substituted quaternary stereocenter. The process displays a broad substrate scope. A preparative scale synthesis has been achieved. Preliminary mechanistic investigations based on experimental and DFT studies suggest a reaction pathway that involves non-covalent substrate/NHC interactions and essentially implicate the role of π-π interaction in diastereomeric transition states for stereo-chemical discrimination.
Collapse
Affiliation(s)
- Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sadhan Gorai
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rounak Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
45
|
Zhou BA, Li XN, Zhang CL, Wang ZX, Ye S. Enantioselective Synthesis of Axially Chiral Diaryl Ethers via NHC Catalyzed Desymmetrization and Following Resolution. Angew Chem Int Ed Engl 2024; 63:e202314228. [PMID: 38019184 DOI: 10.1002/anie.202314228] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.
Collapse
Affiliation(s)
- Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
46
|
Wang SJ, Wang X, Xin X, Zhang S, Yang H, Wong MW, Lu S. Organocatalytic diastereo- and atroposelective construction of N-N axially chiral pyrroles and indoles. Nat Commun 2024; 15:518. [PMID: 38225235 PMCID: PMC10789812 DOI: 10.1038/s41467-024-44743-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The construction of N-N axially chiral motifs is an important research topic, owing to their wide occurrence in natural products, pharmaceuticals and chiral ligands. One efficient method is the atroposelective dihydropyrimidin-4-one formation. We present herein a direct catalytic synthesis of N-N atropisomers with simultaneous creation of contiguous axial and central chirality by oxidative NHC (N-heterocyclic carbenes) catalyzed (3 + 3) cycloaddition. Using our method, we are able to synthesize structurally diverse N-N axially chiral pyrroles and indoles with vicinal central chirality or bearing a 2,3-dihydropyrimidin-4-one moiety in moderate to good yields and excellent enantioselectivities. Further synthetic transformations of the obtained axially chiral pyrroles and indoles derivative products are demonstrated. The reaction mechanism and the origin of enantioselectivity are understood through DFT calculations.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaolan Xin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Shulei Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
47
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
48
|
Shee S, Shree Ranganathappa S, Gadhave MS, Gogoi R, Biju AT. Enantioselective Synthesis of C-O Axially Chiral Diaryl Ethers by NHC-Catalyzed Atroposelective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202311709. [PMID: 37986240 DOI: 10.1002/anie.202311709] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C-O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C-O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C-O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C-O bonds are also presented.
Collapse
Affiliation(s)
- Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mahesh S Gadhave
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, 560012, Bangalore, India
| |
Collapse
|
49
|
Li J, Duan XY, Ren X, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of 5-Aminopyrazoles with Enals: Enantioselective Synthesis of Pyrazolo[3,4- b]pyridones. J Org Chem 2023; 88:16621-16632. [PMID: 37967027 DOI: 10.1021/acs.joc.3c00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An enantioselective construction of pyrazolo[3,4-b]pyridones was achieved via N-heterocyclic carbene-catalyzed [3 + 3] annulation of enals with 5-aminopyrazoles. This protocol not only offers a highly efficient synthetic approach for the preparation of various substituted pyrazolo[3,4-b]pyridones but also provides an effective method for the rapid synthesis of enantiopure spirooxindone derivatives.
Collapse
Affiliation(s)
- Jiahan Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiaojie Ren
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
50
|
Wang X, Wu S, Yang R, Song H, Liu Y, Wang Q. Recent advances in combining photo- and N-heterocyclic carbene catalysis. Chem Sci 2023; 14:13367-13383. [PMID: 38033906 PMCID: PMC10685334 DOI: 10.1039/d3sc03274d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
N-Heterocyclic carbenes (NHCs) are unique Lewis basic catalysts that mediate various organic transformations by means of polarity reversal. Although the scope of research on two-electron reactions mediated by NHC catalysts has been expanding, the types of these reactions are limited by the inability of NHCs to engage sp3-electrophiles. However, the revival of photocatalysis has accelerated the development of free-radical chemistry, and combining photoredox catalysis and NHC catalysis to achieve NHC-mediated radical reactions under mild conditions could overcome the above-mentioned limitation. This review summarizes recent advances in combining photoredox and NHC catalysis, focusing on elucidation and exploration of mechanisms, with the aim of identifying challenges and opportunities to develop more types of catalytic models.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Senhui Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|