1
|
Xiong L, Chen S, Li S, He D, Wang Y, Zhang Q, He Z, Li M, He Q. ATP-responsive tumor targeted lipid nanoparticle for enhanced siRNA delivery and improved treatment efficacy in melanoma. J Control Release 2025; 382:113622. [PMID: 40120691 DOI: 10.1016/j.jconrel.2025.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Small interfering RNA (siRNA) plays a crucial role in tumor therapy, especially for non-druggable targets with obvious advantages. Nevertheless, its molecular weight, negative charge, and susceptibility to degradation hinder effective delivery to tumor cells for therapeutic action. Lipid nanoparticles (LNPs) serve as an excellent delivery mechanism for siRNA but still face problems such as suboptimal tumor targeting and inefficient intracellular release. To enhance melanoma treatment, we designed lipid nanoparticles modified with phenylboronic acid (PBA) for efficient delivery of siRNA targeting "undruggable" microphthalmia-associated transcription factor (MITF). This nanocarrier successfully encapsulated siRNA and improved tumor targeting by allowing phenylboronic acid to interact with sialic acid residues overexpressed in tumor cells. Furthermore, PBA-modified lipid nanoparticles facilitated the ATP-responsive release of siRNA intracellular. These two aspects enhance gene silencing efficiency. The in vivo targeting and gene silencing capabilities of PBA-modified lipid nanoparticles significantly surpassed those of unmodified LNP. Additionally, PBA-modified nanoparticles exhibited considerable anti-tumor and anti-metastatic effects in animal models, offering an alternative approach for siRNA therapy.
Collapse
Affiliation(s)
- Lin Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Shuang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Sihui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Dan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Cureno Hernandez KE, Lee J, Kim S, Cartwright Z, Herrera-Alonso M. Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes. SOFT MATTER 2025; 21:3125-3136. [PMID: 40171575 DOI: 10.1039/d4sm01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mucus is a substance that acts as a protective barrier, shielding tissues from infections caused by viruses and bacteria. Recent studies highlight the advantages of transmucosal drug delivery compared to traditional delivery methods. However, external particles in mucus struggle to penetrate its deeper layers and are often eliminated by mucus clearance mechanisms, hindering effective drug delivery. To gain a deeper understanding of how material surfaces interact with mucus, we grafted brushes of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) onto silica surfaces, followed by the straightforward installation of a terminal boronic acid moiety (3-phenylboronic acid, APBA). The modification process was carried out following a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP), a method known for its effectiveness in producing well-defined grafted polymers. After conjugation of APBA, we studied the effects of surface chemistry on properties such as pH-sensitivity and mucin adsorption. The surfaces modified with the zwitterionic polymer showed no mucin interaction regardless of system pH. However, all the surfaces containing the boronic acid showed boronic acid-sialic acid interactions, particularly at lower pH values. The insights gained from this study will enhance our understanding of the interactions between the zwitterionic PMPC and the boronic acid APBA with mucins, laying the groundwork for future chemical modifications of particle surfaces aimed at modulating their transport through mucus.
Collapse
Affiliation(s)
- Karla E Cureno Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Zach Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
3
|
Zhou S, Dai L, Pan L, Shen G, Qian Z. Phenylboronic acid-modified nanoparticles for cancer treatment. Chem Commun (Camb) 2025; 61:4595-4605. [PMID: 40036055 DOI: 10.1039/d4cc06730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Phenylboronic acid (PBA) has emerged as a promising component in the design of functional nanomaterials for cancer treatment. PBA possesses unique characteristics such as pH/reactive oxygen species (ROS)-responsiveness, low cytotoxicity, stability, and the ability to target sialic acid residues overexpressed on cancer cell surfaces. PBA-modified nanomaterials can be utilized in various strategies, including chemotherapy, gene therapy, and phototherapy, to enhance drug delivery, cancer cell targeting, and therapeutic efficacy. This review examines the application of PBA-modified nanomaterials in cancer treatment, focusing on their roles in stimuli-responsive drug release and cancer cell targeting. The incorporation of PBA into nanoparticles, dendrimers, and other nanostructures has shown significant potential for improving the selectivity and efficacy of cancer therapeutics while minimizing adverse side effects. With ongoing research and development, PBA-based technologies have promising potential for further innovations in medical science, particularly in oncology.
Collapse
Affiliation(s)
- Siming Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Hong G, Li J, Wei W, Wu Y, Li L, Chen Y, Xie D, Qu Q, Rojas OJ, Hu G, Li Y, Guo J. Starfish-Inspired Synergistic Reinforced Hydrogel Wound Dressing: Dual Responsiveness and Enhanced Bioactive Compound Delivery for Advanced Skin Regeneration and Management. ACS NANO 2025; 19:10180-10198. [PMID: 40048360 DOI: 10.1021/acsnano.4c17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Effective wound management demands advanced dressings that protect while actively supporting healing. Traditional wound dressings often fall short of meeting the complex needs of skin repair. Inspired by the regenerative abilities of starfish, we developed a bionically engineered hydrogel designed to enhance wound healing. The hydrogel is synthesized through the coassembly of dopamine-modified cellulose nanofibers, chitosan, (3-aminobenzeneboronic acid)-grafted oxidized dextran, and poly(vinyl alcohol), utilizing dynamic Schiff base and boronic ester linkages. This innovative design imparts multifunctional properties, including injectability, 3D printability, antibacterial activity, self-adhesion, self-healing, antioxidant protection, and hemostasis, which emulate the defense mechanisms and regenerative processes of starfish. These characteristics work synergistically to reduce infection and oxidative stress and improve healing efficiency. Additionally, the hydrogel incorporates mangiferin and Vitamin C, which are released in a controlled manner in response to the wound's microenvironment (pH and reactive oxygen species), promoting tissue regeneration and reducing inflammation. In vitro tests confirmed its dual responsiveness, while finite element modeling validated the controlled release of bioactive compounds. In vivo testing on a rat full-thickness wound model showed a 100% healing rate by day 13, significantly outperforming commercial alternatives. The hydrogel's nontoxicity and advanced healing capabilities make it a promising solution for patients with critical healing needs, offering a comprehensive integration of natural biological processes and cutting-edge engineering.
Collapse
Affiliation(s)
- Gonghua Hong
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiawen Li
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenqi Wei
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Wu
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Yubao Chen
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Delong Xie
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Orlando J Rojas
- Department of Chemical and Biological Engineering, V6T 1Z3; Department of Chemistry, BC V6T 1Z1; Department of Wood Science, Bioproduct Institute, The University of British Columbia, V6T 1Z4 Vancouver, Canada
- Department of Chemistry and Department of Wood Science, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo FI-00076, Finland
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yifei Li
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junling Guo
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, V6T 1Z3; Department of Chemistry, BC V6T 1Z1; Department of Wood Science, Bioproduct Institute, The University of British Columbia, V6T 1Z4 Vancouver, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Mi B, Mu J, Ding X, Guo S, Hua X. Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases. SMALL METHODS 2025:e2402048. [PMID: 40095315 DOI: 10.1002/smtd.202402048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.
Collapse
Affiliation(s)
- Baoyue Mi
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Jingqing Mu
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| | - Xiangyu Ding
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai, Tianjin, 300071, P. R. China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| |
Collapse
|
6
|
Ren X, Wang S, Teng Y, Zheng S, Li F, Wang C, Wu L, Zhang J. Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery. Carbohydr Polym 2025; 352:123160. [PMID: 39843065 DOI: 10.1016/j.carbpol.2024.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are promising therapeutic carriers for their ideal nano-size and intrinsic biocompatibility, while rapid clearance and limited targeting ability are the major setbacks of EVs. With minimal absorption into the systemic circulation, inhalation for pulmonary disease therapy minimizes off-target toxicity to other organs and offers a safe and effective treatment for respiratory disorders. Herein, a nano-grid carrier made of boronated cyclodextrin framework (BCF) was prepared for pH/H2O2 responsive release of EVs. A novel design of cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide (RGD)-modified milk-derived EVs (mEVs) loaded in the BCF particles (RGD-mEVs@BCF) was developed for pulmonary delivery. The results indicated that RGD-mEVs showed superior anti-inflammatory activity in contrast with mEVs in vitro. BCF was able to capture and protect RGD-mEVs, which showed extended-release profiles and responsiveness. Pulmonary administration of RGD-mEVs@BCF showed favorable biocompatibility in rats. Taken together, RGD-mEVs@BCF features biocompatibility and pH-responsive mEVs release as a therapeutic platform for pulmonary delivery of drugs to treat lung diseases, especially for inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohong Ren
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Siwen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupu Teng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyu Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Feng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
António JPM, Roque IL, Santos FMF, Gois PMP. Designing Functional and Responsive Molecules with Boronic Acids. Acc Chem Res 2025; 58:673-687. [PMID: 39937928 DOI: 10.1021/acs.accounts.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Boronic acids (BAs) are one of the most important classes of reagents in modern synthesis, enabling a wide range of powerful transformations that facilitate the formation of key carbon-carbon and carbon-heteroatom bonds. While their success as reagents is well-known, their remarkable potential as building blocks for creating functional molecules is often overlooked. At the core of BAs' uniqueness is their ability to form reversible covalent bonds, thanks to the interconversion of the boron atom between its uncharged trigonal planar structure and an anionic sp3-hybridized form. This coordination chemistry has paved the way for exciting developments in fields such as medicinal chemistry and chemical biology. In recent years, BAs have been used to create a wide variety of materials, including small-molecule drugs, bioconjugates, drug delivery vehicles, polymeric nanomaterials, sensors, and even photosensitizers. What makes this strategy particularly unique is the structural diversity that can be achieved by functionalizing the BA coordination sphere, along with the possibility of incorporating stimuli-responsive mechanisms. This reactivity is further enhanced by the well-known oxidation of BAs in the presence of reactive oxygen species (ROS). A detailed understanding of the mechanisms governing the dynamic nature of BAs enables the engineering of sophisticated materials that can respond to specific molecular stimuli, such as changes in pH, carbohydrate or glutathione concentrations, and hydrogen peroxide. These stimuli are often key indicators of diseases such as cancer, inflammation, and neurodegeneration, placing BAs at the forefront of tools for designing materials that can potentially influence the mechanisms behind these diseases. In this Account, we draw on our group's expertise to explore the exciting potential of BAs in the design of functional materials. The focus is on the response of different boron complexes to biologically relevant stimuli. We describe the preparation of boronated esters (BEs), BA-salicylhydroxamic acid (BA-SHA) complexes, iminoboronates, diazaborines, and boronated thiazolidines and discuss how these chemotypes respond to disease-relevant triggers. Given the growing importance of using external stimuli to control the efficacy of modern drugs, we also explore how some of these compounds respond to specific chemicals. While this Account is not meant to be an exhaustive survey of every example of BA stimulus-responsiveness, we aim to integrate existing chemotypes and their chemical triggers. Our goal is to provide an overview of the mechanisms enabled by BAs for designing functional materials that could one day lead to innovative therapeutic options for human diseases.
Collapse
Affiliation(s)
- João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês L Roque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
8
|
Li M, Chen M, Li P, Zhang Z, Yu H, Wang X. Enhanced transcytosis and therapeutic efficacy of paclitaxel nanoparticles: Pyridylboronic acid modification and sialic acid targeting. Colloids Surf B Biointerfaces 2025; 247:114417. [PMID: 39631321 DOI: 10.1016/j.colsurfb.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Efficient drug delivery and deeper penetration into tumors have become a primary focus of anti-tumor nanomedicine. In this study, pyridylboronic acid (BPA), as a targeting ligand for sialic acid, which is highly expressed on the surface of tumor cells, was conjugated with DSPE-PEG2k-NH2 to synthesize DSPE-PEG2k-BPA and used to encapsulate PTX. The resultant PTX@DSPE-PEG2k-BPA nanoparticles (DPB NPs) showed a mean particle size of 189.0 ± 3.5 nm, with a high drug loading content of 48.75 % and a rod-like morphology. In contrast to PTX@DSPE-mPEG2k nanoparticles (DP NPs), DPB NPs displayed enhanced cellular uptake and targetability to 4T1 tumor cells. Interestingly, BPA modification could also enhance transcytosis through the endoplasmic reticulum-Golgi pathway, thus improving penetration and accumulation of nanoparticles in tumors. An in vivo study on 4T1 tumor-bearing mice demonstrated that DPB NPs achieved a faster and more accumulation in tumors than DP NPs after intravenous administration, led to significantly improved therapeutic efficacy with a higher tumor inhibition rate (74.27 % vs 50.58 %, p < 0.01). In conclusion, the modification of BPA presents a strategy for the development of drug delivery systems that exhibit dual functionalities: active targeting and transcytosis.
Collapse
Affiliation(s)
- Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Miao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Pengxin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ziqi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Han Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
9
|
Li J, Liu Y, Geng K, Lu X, Shen X, Guo Q. ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:440-461. [PMID: 39316729 DOI: 10.1080/09205063.2024.2406628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 09/26/2024]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPSPHE@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPSPHE@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation in vitro. In vivo experiments on diabetic mice with DR revealed that NPSPHE@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPSPHE@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.
Collapse
Affiliation(s)
- Jinjin Li
- The Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yujia Liu
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Kedui Geng
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xin Lu
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiangchun Shen
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qianqian Guo
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
10
|
Dai L, Liu J, Yang T, Yu X, Lu Y, Pan L, Zhou S, Shu D, Liu Y, Mao W, Qian Z. Lipoic acid-boronophenylalanine-derived multifunctional vesicles for cancer chemoradiotherapy. Nat Commun 2025; 16:1329. [PMID: 39900898 PMCID: PMC11790874 DOI: 10.1038/s41467-025-56507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Cancer remains a major health challenge, with the effectiveness of chemotherapy often limited by its lack of specificity and systemic toxicity. Nanotechnology, particularly in targeted drug delivery, has emerged as a key innovation to address these limitations. This study introduces lipoic acid-boronophenylalanine (LA-BPA) derivatives that incorporate short-chain polyethylene glycol (PEG) as a spacer. These derivatives distinctively self-assemble into vesicles under specific pH conditions, exhibiting a pH-dependent reversible assembly characteristic. Notably, these vesicles target cancer cells by binding to sialic acid via phenylboronic acid groups, subsequently depleting cellular glutathione and elevating reactive oxygen species, thereby inducing apoptosis via mitochondrial dysfunction and mitophagy. The vesicles demonstrate high efficiency in encapsulating doxorubicin, featuring a glutathione-responsive release mechanism, which present a promising option for tumor therapy. Additionally, the derivatives of the B-10 isotope, containing up to 1.6% boron, are engineered for incorporation into LPB-3-based vesicles. This design facilitates their application in boron neutron capture therapy (BNCT) alongside chemotherapy for the treatment of pancreatic cancer. Our findings highlight the potential of LA-BPA derivatives in developing more precise, effective, and less detrimental chemoradiotherapy approaches, marking an advancement in nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaorui Yu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siming Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diyun Shu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
| | - Yuanhao Liu
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, China
- Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province, China
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
12
|
Guo T, Zhang Y, Li Y, Liu J, Wang X. Synergistic Boronic Acid and Photoredox Catalysis: Synthesis of C-Branched Saccharides via Selective Alkylation of Unprotected Saccharides. Org Lett 2025; 27:789-794. [PMID: 39801080 DOI: 10.1021/acs.orglett.4c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the cis-1,2-diol motif, this method employs MeB(OH)2 as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation. Notably, this method enables efficient late-stage modification of complex carbohydrates, such as raffinose and the drug digoxin, expanding opportunities for carbohydrate functionalization.
Collapse
Affiliation(s)
- Tianyun Guo
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufeng Zhang
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yanyang Li
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Kao CY, Chen YW, Liu YC, Wei JH, Wang TSA. Versatile Stimuli-Responsive Controlled Release of Pinanediol-Caged Boronic Esters for Spatiotemporal and Nitroreductase-Selective Glucose Bioimaging. ACS Sens 2025; 10:470-479. [PMID: 39750141 PMCID: PMC11773560 DOI: 10.1021/acssensors.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Boronic acids have been widely applied in various biological fields, particularly achieving significant practical progress in boronic acid-based glucose sensing. However, boronic acids exhibit nonspecific binding to other nucleophiles, and the inherent lability of boronic esters in biological systems limits their further applications. Herein, we developed a stimuli-responsive controllable caging strategy to achieve photoresponsive spatiotemporally and nitroreductase-responsive cancer cell-selective glucose sensing. We introduced o-/p-nitroaryl-containing self-immolative linkers onto δ-pinanediol derivatives, effectively caging boronic acids and blocking glucose recognition. Upon triggering by specific stimuli, the caged boronic esters decompose, releasing boronic acids and thereby restoring glucose recognition of the diboronic acid-based sensor. The proof of concept was confirmed through intracellular glucose bioimaging in living cells. Upon regional UV irradiation, we could monitor intracellular glucose with excellent spatiotemporal selectivity. Furthermore, we used the cancer biomarker nitroreductases as the internal stimuli and utilized the caged glucose sensor to selectively label hypoxic cancer cells in a cocultured living cell sample. We believe that our stimuli-responsive caging strategies will hold promising potential for the controlled release of other boronic acids in various biological contexts.
Collapse
Affiliation(s)
- Chih-Yao Kao
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Ying-Wei Chen
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Yu-Cheng Liu
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Jen-Hsuan Wei
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
14
|
Zhou X, Chen S, Pich A, He C. Advanced Bioresponsive Drug Delivery Systems for Promoting Diabetic Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:182-207. [PMID: 39666445 DOI: 10.1021/acsbiomaterials.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The treatment of bone defects in diabetes mellitus (DM) patients remains a major challenge since the diabetic microenvironments significantly impede bone regeneration. Many abnormal factors including hyperglycemia, elevated oxidative stress, increased inflammation, imbalanced osteoimmune, and impaired vascular system in the diabetic microenvironment will result in a high rate of impaired, delayed, or even nonhealing events of bone tissue. Stimuli-responsive biomaterials that can respond to endogenous biochemical signals have emerged as effective therapeutic systems to treat diabetic bone defects via the combination of microenvironmental regulation and enhanced osteogenic capacity. Following the natural bone healing processes, coupling of angiogenesis and osteogenesis by advanced bioresponsive drug delivery systems has proved to be of significant approach for promoting bone repair in DM. In this Review, we have systematically summarized the mechanisms and therapeutic strategies of DM-induced impaired bone healing, outlined the bioresponsive design for drug delivery systems, and highlighted the vascularization strategies for promoting bone regeneration. Accordingly, we then overview the recent advances in developing bioresponsive drug delivery systems to facilitate diabetic vascularized bone regeneration by remodeling the microenvironment and modulating multiple regenerative cues. Furthermore, we discuss the development of adaptable drug delivery systems with unique features for guiding DM-associated bone regeneration in the future.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Lee MY, Lee D, Choi D, Kim KS, Kang PM. Targeting Reactive Oxygen Species for Diagnosis of Various Diseases. J Funct Biomater 2024; 15:378. [PMID: 39728178 DOI: 10.3390/jfb15120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings. In this review, we discuss the molecular mechanisms underlying ROS production and explore the methods and materials that could be used to detect ROS overproduction, including iron-based materials, ROS-responsive chemical bond containing polymers, and ROS-responsive molecule containing biomaterials. We also discuss various imaging and imaging techniques that could be used to target and detect ROS overproduction. We discuss the ROS imaging potentials of established clinical imaging methods, such as magnetic resonance imaging (MRI), sonographic imaging, and fluorescence imaging. ROS imaging potentials of other imaging methods, such as photoacoustic imaging (PAI) and Raman imaging (RI) that are currently in preclinical stage are also discussed. Finally, this paper focuses on various diseases that are associated with ROS overproduction, and the current and the future clinical applications of ROS-targeted imaging. While the most widely used clinical condition is cardiovascular diseases, its potential extends into non-cardiovascular clinical conditions, such as neurovascular, neurodegenerative, and other ROS-associated conditions, such as cancers, skin aging, acute kidney injury, and inflammatory arthritis.
Collapse
Affiliation(s)
- Moung Young Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Centers for Research in ICT based Infectious Diseases, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Donguk Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Dayun Choi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Kye S Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Wu Y, Hu C, Li Y, Wang Y, Gong H, Zheng C, Kong QQ, Yang L, Wang Y. A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing. Biomacromolecules 2024; 25:7878-7893. [PMID: 39570390 DOI: 10.1021/acs.biomac.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.
Collapse
Affiliation(s)
- Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
17
|
Shan Z, Jiang B, Wang P, Wu W, Jin Y. Sustainable lignin-based composite hydrogels for controlled drug release and self-healing in antimicrobial wound dressing. Int J Biol Macromol 2024; 285:138327. [PMID: 39638185 DOI: 10.1016/j.ijbiomac.2024.138327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections pose a significant threat to global public health, demanding innovative solutions in biomedical field. Lignin is a naturally abundant polyphenol-rich polymer, offer promising potential to fabricate advance biomaterials for biomedical applications. Hence, a composite hydrogel with antimicrobial and antioxidant activities based on the development of dynamic covalent bonds among sodium alginate, lignin and epigallocatechin-3-gallate (EGCG) was designed. Lignin provides structural integrity to hydrogel backbone as well as released synergistically with the drug. This synergistic effect of the pH-responsive controlled release of both EGCG and lignin improved the releasing ability and bioactivity of the hydrogels. In in vitro antimicrobial experiments, the addition of 3.08 wt% lignin significantly enhanced bactericidal efficacy against Escherichia coli and Staphylococcus aureus, raising the killing rate from 20 % to over 96 %. The dynamic borate bond allows hydrogel network to repair itself when it is disrupted. Its self-healing ability, pH-responsive drug delivery, biocompatibility and strong antimicrobial and antioxidant effects make it a promising candidate for chronic wound management. This lignin-based hydrogel marks a significant innovation in sustainable, multifunctional biomedical materials.
Collapse
Affiliation(s)
- Zhu Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Liu W, Long L, Wang Z, He S, Han Y, Yang L, Hu C, Wang Y. A Whole-Course-Repair System Based on Stimulus-Responsive Multifunctional Hydrogels for Myocardial Tissue Regeneration. SMALL METHODS 2024; 8:e2400121. [PMID: 38923800 DOI: 10.1002/smtd.202400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Myocardial infarction (MI) has emerged as the predominant cause of cardiovascular morbidity globally. The pathogenesis of MI unfolds as a progressive process encompassing three pivotal phases: inflammation, proliferation, and remodeling. Smart stimulus-responsive hydrogels have garnered considerable attention for their capacity to deliver therapeutic drugs precisely and controllably at the MI site. Here, a smart stimulus-responsive hydrogel with a dual-crosslinked network structure is designed, which enables the precise and controlled release of therapeutic drugs in different pathological stages for the treatment of MI. The hydrogel can rapidly release curcumin (Cur) in the inflammatory phase of MI to exert anti-apoptotic/anti-inflammatory effects. Recombinant humanized collagen type III (rhCol III) is loaded in the hydrogel and released as the hydrogel swelled/degraded during the proliferative phase to promote neovascularization. RepSox (a selective TGF-β inhibitor) releases from Pluronic F-127 grafted with aldehyde nanoparticles (PF127-CHO@RepSox NPs) in the remodeling phase to against fibrosis. The results in vitro and in vivo suggest that the hydrogel improves cardiac function and alleviates cardiac remodeling by suppressing inflammation and apoptosis, promoting neovascularization, and inhibiting myocardial fibrosis. A whole-course-repair system, leveraging stimulus-responsive multifunctional hydrogels, demonstrates notable effectiveness in enhancing post-MI cardiac function and facilitating the restoration of damaged myocardial tissue.
Collapse
Affiliation(s)
- Wenqi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Shuyi He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yaling Han
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
- Department of Cardiology, General Hospital of Northern Theater Command Shenyang, Shenyang, 110016, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
19
|
Xiang Z, Chu C, Xu D, Chen S. Tuning the Protonation Sensitivity of Weak Acidic Groups on a Zwitterionic Dendrimer for Selectively Targeting GD2-Overexpressed Tumor Cells in an Acidic Tumor Microenvironment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24106-24116. [PMID: 39481027 DOI: 10.1021/acs.langmuir.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Disialoganglioside (GD2) is one of the most popular overexpressed antigens for tumor cell targeting. However, GD2-specific antibodies often show unintended targeting to GD2-expressing health-maintaining cells due to the comparable binding affinities both at physiological pH and in a slightly acidic tumor microenvironment (TME). In this work, an affinity-switchable zwitterionic PAMAM G5 dendrimer (G5-3S) is developed for selective binding to GD2 only in a slightly acidic TME. It has 3 sulfonic groups, 128 carboxylic groups, and 125 amino groups on the surface. This affinity switch is realized by multiple hydrogen bond (H-bond) formation between protonated carboxylic groups surrounding a sulfonic group and overexpressed GD2 clusters on the tumor cell membrane in the slightly acidic TME, whereas there is no stable H-bond formation at physiological pH. Thus, G5-3S shows superior selectivity to GD2-overexpressed tumor cells over anti-GD2 antibodies by avoiding targeting GD2-expressing health-maintaining cells at physiological pH. This suggests that G5-3S is a promising candidate for GD2-overexpressed cancer treatment.
Collapse
Affiliation(s)
- Ziyin Xiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Lab of Smart Biomaterial, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengchao Chu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Lab of Smart Biomaterial, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Da Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Lab of Smart Biomaterial, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Lab of Smart Biomaterial, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Huang Y, Wang P, Zhao P, Cheng W, Fu H, Zheng X, Chen L, Huang W, Xu J, Fu C, Zhang Z, Wang X. ROS/Thermo dual-sensitive hydrogel loaded with a nanoemulsion of patchouli essential oil for ulcerative colitis. Int J Biol Macromol 2024; 281:136542. [PMID: 39401642 DOI: 10.1016/j.ijbiomac.2024.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Patchouli essential oil (PEO) is acknowledged as a potent contender for the management of ulcerative colitis (UC). However, the limited ability of PEO to be absorbed by the body and its low stability substantially limit its potential uses. Furthermore, UC lesions are mainly concentrated in the rectal and colonic mucosa, with excessive production of reactive oxygen species (ROS). Herein, a nanoemulsion of PEO (PEONE) was developed to enhance the stability and bioavailability of a drug. Subsequently, we developed a novel platform for the rectal administration of a ROS/thermo dual-sensitive Bletilla striata polysaccharide-based hydrogel (RTH) co-loaded with PEONE to efficiently treat UC. As expected, the sol-gel transition of PEONE@RTH, after its intrarectal administration, resulted in its extended presence in the colon and facilitated its attachment to the inflammation site. Moreover, PEONE@RTH alleviated dextran sulfate sodium-induced UC symptoms by suppressing inflammation and oxidative stress, repairing the damage to the intestinal epithelial barrier (claudin-1 and occludin), increasing short-chain fatty acid content and inhibiting the MAPK signalling pathway. Additionally, PEONE@RTH exhibits exceptional safety and biocompatibility. Thus, PEONE@RTH has the potential to provide a novel approach for treating UC and other intestinal disorders characterised by similar clinical conditions.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Pei Wang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weijian Cheng
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Hao Fu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Zheng
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Wenyi Huang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiajia Xu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaomei Fu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China.
| | - Zhen Zhang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China.
| | - Xiao Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
21
|
Yang H, Lv D, Qu S, Xu H, Li S, Wang Z, Cao X, Rong Y, Li X, Wu H, Chen Y, Zhu J, Tang B, Hu Z. A ROS-Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403219. [PMID: 39308241 DOI: 10.1002/advs.202403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Indexed: 11/22/2024]
Abstract
The continuous imbalance of the diabetic wound microenvironment is an important cause of chronic nonhealing, which manifests as a vicious cycle between excessive accumulation of reactive oxygen species (ROS) and abnormal healing. Regulating the microenvironment by suppressing wound inflammation, oxidative stress, and bacterial infection is a key challenge in treating diabetic wounds. In this study, ROS-responsive hydrogels are developed composed of silk fibroin methacrylated (SFMA), modified collagen type III (rCol3MA), and lipid nanoparticles (LNPs). The newly designed hydrogel system demonstrated stable physicochemical properties and excellent biocompatibility. Moreover, the release of antimicrobial peptide (AMP) and puerarin (PUE) demonstrated remarkable efficacy in eradicating bacteria, regulating inflammatory responses, and modulating vascular functions. This multifunctional hydrogel is a simple and efficient approach for the treatment of chronic diabetic infected wounds and holds tremendous potential for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Dongming Lv
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Hailin Xu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China
| | - Shuting Li
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyong Wang
- Department of Joint Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaoling Cao
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanchao Rong
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohui Li
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Honglin Wu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongfei Chen
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayuan Zhu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Bing Tang
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicheng Hu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
22
|
Hua Y, Pan H, Wang R, Xu J, Cheng M, Wang Y, Song B. Reactive oxygen species sensitive nanomicelles promote the antifungal activity of ketoconazole against Candida albicans in vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2024; 243:114140. [PMID: 39111157 DOI: 10.1016/j.colsurfb.2024.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/17/2024]
Abstract
Excessive local accumulation of reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) leads to oxidative stress and aggravates inflammation. This study aimed to optimize and synthesize four ROS-sensitive polyethylene glycol (PEG)-boride polymers (PB, PCB, BPB, and BCPCB). A nanomicelle (BCPCB-K) was constructed using BCPCB-encapsulated ketoconazole (KTZ). Finally, the depolymerization principle and ROS-sensitive drug release of BCPCB-K as well as its anti-Candida albicans (CA) and therapeutic effects on mice with VVC were explored through in vitro and in vivo experiments. BCPCB-K exhibited low toxicity to mammalian cells in vitro and good biocompatibility in vivo. It also improved the dispersion and solubility of the hydrophobic drug KTZ. Furthermore, BCPCB-K simultaneously scavenged ROS and released the drug, thus facilitating the antifungal and VVC-treating effects of KTZ. Overall, the findings of this study broadened the application of ROS-sensitive materials in the drug-loading and antifungal fields and provided a strategy for VVC treatment.
Collapse
Affiliation(s)
- Yulin Hua
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China
| | - Hui Pan
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China
| | - Ruizhe Wang
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China
| | - Junjing Xu
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China
| | - Min Cheng
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China
| | - Yuzhen Wang
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China.
| | - Bo Song
- School of Pharmacy, Weifang Medical University, Baotong Street, No. 7166, Weifang 261053, China.
| |
Collapse
|
23
|
Wang J, Sun X, Zhao Z, Wang G, Wang D, Li Y. Confined copper depletion via a hydrogel platform for reversing dabrafenib/cetuximab resistance in BRAF V600E-mutant colorectal cancer. J Control Release 2024; 375:643-653. [PMID: 39306044 DOI: 10.1016/j.jconrel.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BRAFV600E-mutant colorectal cancer (CRC) is resistant to most first-line therapeutics, including the BRAF inhibitor dabrafenib and epidermal growth factor receptor (EGFR) inhibitor cetuximab. Although copper depletion shows promise in reversing dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC, its application is limited by the potential for excessive copper depletion in non-tumor objects. In this study, we have developed a hydrogel platform for confined copper depletion in BRAFV600E-mutant CRC cells, which effectively reverses dabrafenib/cetuximab resistance and enhancing therapeutic efficiency. The hydrogel platform enables precise intracellular copper depletion through localized administration, acidity-triggered drug release, and oxidized activation of a copper prochelator. The dosage of this prochelator is 37.5 μg/kg in mouse models, which is significantly lower than the commonly used tetrathiomolybdate. Furthermore, both dabrafenib and the prochelator are preloaded into acid-responsive nanoparticles before being embedded in the hydrogel matrix to facilitate efficient endocytosis and acid-activatable drug release. Confined copper depletion inhibits MEK1 signaling and suppresses the MAPK signaling pathway when combined with BRAF and EGFR inhibitors. Moreover, the hydrogel platform inhibits tumor growth and prolongs survival in subcutaneous and postsurgical models of BRAFV600E-mutant CRC. This study provides an innovative strategy for overcoming dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC through precise intracellular copper depletion.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong 264117, China.
| |
Collapse
|
24
|
Casillas-Popova SN, Lokuge ND, Andrade-Gagnon B, Chowdhury FR, Skinner CD, Findlay BL, Oh JK. pH-Responsive Degradable Electro-Spun Nanofibers Crosslinked via Boronic Ester Chemistry for Smart Wound Dressings. Macromol Biosci 2024; 24:e2400217. [PMID: 38989606 DOI: 10.1002/mabi.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Recent advances in the treatment of chronic wounds have focused on the development of effective strategies for cutting-edge wound dressings based on nanostructured materials, particularly biocompatible poly(vinyl alcohol) (PVA)-based electro-spun (e-spun) nanofibers. However, PVA nanofibers need to be chemically crosslinked to ensure their dimensional stability in aqueous environment and their capability to encapsulate bioactive molecules. Herein, a robust approach for the fabrication of pH-degradable e-spun PVA nanofibers crosslinked with dynamic boronic ester (BE) linkages through a coupling reaction of PVA hydroxyl groups with the boronic acid groups of a phenyl diboronic acid crosslinker is reported. This comprehensive analysis reveals the importance of the mole ratio of boronic acid to hydroxyl group for the fabrication of well-defined BE-crosslinked fibrous mats with not only dimensional stability but also the ability to retain uniform fibrous form in aqueous solutions. These nanofibers degrade in both acidic and basic conditions that mimic wound environments, leading to controlled/enhanced release of encapsulated antimicrobial drug molecules. More importantly, drug-loaded BE-crosslinked fibers show excellent antimicrobial activities against both Gram-positive and Gram-negative bacteria, suggesting that this approach of exploring dynamic BE chemistry is amenable to the development of smart wound dressings with controlled/enhanced drug release.
Collapse
Affiliation(s)
| | - Nishadi Dilkushi Lokuge
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Brandon Andrade-Gagnon
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | | | - Cameron D Skinner
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
25
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
26
|
Oliva M, Pillitteri S, Schörgenhumer J, Saito R, Van der Eycken EV, Sharma UK. Bromine radical release from a nickel-complex facilitates the activation of alkyl boronic acids: a boron selective Suzuki-Miyaura cross coupling. Chem Sci 2024:d4sc04196h. [PMID: 39371457 PMCID: PMC11450759 DOI: 10.1039/d4sc04196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, without utilizing any exogenous activator or strong oxidants, we successfully employed inactivated and easily accessible alkyl boronic acids (BAs) as coupling partners in a photocatalyzed Suzuki-Miyaura reaction under batch and continuous-flow conditions. Detailed mechanistic studies suggest a unique BA activation pathway, via a plausible radical transfer event between a bromine radical (formed in situ via a photo-induced homolysis of the Ni-Br bond) and the empty p-orbital on the boron atom. Subsequently, the necessity to tune the BA oxidation potential by means of hydrogen-bonding interaction with solvents or Lewis acid-base type interactions is replaced by a novel halogen radical transfer (XRT) mechanism. The mechanistic hypothesis has been supported by both control experiments and DFT calculations.
Collapse
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Johannes Schörgenhumer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Riku Saito
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281 (S3) 9000 Ghent Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 117198 Moscow Russia
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard St. Louis MO 63121 USA
| |
Collapse
|
27
|
Gao Y, Geng H, Ge J, Zhu L, Sun Z, Deng Z, Chen W. Porous alumina nanosheet-supported asymmetric platinum clusters for efficient diboration of alkynes. Chem Commun (Camb) 2024; 60:10188-10191. [PMID: 39192709 DOI: 10.1039/d4cc01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Precisely designing asymmetrical structures is an effective strategy to optimize the performance of metallic catalysts. Asymmetric Pt clusters were attached to defect-rich porous alumina nanosheets (Pt clu/dp-Al2O3) using a pyrolysis technique coupled with wet impregnation. These Pt-functionalized nanosheets feature a high concentration of active sites, demonstrating remarkable cycling performance and catalytic activity in alkyne diboration. The conversion yield and selectivity can reach up to 97% and 95%, correspondingly.
Collapse
Affiliation(s)
- Yan Gao
- Anhui Provincial Engineering Research Center of Silicon-based Materials, Bengbu University, Bengbu 233030, China
| | - Huilong Geng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinlong Ge
- Anhui Provincial Engineering Research Center of Silicon-based Materials, Bengbu University, Bengbu 233030, China
| | - Linlin Zhu
- Anhui Provincial Engineering Research Center of Silicon-based Materials, Bengbu University, Bengbu 233030, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ziwei Deng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Zhang Y, Jiang M, Wang T. Reactive oxygen species (ROS)-responsive biomaterials for treating myocardial ischemia-reperfusion injury. Front Bioeng Biotechnol 2024; 12:1469393. [PMID: 39286345 PMCID: PMC11402825 DOI: 10.3389/fbioe.2024.1469393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mantang Jiang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
30
|
Xin F, Ren X, Lin X, Ma W, Ran B, Teng Y, Gao P, Wang C, Wu L, Cun D, Zhang J. Rapid isolation of extracellular vesicles using covalent organic frameworks combined with microfluidic technique. J Pharm Biomed Anal 2024; 245:116153. [PMID: 38636194 DOI: 10.1016/j.jpba.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid-membrane vesicles involved in intercellular communication and reflecting the physiological and pathological processes of their parental cells. Rapid isolation of EVs with low cost is an essential precondition for downstream function exploration and clinical applications. In this work, we designed a novel EVs isolation device based on the boronated organic framework (BOF) coated recyclable microfluidic chip (named EVs-BD) to separate EVs from cell culture media. Using a reactive oxygen species responsive phenylboronic ester compound, the highly porous BOF with a pore size in the range of 10-300 nm was prepared by crosslinking γ-cyclodextrin metal-organic frameworks. A mussel-inspired polydopamine (PDA)/polyethyleneimine (PEI) coating was employed to pattern BOF on the PDMS substrate of microfluidic channels. The EVs-BD was demonstrated to offer distinct advantages over the traditional ultracentrifugation method, such as operation simplicity and safety, reduced time and expense, and low expertize requirements. All things considered, a novel approach of EV acquisition has been successfully developed, which can be customized easily to meet the requirements of various EV-relevant research.
Collapse
Affiliation(s)
- Fangyuan Xin
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Xiaohong Ren
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Xueyuan Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Wuzhen Ma
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ran
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupu Teng
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Ping Gao
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Dongmei Cun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiwen Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China; Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
31
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
32
|
Oyarzún Y, Ulloa J, Ceballos M, Urbano BF. Dynamic Covalent Boronic-Acid-Functionalized Alginate/PVA Hydrogels for pH and Shear-Responsive Drug Delivery. Gels 2024; 10:504. [PMID: 39195033 DOI: 10.3390/gels10080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Herein, we investigated hydrogels composed of boronic-acid-functionalized alginate and blended with polyvinyl alcohol (PVA) of different molecular weights to control the release of metoclopramide hydrochloride as a function of pH and shear stress. The functionalization of alginate introduced dynamic covalent bonding and pH-responsive properties that can modulate network connectivity. The study investigated the viscoelastic properties of the hydrogels, their drug release profiles, and their responsiveness to changes in pH and shear forces. The results showed that a higher PVA molecular weight and alkaline pH conditions increased hydrogel viscosity and stiffness due to a more stable and interconnected network structure than acidic pH. Metoclopramide release revealed that the hydrogels exhibited pH-responsive drug release behavior. The drug was more readily released under acidic conditions due to the instability of sp2-hybridized boronate ester bonds. The influence of shear forces on the release of metoclopramide was also investigated at shear rates of 1, 10, and 100 s-1, revealing their effect on matrix stiffening. Research shows that AlgBA/PVA hydrogels have unique properties, such as dynamic covalent bonding, that make them sensitive to external mechanical forces. This sensitivity makes them ideal for applications where physiological conditions trigger drug release.
Collapse
Affiliation(s)
- Yessenia Oyarzún
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - José Ulloa
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Ceballos
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
33
|
Huang L, Hu W, Huang LQ, Zhou QX, Song ZY, Tao HY, Xu B, Zhang CY, Wang Y, Xing XH. "Two-birds-one-stone" oral nanotherapeutic designed to target intestinal integrins and regulate redox homeostasis for UC treatment. SCIENCE ADVANCES 2024; 10:eado7438. [PMID: 39047093 PMCID: PMC11268407 DOI: 10.1126/sciadv.ado7438] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.
Collapse
Affiliation(s)
- Long Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Hu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Long Qun Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qin Xuan Zhou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zheng Yang Song
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Heng Yu Tao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Wang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Hao T, Zhang B, Li W, Yang X, Wu S, Yuan Y, Cui H, Chen Q, Li Z. Nordihydroguaiaretic Acid-Cross-Linked Phenylboronic Acid-Functionalized Polyplex Micelles for Anti-angiogenic Gene Therapy of Orthotopic and Metastatic Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34620-34631. [PMID: 38934519 DOI: 10.1021/acsami.4c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.
Collapse
Affiliation(s)
- Tangna Hao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingning Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sha Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yujie Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
Xiao W, Geng R, Bi D, Luo Y, Zhang Z, Gan Q, Liu Y, Zhu J. pH/H 2O 2 Cascade-Responsive Nanoparticles of Lipid-Like Prodrugs through Dynamic-Covalent and Coordination Interactions for Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308790. [PMID: 38396276 DOI: 10.1002/smll.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Traditional lipid nanoparticles (LNPs) suffer from low drug loading capacity (DLC), weak stability, and lack of responsiveness. Conventional approaches to address these issues involve the synthesis of lipid-prodrug by incorporating responsive covalent linkers. However, such approaches often result in suboptimal sensitivity for drug release and undermine therapeutic effectiveness. Herein, the study reports a fundamentally different concept for designing lipid-like prodrugs through boron-nitrogen (B-N) coordination and dynamic covalent interaction. The 5-fluorouracil-based lipid-like prodrugs, featuring a borate ester consisting of a glycerophosphoryl choline head and a boronic acid-modified 5Fu/dodecanamine complex tail, are used to prepare pH/H2O2 cascade-responsive LNPs (5Fu-LNPs). The 5Fu-LNPs exhibit enhanced DLC and stability in a neutral physiological environment due to the B-N coordination and enhanced hydrophobicity. In tumors, acidic pH triggers the dissociation of B-N coordination to release prodrugs, which further responds to low H2O2 concentrations to release drugs, showcasing a potent pH/H2O2-cascade-responsive property. Importantly, 5Fu-LNPs demonstrate greater antitumor efficiency and lower toxicity compared to the commercial 5Fu. These results highlight 5Fu-LNPs as a safer and more effective alternative to chemotherapy. This work presents a unique LNP fabrication strategy that can overcome the limitations of conventional LNPs and broaden the range of intelligent nanomaterial preparation techniques.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
37
|
Werner M, Brinkhofer J, Hammermüller L, Heim T, Pham TL, Huber J, Klein C, Thomas F. Peptide Boronic Acids by Late-Stage Hydroboration on the Solid Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400640. [PMID: 38810019 PMCID: PMC11267286 DOI: 10.1002/advs.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Organoboron compounds have a wide range of applications in numerous research fields, and methods to incorporate them in biomolecules are much sought after. Here, on-resin chemical syntheses of aliphatic and vinylogous peptide boronic acids are presented by transition metal-catalyzed late-stage hydroboration of alkene and alkyne groups in peptides and peptoids, for example on allyl- and propargylglycine residues, using readily available chemicals. These methods yield peptide boronic acids with much shorter linkers than previously reported on-resin methods. Furthermore, the methods are regio- and stereoselective, compatible with all canonical amino acid residues and can be applied to short, long, and in part even "difficult" peptide sequences. In a feasibility study, the protected peptide vinylboronic acids are further derivatized by the Petasis reaction using salicylaldehyde derivatives. The ability of the obtained peptide boronic acids to reversibly bind to carbohydrates is demonstrated in a catch-release model experiment using a fluorescently labeled peptide boronic acid on cross-linked dextran beads. In summary, this highlights the potential of the target compounds for drug discovery, glycan-specific target recognition, controlled release, and diagnostics.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julian Brinkhofer
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Leon Hammermüller
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Heim
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jonas Huber
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Christian Klein
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
38
|
Tageldin A, Omolo CA, Nyandoro VO, Elhassan E, Kassam SZF, Peters XQ, Govender T. Engineering dynamic covalent bond-based nanosystems for delivery of antimicrobials against bacterial infections. J Control Release 2024; 371:237-257. [PMID: 38815705 DOI: 10.1016/j.jconrel.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.
Collapse
Affiliation(s)
- Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
39
|
Delgado Gonzalez B, Lopez-Blanco R, Parcero-Bouzas S, Barreiro-Piñeiro N, Garcia-Abuin L, Fernandez-Megia E. Dynamic Covalent Boronate Chemistry Accelerates the Screening of Polymeric Gene Delivery Vectors via In Situ Complexation of Nucleic Acids. J Am Chem Soc 2024; 146:17211-17219. [PMID: 38864331 PMCID: PMC11212051 DOI: 10.1021/jacs.4c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Gene therapy provides exciting new therapeutic opportunities beyond the reach of traditional treatments. Despite the tremendous progress of viral vectors, their high cost, complex manufacturing, and side effects have encouraged the development of nonviral alternatives, including cationic polymers. However, these are less efficient in overcoming cellular barriers, resulting in lower transfection efficiencies. Although the exquisite structural tunability of polymers might be envisaged as a versatile tool for improving transfection, the need to fine-tune several structural parameters represents a bottleneck in current screening technologies. By taking advantage of the fast-forming and strong boronate ester bond, an archetypal example of dynamic covalent chemistry, a highly adaptable gene delivery platform is presented, in which the polycation synthesis and pDNA complexation occur in situ. The robustness of the strategy entitles the simultaneous evaluation of several structural parameters at will, enabling the accelerated screening and adaptive optimization of lead polymeric vectors using dynamic covalent libraries.
Collapse
Affiliation(s)
- Bruno Delgado Gonzalez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Roi Lopez-Blanco
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Samuel Parcero-Bouzas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Natalia Barreiro-Piñeiro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Bioquímica
e Bioloxía Molecular, Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Lucas Garcia-Abuin
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
40
|
Lin Z, Ouyang Q, Guo C, Ni Y. Fluorescent Probe-Based Fiber Optic Sensor for Real-Time Monitoring of Chloride Ions in Coastal Concrete Structures. SENSORS (BASEL, SWITZERLAND) 2024; 24:3700. [PMID: 38931484 PMCID: PMC11207303 DOI: 10.3390/s24123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Coastal concrete structures, such as cross-sea bridges and tunnels, are susceptible to the penetration of chloride ions, which can lead to the deterioration of the passive film on the rebar surface, consequently accelerating the corrosion process. Conventional methods for monitoring chloride ions typically require in situ drilling for sample collection, thereby compromising efficiency and accuracy. Additionally, real-time monitoring and early warning cannot be achieved. To address these challenges, this work introduces a fluorescent-probe-based fiber optic sensor for monitoring chloride levels in concrete structures. Quinine sulfate was chosen as the fluorescent material due to its exceptional sensitivity to chloride ions and its stability in concrete environments. The proposed sensor was manufactured using sol-gel and 3D-printing techniques. Tests were conducted using concrete simulation fluid and cement mortar specimens. The results demonstrate that the sensitivity of the proposed sensor is greater than 0.01 M, and its accuracy in penetration depth measurement is better than 3 mm. The findings confirm that the designed fiber optic sensor based on quinine sulfate enables real-time monitoring of chloride ions in concrete structures, offering high sensitivity (0.1% in concentration and 2.7 mm in terms of penetration depth), unique selectivity (as it is immune to other ions whose concentrations are 10 times higher than those of Cl-), and a compact size (10 × 20 mm). These attributes render it promising for practical engineering applications.
Collapse
Affiliation(s)
- Zhen Lin
- College of Civil and Transportation Engineering, Institute of Urban Smart Transportation & Safety Maintenance, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Q.O.)
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen 518060, China
- Shenzhen Key Laboratory of Safety and Health Monitoring of Marine Infrastructures, Shenzhen 518060, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Quanfeng Ouyang
- College of Civil and Transportation Engineering, Institute of Urban Smart Transportation & Safety Maintenance, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Q.O.)
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen 518060, China
- Shenzhen Key Laboratory of Safety and Health Monitoring of Marine Infrastructures, Shenzhen 518060, China
| | - Chuanrui Guo
- College of Civil and Transportation Engineering, Institute of Urban Smart Transportation & Safety Maintenance, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Q.O.)
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen 518060, China
- Shenzhen Key Laboratory of Safety and Health Monitoring of Marine Infrastructures, Shenzhen 518060, China
| | - Yiqing Ni
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
41
|
Guo D, Shi C, Suo L, Ji X, Yue H, Yuan D, Luo J. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. J Control Release 2024; 370:626-642. [PMID: 38734314 PMCID: PMC11923797 DOI: 10.1016/j.jconrel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Hao Yue
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Dekai Yuan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Sepsis Interdisciplinary Research Center (SIRC), State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
42
|
Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug delivery and enhanced osteogenic differentiation in vitro. Int J Pharm 2024; 657:124134. [PMID: 38643810 DOI: 10.1016/j.ijpharm.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.
Collapse
Affiliation(s)
- Haowen Qi
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Bingqing Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingjuan Wang
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
43
|
Pogostin BH, Wu SX, Swierczynski MJ, Pennington C, Li SY, Vohidova D, Seeley EH, Agrawal A, Tang C, Cabler J, Dey A, Veiseh O, Nuermberger EL, Ball ZT, Hartgerink JD, McHugh KJ. Enhanced dynamic covalent chemistry for the controlled release of small molecules and biologics from a nanofibrous peptide hydrogel platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595134. [PMID: 38826442 PMCID: PMC11142141 DOI: 10.1101/2024.05.21.595134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Maintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs). As examples, we demonstrate that SABER hydrogels can prolong the release of five BA-containing small-molecule drugs as well as BA-modified insulin and antibodies. Pharmacokinetic studies revealed that SABER hydrogels extended the therapeutic effect of ganfeborole from days to weeks, preventing Mycobacterium tuberculosis growth better than repeated oral administration in an infection model. Similarly, SABER hydrogels extended insulin activity, maintaining normoglycemia for six days in diabetic mice after a single injection. These results suggest that SABER hydrogels present broad potential for clinical translation.
Collapse
|
44
|
Salomón-Flores MK, Valdes-García J, Viviano-Posadas AO, Martínez-Otero D, Barroso-Flores J, Bazany-Rodríguez IJ, Dorazco-González A. Molecular two-point recognition of fructosyl valine and fructosyl glycyl histidine in water by fluorescent Zn(II)-terpyridine complexes bearing boronic acids. Dalton Trans 2024; 53:8692-8708. [PMID: 38700377 DOI: 10.1039/d4dt00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Iván J Bazany-Rodríguez
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| |
Collapse
|
45
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Ren Y, Zhou Z, Maxeiner K, Kaltbeitzel A, Harley I, Xing J, Wu Y, Wagner M, Landfester K, Lieberwirth I, Weil T, Ng DYW. Supramolecular Assembly in Live Cells Mapped by Real-Time Phasor-Fluorescence Lifetime Imaging. J Am Chem Soc 2024; 146:11991-11999. [PMID: 38639465 PMCID: PMC11066860 DOI: 10.1021/jacs.4c01279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.
Collapse
Affiliation(s)
- Yong Ren
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Zhixuan Zhou
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Maxeiner
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Iain Harley
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jiaqi Xing
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yingke Wu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | - Tanja Weil
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
47
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
48
|
Guo H, Lan T, Lu X, Geng K, Shen X, Mao H, Guo Q. ROS-responsive curcumin-encapsulated nanoparticles for AKI therapy via promoting lipid degradation in renal tubules. J Mater Chem B 2024; 12:3063-3078. [PMID: 38441636 DOI: 10.1039/d3tb02318d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lipid accumulation is a factor contributing to the pathogenesis of acute kidney injury (AKI), yet there are currently no approved pharmacotherapies aside from adjuvant therapy. A developed reactive oxygen species (ROS)-responsive drug delivery system (NPSBG@Cur) was developed to deliver the autophagy activator curcumin (Cur) in order to alleviate AKI by activating autophagy and promoting lipid droplet degradation. The nanoparticles were shown to be ROS-responsive in the H2O2 medium and demonstrate ROS-responsive uptake in palmitate (PA)-induced oxidative stress-damaged cells. NPSBG@Cur was found to effectively inhibit lipid accumulation by autophagosome transport in kidney tubular cells. Additionally, in a mouse AKI model, NPSBG@Cur was observed to significantly ameliorate renal damage by activating autophagy flux and improving lipid transport. These results suggest that the ROS-responsive drug delivery system augmented the therapeutic effect of Cur on AKI by improving lipid metabolism through autophagy activation. Therefore, targeting lipid metabolism with NPSBG@Cur may be a promising AKI treatment strategy.
Collapse
Affiliation(s)
- Honglei Guo
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China.
| | - Tianyu Lan
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, China.
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China.
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| |
Collapse
|
49
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
50
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|