1
|
Miguel-Casañ E, Orton GRF, Schier DE, Champness NR. Supramolecular Chemistry in Metal-Organic Framework Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414509. [PMID: 39895182 DOI: 10.1002/adma.202414509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia R F Orton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Mikhailov A, Deresz K, Tiognou AT, Kostin G, Lassalle-Kaiser B, Schaniel D. Electronic structure of light-induced nitrosyl linkage isomers revealed by X-ray absorption spectroscopy at Ru L 3,2-edges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125053. [PMID: 39241399 DOI: 10.1016/j.saa.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful tool for examining changes of the electronic and molecular structure following light-induced excitation of a molecule. Specifically, this method can be applied to investigate the ground (GS, RuNO) and metastable states (MS1, RuON and MS2, Ruη2(NO)) of the nitrosyl ligand (NO), which differ in their coordination mode to the metal. In this work, we report for the first time experimental and theoretical (DFT) Ru L3,2-edge XA spectra for the octahedral complex trans-[RuNOPy4F](ClO4)2 (1, Py = pyridine) in both ground and metastable states. The transition from GS to MS1 using 420 nm light excitation leads to a significant downshift of the 2p → LUMO(+1) peaks by about 0.5-0.8 eV, attributed to the destabilisation of 2p orbitals and stabilization of LUMO(+1). Subsequent irradiation of MS1 at 920 nm produces isomer MS2, for which even greater stabilization of LUMO occurs, though without a significant change in 2p energy. The change in 2p energy is attributed to a variation in the charge on the Ru atom after NO isomerization, while LUMO(+1) stabilization is related to changes in the Ru(NO) bond length and the composition of this orbital.
Collapse
Affiliation(s)
- Artem Mikhailov
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| | - Krystyna Deresz
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France; Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Gennadiy Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | | | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| |
Collapse
|
3
|
Yuan M, McNeece AJ, Dolgopolova EA, Wolfsberg L, Bowes EG, Batista ER, Yang P, Filatov A, Davis BL. Photoinduced Isomerization of [N 2] 2- in a Bimetallic Lutetium Complex. J Am Chem Soc 2024; 146:31074-31084. [PMID: 39482864 DOI: 10.1021/jacs.4c10950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The first lanthanide dinitrogen photoswitch [(C5Me4H)2(THF)Lu]2(μ-η2:η2-N2), 1, is reported. 1 is a unique example of controlled isomerization between side-on and end-on coordination modes of [N2]2- in a bimetallic lutetium dinitrogen complex that results in photochromism. Near-infrared light (NIR) was used to promote this effect, as evidenced by single X-ray diffraction (XRD) connectivity and Raman data, generating the [N2]2- end-on bound isomer, [(C5Me4H)2(THF)Lu]2(μ-η1:η1-N2), 2. Although different ligands and coordinating solvents were studied to replicate and control the optical properties in 1/2, only the original configuration with C5Me4H ligands and THF as the coordinating solvent worked. Supported by the first-principles calculations, the electronic structures along with the mechanistic details of the side-on to end-on isomerization were unraveled. Preliminary reactivity studies show that 2 formed with NIR light reacts with anthracene, generating dihydroanthracene and anthracene dimers, indicating new redox reaction pathways.
Collapse
Affiliation(s)
- Mingbin Yuan
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J McNeece
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ekaterina A Dolgopolova
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura Wolfsberg
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eric G Bowes
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander Filatov
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Benjamin L Davis
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Hatcher LE, Warren MR, Raithby PR. Methods in molecular photocrystallography. Acta Crystallogr C Struct Chem 2024; 80:585-600. [PMID: 39226421 PMCID: PMC11451014 DOI: 10.1107/s2053229624007460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light-matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully.
Collapse
Affiliation(s)
- Lauren E. Hatcher
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Mark R. Warren
- Diamond Light Source, Harwell Science and Innovation Campus Fermi Ave Didcot OX11 0DE United Kingdom
| | - Paul. R. Raithby
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
5
|
Hatcher LE, Raithby PR. Dynamic crystal structure of a molecular framework. Nat Chem 2024; 16:674-675. [PMID: 38671299 DOI: 10.1038/s41557-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
6
|
Stroek W, Keilwerth M, Malaspina LA, Grabowsky S, Meyer K, Albrecht M. Deciphering Iron-Catalyzed C-H Amination with Organic Azides: N 2 Cleavage from a Stable Organoazide Complex. Chemistry 2024; 30:e202303410. [PMID: 37916523 DOI: 10.1002/chem.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Potempa K, Deresz KA, Jankowska J, Jarzembska KN, Krówczyński A, Mikhailov A, Schaniel D, Kamiński R. Interrelations between Linkage Isomers of an Efficient Square-planar Nickel(II) Nitrite Photoswitch in the Solid State. Chemistry 2023; 29:e202302629. [PMID: 37723126 DOI: 10.1002/chem.202302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
An efficient nitrite nickel(II) photoswitch, with the 1-phenyl-2-hydroxyimino-3-[(2'-dimethylamino)ethyl]imino-1-propanone moiety used as the ancillary ligand, is reported. In the ground-state ('dark') crystal structure, the studied compound exists predominantly as the nitro-(η1 -N(O)2 ) isomer, however, traces of the exo- and endo-nitrito-(η1 -ONO) forms are detected both at 100 K (4-5 % each) and under ambient conditions (~9 % each). When excited with the 405-530 nm LED light, the nitro-to-nitrito isomerization takes place. The total conversion exceeds 90 %. The exo-nitrito linkage isomer constitutes the dominant photo-generated form, whereas the relative population of both nitrito species depends on temperature. The reaction is fully reversible and reproducible. The photo-products are stable up to 200 K. The system constitutes a good model case for the reaction mechanism studies. Thus, experimental and theoretical investigations on the photo-isomerism were conducted and are presented in detail. Eventually, the nitro→exo-nitrito→endo-nitrito reaction pathway is proposed.
Collapse
Affiliation(s)
- Kinga Potempa
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krystyna A Deresz
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Joanna Jankowska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Katarzyna N Jarzembska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Krówczyński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | | | | | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
8
|
Hatcher LE, Saunders LK, Coulson BA. Uncovering the role of non-covalent interactions in solid-state photoswitches by non-spherical structure refinements with NoSpherA2. Faraday Discuss 2023; 244:370-390. [PMID: 37083212 DOI: 10.1039/d2fd00158f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a charge density study of two linkage isomer photoswitches, [Pd(Bu4dien)(NO2)]BPh4·THF (1) and [Ni(Et4dien)(NO2)2] (2) using Hirshfeld Atom Refinement (HAR) methods implemented via the NoSpherA2 interface in Olex2. HAR is used to explore the electron density distribution in the photoswitchable molecules of 1 and 2, to gain an in-depth understanding of key bonding features and their influence on the single-crystal-to-single-crystal reaction. HAR analysis is also combined with ab initio calculations to explore the non-covalent interactions that influence physical properties of the photoswitches, such as the stability of the excited state nitrito-(η1-ONO) isomer. This insight can be fed back into the crystal engineering process to develop new and improved photoswitches that can be optimised towards specific applications.
Collapse
Affiliation(s)
- Lauren E Hatcher
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 AT, UK.
| | - Lucy K Saunders
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Ben A Coulson
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 AT, UK.
| |
Collapse
|
9
|
Khan S, Dutta B, Naaz S, Choudhury A, Cazade PA, Kiely E, Guerin S, Medishetty R, Mir MH. Regulating photosalient behavior in dynamic metal-organic crystals. Commun Chem 2023; 6:150. [PMID: 37452109 PMCID: PMC10349121 DOI: 10.1038/s42004-023-00951-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700156, India
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata, 700156, India
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata, 700156, India
| | - Aditya Choudhury
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Emma Kiely
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Limerick, V94 T9PX, Ireland.
| | | | | |
Collapse
|
10
|
Mikhailov A, Konieczny KA, Gladysheva M, Plyusnin P, Pillet S, Schaniel D. Photogeneration of Several Linkage Isomers and Investigation of Forward and Backward Nitro-Nitrito Isomerization Processes in a Palladium Complex. Inorg Chem 2023; 62:5531-5542. [PMID: 36989116 DOI: 10.1021/acs.inorgchem.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Photoinduced linkage isomers (PLIs) of the nitro-ligand were generated and comprehensively characterized in a square planar unit [Pd(NH3)3NO2]+ of the complex salts [Pd(NH3)4][Pd(NH3)3NO2][MOx3]·yH2O (M = Cr (Cr), Rh (Rh), Co (Co), Ox = oxalate). Structural (XRD) and spectroscopic (IR, UV-vis) investigations at 10 and 150 K allowed determining the structures of several photoinduced linkage isomers, endo-ONO (PLI1, 2) and exo-ONO (PLI3, 4) isomers generated by irradiation with 365 nm from the initial NO2 (GS), along with the assignment of the infrared (IR) bands to each structural isomer. Based on a combination of these methods, the photo- and thermally induced interplay of PLIs was investigated. Irradiation in the temperature range of 10-80 K induces the formation of both endo- and exo-ONO isomers, while increasing the temperature up to 150 K results in the formation of only endo-ONO isomers. The structural arrangement of the endo-ONO and exo-ONO PLI is strongly influenced by intermolecular interactions due to the partial occupation of a neighboring site by water molecules. The investigation of thermal dynamics of PLIs revealed that the thermal decay of the exo-ONO isomer occurs via two steps exo-ONO → endo-ONO → NO2. The kinetic parameters (Ea, k0) of both decay processes were determined together with the characteristic decay temperatures (Td) by IR spectroscopy. According to the photoinduced dynamics measured by IR spectroscopy, the mechanism of PLI formation in [Pd(NH3)3NO2]+ could be described as NO2 → endo-ONO → exo-ONO.
Collapse
Affiliation(s)
- Artem Mikhailov
- CNRS, CRM2, UMR 7036, Université de Lorraine, Nancy 54000, France
| | - Krzysztof A Konieczny
- CNRS, CRM2, UMR 7036, Université de Lorraine, Nancy 54000, France
- Institute of Advanced Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Maria Gladysheva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russian Federation
| | - Pavel Plyusnin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Sébastien Pillet
- CNRS, CRM2, UMR 7036, Université de Lorraine, Nancy 54000, France
| | - Dominik Schaniel
- CNRS, CRM2, UMR 7036, Université de Lorraine, Nancy 54000, France
| |
Collapse
|
11
|
Mikhailov A, Korobeynikov N, Usoltsev A, Adonin SA, Kostin GA, Schaniel D. Bismuth and antimony halometalates containing photoswitchable ruthenium nitrosyl complexes. Dalton Trans 2023; 52:919-927. [PMID: 36594625 DOI: 10.1039/d2dt03497b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first examples of Bi(III) and Sb(III) halide compounds combined with a photoswitchable ruthenium nitrosyl unit are reported. The structures of [RuNOPy4Br]4[Sb2Br8][Sb3Br12]2 (1) and (H3O)[RuNOPy4Br]4[Bi2Br9]3·3H2O (2) were determined by X-ray diffraction, and exhibit three different structural types of group 15 halometalates. Low-temperature IR-spectroscopy measurements reveal that the irradiation of 1 at 365 nm switches a stable Ru-NO (GS) unit to a metastable Ru-ON (MS1) linkage. Moreover, the light excitation of 2 at 365 or 405 nm induces the additional formation of a side-bond isomer Ru-η2-(NO) (MS2). The reverse reactions MS1/MS2 → GS can be induced by red-infrared light irradiation or by heating at temperatures >200 K. The obtained synthetic and spectroscopic data open the way for the preparation of hybrid halide complexes with a variety of photoswitchable complexes (NO2, SO2, N2, etc.), and give an insight into the behavior of light-induced species embedded in polynuclear halides.
Collapse
Affiliation(s)
- Artem Mikhailov
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| | - Nikita Korobeynikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Andrey Usoltsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Sergey A Adonin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| |
Collapse
|
12
|
Deresz KA, Kamiński R, Kutniewska SE, Krówczyński A, Schaniel D, Jarzembska KN. An optically reversible room-temperature solid-state cobalt(III) photoswitch based on nitro-to-nitrito linkage isomerism. Chem Commun (Camb) 2022; 58:13439-13442. [PMID: 36427165 DOI: 10.1039/d2cc05134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A simple trinitro cobalt complex [Co(3,3'-diamino-N-methylpropanediamine)(NO2)3] was proven to be photoswitchable at room temperature as the Pca21 polymorph with the maximum nitro-to-nitrito conversion reaching ca. 55%. Solid-state IR, UV-vis and XRD indicate that the transformation can be triggered optically in both ways via 470 nm and 570-660 nm LED light, respectively.
Collapse
Affiliation(s)
- Krystyna A Deresz
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Sylwia E Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Adam Krówczyński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | | | - Katarzyna N Jarzembska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
13
|
Borowski P, Kutniewska SE, Kamiński R, Krówczyński A, Schaniel D, Jarzembska KN. Exploring Photoswitchable Properties of Two Nitro Nickel(II) Complexes with ( N, N, O)-Donor Ligands and Their Copper(II) Analogues. Inorg Chem 2022; 61:6624-6640. [PMID: 35430817 PMCID: PMC9066408 DOI: 10.1021/acs.inorgchem.2c00526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patryk Borowski
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sylwia E. Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Adam Krówczyński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | |
Collapse
|
14
|
Cole JM, Gosztola DJ, Velazquez-Garcia JDJ. Structural Capture of η 1-OSO to η 2-(OS)O Coordination Isomerism in a New Ruthenium-Based SO 2-Linkage Photoisomer That Exhibits Single-Crystal Optical Actuation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:6047-6059. [PMID: 35573119 PMCID: PMC9098168 DOI: 10.1021/acs.jpcc.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Recent discoveries of a range of single-crystal optical actuators are feeding a new form of materials chemistry, given their broad range of potential applications, from light-induced molecular motors to light sensors and optical-memory media. A series of ruthenium-based coordination complexes that exhibit sulfur dioxide linkage photoisomerization is of particular interest because they exhibit single-crystal optical actuation via either optical switching or nano-optomechanical transduction processes. We report the discovery of a new complex in this series of chemicals, [Ru(SO2)(NH3)4(3-fluoropyridine)]tosylate2 (1), which forms an η1-OSO photoisomer with 70% photoconversion upon the application of 505 nm light. The uncoordinated oxygen atom in this η1-OSO photoisomer impinges on one of the arene rings in a neighboring tosylate counter ion of 1 just enough that incipient nano-optomechanical transduction is observed. The structure and optical properties of this actuator are characterized via in situ light-induced single-crystal X-ray diffraction (photocrystallography), single-crystal optical absorption spectroscopy and microscopy, as well as single-crystal Raman spectroscopy. These materials-characterization methods were also used to track thermally induced reverse isomerization processes in 1. One of these processes involves an η1-OSO to η2-(OS)O transition, which was found to proceed sufficiently slowly at 110 K that its structural mechanism could be determined via a time sequence of photocrystallography experiments. The resulting data allowed us to structurally capture the transition, which was shown to occur via a form of coordination isomerism. Our newfound knowledge about this structural mechanism will aid the molecular design of new [RuSO2] complexes with functional applications.
Collapse
Affiliation(s)
- Jacqueline M. Cole
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
- ISIS
Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K.
- Center
for Nanoscale Materials, Argonne National
Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United
States
| | - David J. Gosztola
- Center
for Nanoscale Materials, Argonne National
Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United
States
| | - Jose de J. Velazquez-Garcia
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
15
|
Liu C, Wang Y, Wang A, Su F, Wang H. Structures, spectral and photodynamic properties of two nitrosylruthenium (II) isomer complexes containing 8-quinolinolate and L-proline ligands. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
16
|
Ahmed E, Chizhik S, Sidelnikov A, Boldyreva E, Naumov P. Relating Excited States to the Dynamics of Macroscopic Strain in Photoresponsive Crystals. Inorg Chem 2022; 61:3573-3585. [PMID: 35170305 DOI: 10.1021/acs.inorgchem.1c03607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure of a photoreactive single crystal to light with a wavelength offset from its absorption maximum can have two distinct effects. The first is the "direct" effect, wherein the excited state generated in individual chemical species is influenced. The second is the "indirect" effect, which describes the penetration of light into the crystal and hence the spatial propagation and completeness of transformation. We illustrate using the nitro-nitrito isomerization of [Co(NH3)5NO2]Cl(NO3) as an example that the direct and indirect effects can be independently determined. This is achieved by comparing the dynamics of macroscopic crystal deformation (bending curvature and crystal elongation) induced by the photochemical reaction when irradiating a crystal at the absorption maximum and at different band edges (above or below the maximum) of the same band. Quantitative description of the macroscopic strain dynamics in comparison with experiments allowed us to suggest that irradiation at different tails of the same absorption band causes isomerization to proceed via different excited states and an additional photochemical reaction (presumably, reverse nitrito-nitro isomerization) can occur on irradiation at the ligand-field band edges.
Collapse
Affiliation(s)
- Ejaz Ahmed
- Smart Materials Lab, New York University, Abu Dhabi, POB 129188, Abu Dhabi 00000, U.A.E
| | - Stanislav Chizhik
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze, 18, Novosibirsk 630128, Russian Federation.,Novosibirsk State University, ul. Pirogova, 2, Novosibirsk 630090, Russian Federation
| | - Anatoly Sidelnikov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze, 18, Novosibirsk 630128, Russian Federation
| | - Elena Boldyreva
- Novosibirsk State University, ul. Pirogova, 2, Novosibirsk 630090, Russian Federation.,Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, Novosibirsk 630090, Russian Federation
| | - Panče Naumov
- Smart Materials Lab, New York University, Abu Dhabi, POB 129188, Abu Dhabi 00000, U.A.E
| |
Collapse
|
17
|
Hatcher LE, Coulson BA. Exploring the influence of polymorphism and chromophore co-ligands on linkage isomer photoswitching in [Pd(bpy4dca)(NO 2) 2]. CrystEngComm 2022. [DOI: 10.1039/d2ce00213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymorphic Pd(II)-nitrite complex [Pd(bpy4dca)(NO2)2] (1) (bpy4dca = 2,2’-bipyridine-4,4’-dicarboxylic acid methyl ester) is shown to undergo photoinduced nitro → nitrito linkage isomer switching in two crystal forms, to varying excited...
Collapse
|
18
|
Mazumder A, Sebastian E, Hariharan M. Solvent dielectric delimited nitro–nitrito photorearrangement in a perylenediimide derivative. Chem Sci 2022; 13:8860-8870. [PMID: 35975155 PMCID: PMC9350666 DOI: 10.1039/d2sc02979k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery of vibrant excited-state dynamics and distinctive photochemistry has established nitrated polycyclic aromatic hydrocarbons as an exhilarating class of organic compounds. Herein, we report the atypical photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI), triggered by visible-light excitation and giving rise to linkage isomers in the polar aprotic solvent acetonitrile. ONO-PDI has been isolated and unambiguously characterized using standard spectroscopic, spectrometric, and elemental composition techniques. Although nitritoaromatic compounds are conventionally considered to be crucial intermediates in the photodissociation of nitroaromatics, experimental evidence for this has not been observed heretofore. Ultrafast transient absorption spectroscopy combined with computational investigations revealed the prominence of a conformationally relaxed singlet excited-state (SCR1) of NO2-PDI in the photoisomerization pathway. Theoretical transition state (TS) analysis indicated the presence of a six-membered cyclic TS, which is pivotal in connecting the SCR1 state to the photoproduct state. This article addresses prevailing knowledge gaps in the field of organic linkage isomers and provides a comprehensive understanding of the unprecedented photoisomerization mechanism operating in the case of NO2-PDI. The unprecedented photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI) is shown to occur through a cyclic six-membered transition state triggered by visible-light excitation.![]()
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
19
|
Thapa Magar R, Breen DJ, Schrage BR, Ziegler CJ, Rack JJ. Slow 3MLCT Formation Prior to Isomerization in Ruthenium Carbene Sulfoxide Complexes. Inorg Chem 2021; 60:16120-16127. [PMID: 34672621 DOI: 10.1021/acs.inorgchem.1c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of photochromic complexes with general formulas of [Ru(bpy)2(NHC-SR)]2+ and [Ru(bpy)2(NHC-S(O)R)]2+ were prepared and investigated by X-ray crystallography, electrochemistry, and ultrafast transient absorption spectroscopy {where bpy is 2,2'-bipyridine and NHC-SR and NHC-S(O)R are chelating thioether (-SR) and chelating sulfoxide [-S(O)R] N-heterocyclic carbene (NHC) ligands}. The only differences between these complexes are the nature of the R group on the sulfur (Me vs Ph), the identity of the carbene (imidazole vs benzimidazole), and the number of linker atoms in the chelate (CH2 vs C2H4). A total of 13 structures are presented {four [Ru(bpy)2(NHC-SR)]2+ complexes, four [Ru(bpy)2(NHC-S(O)R)]2+ complexes, and five uncomplexed ligands}, and these reveal the expected coordination geometry as predicted from other spectroscopy data. The data do not provide insight into the photochemical reactivity of these compounds. These carbene ligands do impart stability with respect to ground state and excited state ligand substitution reactions. Bulk photolysis reveals that these complexes undergo efficient S → O isomerization, with quantum yields ranging from 0.24 to 0.87. The excited state reaction occurs with a time constant ranging from 570 ps to 1.9 ns. Electrochemical studies reveal an electron transfer-triggered isomerization, and voltammograms are consistent with an ECEC (electrochemical-chemical electrochemical-chemical) reaction mechanism. The carbene facilitates an unusually slow S → O isomerization and an unusally fast O → S isomerization. Temperature studies reveal a small and negative entropy of activation for the O → S isomerization, suggesting an associative transition state in which the sulfoxide simply slides along the S-O bond during isomerization. Ultrafast studies provide evidence of an active role of the carbene in the excited state dynamics of these complexes.
Collapse
Affiliation(s)
- Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| | - Douglas J Breen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| | - Briana R Schrage
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Christopher J Ziegler
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87111, United States
| |
Collapse
|
20
|
Cole JM, Gosztola DJ, Velazquez-Garcia JDJ. Nanooptomechanical Transduction in a Single Crystal with 100% Photoconversion. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8907-8915. [PMID: 34084264 PMCID: PMC8162413 DOI: 10.1021/acs.jpcc.1c02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Materials that exhibit nanooptomechanical transduction in their single-crystal form have prospective use in light-driven molecular machinery, nanotechnology, and quantum computing. Linkage photoisomerization is typically the source of such transduction in coordination complexes, although the isomers tend to undergo only partial photoconversion. We present a nanooptomechanical transducer, trans-[Ru(SO2)(NH3)4(3-bromopyridine)]tosylate2, whose S-bound η1-SO2 isomer fully converts into an O-bound η1-OSO photoisomer that is metastable while kept at 100 K. Its 100% photoconversion is confirmed structurally via photocrystallography, while single-crystal optical absorption and Raman spectroscopies reveal its metal-to-ligand charge-transfer and temperature-dependent characteristics. This perfect optical switching affords the material good prospects for nanooptomechanical transduction with single-photon control.
Collapse
Affiliation(s)
- Jacqueline M. Cole
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
- ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | - David J. Gosztola
- Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | - Jose de J. Velazquez-Garcia
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
21
|
Vittardi SB, Thapa Magar R, Breen DJ, Rack JJ. A Future Perspective on Phototriggered Isomerizations of Transition Metal Sulfoxides and Related Complexes. J Am Chem Soc 2021; 143:526-537. [PMID: 33400512 DOI: 10.1021/jacs.0c08820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photochromic molecules are examples of light-activated bistable molecules. We highlight the design criteria for a class of ruthenium and osmium sulfoxide complexes that undergo phototriggered isomerization of the bound sulfoxide. The mode of action in these complexes is an excited-state isomerization of the sulfoxide from S-bonded to O-bonded. We discuss the basic mechanism for this transformation and highlight specific examples that demonstrate the effectiveness and efficiency of the isomerization. We subsequently discuss future research directions within the field of phototriggered sulfoxide isomerizations on transition metal polypyridine complexes. These efforts involve new synthetic directions, including the choice of metal as well as new ambidentate ligands for isomerization.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Douglas J Breen
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| |
Collapse
|
22
|
Cole JM, Gosztola DJ, Sylvester SO. Low-energy optical switching of SO 2 linkage isomerisation in single crystals of a ruthenium-based coordination complex. RSC Adv 2021; 11:13183-13192. [PMID: 35423860 PMCID: PMC8697492 DOI: 10.1039/d1ra01696b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 01/13/2023] Open
Abstract
Single crystals that behave as optical switches are desirable for a wide range of applications, from optical sensors to read–write memory media. A series of ruthenium-based complexes that exhibit optical switching in their single-crystal form via SO2 linkage photoisomerisation are of prospective interest for these technologies. This study explores the optical switching behaviour in one such complex, trans-[Ru(SO2)(NH3)4(H2O)]tosylate2 (1), in terms of its dark and photoinduced crystal structure, as well as its light and thermal decay characteristics, which are deduced by photocrystallography, single-crystal optical absorption spectroscopy and microscopy. Photocrystallography results reveal that a photoisomerisation level of 21.5(5)% is achievable in 1. Biphasic photochromic crystals of 1 were generated by applying green and then red light to switch on and off the η2-(OS)O photoisomer in different regions of a crystal. Heat is a known alternative to its thermal decay, whereby a method is demonstrated that employs optical absorption spectra to determine its activation energy of 30 kJ mol−1. This low-energy barrier to optical switching agrees well with computational studies on 1, as well as being comparable to activation energies in ruthenium-based nitrosyl linkage photoisomers that also display solid-state optical switching. Single crystals that behave as optical switches are desirable for a wide range of applications, from optical sensors to read–write memory media.![]()
Collapse
Affiliation(s)
- Jacqueline M. Cole
- Cavendish Laboratory
- Department of Physics
- University of Cambridge
- Cambridge
- UK
| | | | - Sven O. Sylvester
- Cavendish Laboratory
- Department of Physics
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
23
|
Kutniewska SE, Krówczyński A, Kamiński R, Jarzembska KN, Pillet S, Wenger E, Schaniel D. Photocrystallographic and spectroscopic studies of a model (N,N,O)-donor square-planar nickel(II) nitro complex: in search of high-conversion and stable photoswitchable materials. IUCRJ 2020; 7:1188-1198. [PMID: 33209329 PMCID: PMC7642791 DOI: 10.1107/s205225252001307x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
A new, cheap, easy-to-synthesize and air-stable photoswitchable nickel(II) complex, QTNiNO2, is reported. The metal centre in QTNiNO2 is coordinated by a nitro group and a [2-methyl-8-amino-quinoline]-1-tetralone ligand. The compound crystallizes in the tetragonal space group I41/a with one complex molecule comprising the asymmetric unit, and the crystals are stable under ambient conditions. Irradiation of the solid-state form of QTNiNO2 with 530-660 nm LED light at 160 K converts the ambidentate nitro moiety fully to the nitrito linkage isomer which is stable up to around 230 K, as indicated by IR spectroscopy measurements. The structures of all species present in the examined crystals and their thermal stability were confirmed via X-ray multi-temperature and photocrystallographic experiments. The impact of temperature on the (photo)isomerization reaction taking place in a single crystal was additionally investigated. The experimental results are supported by computational analyses of crystal packing and intermolecular interactions that influence the isomerization process studied.
Collapse
Affiliation(s)
- Sylwia E. Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Adam Krówczyński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
24
|
Campirán-Martínez A, Jancik V, Martínez-Otero D, Hernández-Balderas U, Zavala-Segovia N, Moya-Cabrera M. Linkage Isomerism in Dinuclear Al and Ga Organometallic Complexes: Structural and Reactivity Consequences. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Azucena Campirán-Martínez
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Vojtech Jancik
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Diego Martínez-Otero
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Uvaldo Hernández-Balderas
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Nieves Zavala-Segovia
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Mónica Moya-Cabrera
- Universidad Nacional Autónoma de México, Instituto de Quı́mica, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
- Centro Conjunto de Investigación en Quı́mica Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| |
Collapse
|
25
|
Young RJ, Huxley MT, Pardo E, Champness NR, Sumby CJ, Doonan CJ. Isolating reactive metal-based species in Metal-Organic Frameworks - viable strategies and opportunities. Chem Sci 2020; 11:4031-4050. [PMID: 34122871 PMCID: PMC8152792 DOI: 10.1039/d0sc00485e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
Structural insight into reactive species can be achieved via strategies such as matrix isolation in frozen glasses, whereby species are kinetically trapped, or by confinement within the cavities of host molecules. More recently, Metal-Organic Frameworks (MOFs) have been used as molecular scaffolds to isolate reactive metal-based species within their ordered pore networks. These studies have uncovered new reactivity, allowed observation of novel metal-based complexes and clusters, and elucidated the nature of metal-centred reactions responsible for catalysis. This perspective considers strategies by which metal species can be introduced into MOFs and highlights some of the advantages and limitations of each approach. Furthermore, the growing body of work whereby reactive species can be isolated and structurally characterised within a MOF matrix will be reviewed, including discussion of salient examples and the provision of useful guidelines for the design of new systems. Novel approaches that facilitate detailed structural analysis of reactive chemical moieties are of considerable interest as the knowledge garnered underpins our understanding of reactivity and thus guides the synthesis of materials with unprecedented functionality.
Collapse
Affiliation(s)
- Rosemary J Young
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
- School of Chemistry, The University of Nottingham Nottingham UK
| | - Michael T Huxley
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Emilio Pardo
- Institute of Molecular Science, University of Valencia Valencia Spain
| | | | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Christian J Doonan
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| |
Collapse
|
26
|
Mikhailov AA, Komarov VY, Sukhikh AS, Pishchur DP, Schaniel D, Kostin GA. The impact of counterion on the metastable state properties of nitrosyl ruthenium complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04436a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of the trans-[RuNO(NH3)4F]2+ cation with noble-metal anions [PtCl6]2−, [PdCl4]2−, and [PtCl4]2−, and perchlorate ClO4− were synthesized, the photo-generated linkage isomers were studied by spectroscopic and calorimetric methods.
Collapse
Affiliation(s)
- Artem A. Mikhailov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Vladislav Yu. Komarov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Aleksandr S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Denis P. Pishchur
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | | | - Gennadiy A. Kostin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| |
Collapse
|
27
|
Kutniewska SE, Kamiński R, Buchowicz W, Jarzembska KN. Photo- and Thermoswitchable Half-Sandwich Nickel(II) Complex: [Ni(η5-C5H5)(IMes)(η1-NO2)]. Inorg Chem 2019; 58:16712-16721. [PMID: 31773953 DOI: 10.1021/acs.inorgchem.9b02836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sylwia E. Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Włodzimierz Buchowicz
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | |
Collapse
|
28
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH
2
Cl
2
in a Solid‐State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of Huelva Campus El Carmen 21007 Huelva Spain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| |
Collapse
|
29
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH 2 Cl 2 in a Solid-State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019; 58:16873-16877. [PMID: 31539184 PMCID: PMC6899477 DOI: 10.1002/anie.201910539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/22/2022]
Abstract
Reversible encapsulation of CH2 Cl2 or Xe in a non-porous solid-state molecular organometallic framework of [Rh(Cy2 PCH2 PCy2 )(NBD)][BArF4 ] occurs in single-crystal to single-crystal transformations. These processes are probed by solid-state NMR spectroscopy, including 129 Xe SSNMR. Non-covalent interactions with the -CF3 groups, and hydrophobic channels formed, of [BArF4 ]- anions are shown to be important, and thus have similarity to the transport of substrates and products to and from the active site in metalloenzymes.
Collapse
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of HuelvaCampus El Carmen21007HuelvaSpain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| |
Collapse
|