1
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
2
|
Hu C, Wang Y, Lee YM. Ether-Free Alkaline Polyelectrolytes for Water Electrolyzers: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202418324. [PMID: 39485307 DOI: 10.1002/anie.202418324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have attracted great interest for their potential as sustainable, environmentally friendly, low-cost sources of renewable energy. Alkaline polyelectrolytes play a crucial role in AEMWEs, determining their performance and longevity. Because heteroatom-containing polymers have been shown to have poor durability in alkaline conditions, this review focuses on ether-free alkaline polyelectrolytes, which are more chemically stable. The merits, weaknesses, and challenges in preparing ether-free AEMs are summarized and highlighted. The evaluation of synthesis methods for polymers, modification strategies, and cationic stability will provide insights valuable for the structural design of future alkaline polyelectrolytes. Moreover, the in situ degradation mechanisms of AEMs and ionomers during AEMWE operation are revealed. This review provides insights into the design of alkaline polyelectrolytes for AEMWEs to accelerate their widespread commercialization.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yong Wang
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Yu W, Zhang Z, Luo F, Li X, Duan F, Xu Y, Liu Z, Liang X, Wang Y, Wu L, Xu T. Tailoring high-performance bipolar membrane for durable pure water electrolysis. Nat Commun 2024; 15:10220. [PMID: 39587075 PMCID: PMC11589674 DOI: 10.1038/s41467-024-54514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Bipolar membrane electrolyzers present an attractive scenario for concurrently optimizing the pH environment required for paired electrode reactions. However, the practicalization of bipolar membranes for water electrolysis has been hindered by their sluggish water dissociation kinetics, poor mass transport, and insufficient interface durability. This study starts with numerical simulations and discloses the limiting factors of monopolar membrane layer engineering. On this foundation, we tailor flexible bipolar membranes (10 ∼ 40 µm) comprising anion and cation exchange layers with an identical poly(terphenyl alkylene) polymeric skeleton. Rapid mass transfer properties and high compatibility of the monopolar membrane layers endow the bipolar membrane with appreciable water dissociation efficiency and long-term stability. Incorporating the bipolar membrane into a flow-cell electrolyzer enables an ampere-level pure water electrolysis with a total voltage of 2.68 V at 1000 mA cm-2, increasing the energy efficiency to twice that of the state-of-the-art commercial BPM. Furthermore, the bipolar membrane realizes a durability of 1000 h at high current densities of 300 ∼ 500 mA cm-2 with negligible performance decay.
Collapse
Affiliation(s)
- Weisheng Yu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zirui Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fen Luo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojiang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fanglin Duan
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiru Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xian Liang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yaoming Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Hong E, Zeng H, Qiao X, Deng L, Gu L, Wang J, Chen J, Guan M, Li M, Zhou Z, Yang C. Degradation of a Bipolar Membrane in a Hybrid Acid/Alkali Electrolyzer Studied by X-ray Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52414-52422. [PMID: 39302810 DOI: 10.1021/acsami.4c11055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The use of a bipolar membrane (BPM) in a hybrid acid/alkali electrolyzer is widely considered as a promising energy technology for efficient hydrogen production. The stability of a BPM is often believed to be largely limited by the anion exchange layer (AEL) due to the hydrophilic attack of AEL polymers by hydroxide groups in alkaline. In this study, we employ X-ray computed tomography (CT) to investigate the degradation behaviors of BPM and found that the cation exchange layer (CEL) experiences more pronounced degradation compared with the AEL during water splitting operations. Despite its chemical stability in both acidic and alkaline environments, the CEL is more prone to electrochemical corrosion under the influence of applied voltages. This susceptibility leads to the formation of micropores and a consequent increase in the porosity. The results of this work provide a new perspective on and highlight the complexity of the degradation behaviors of BPMs in hybrid acid/alkali electrolyzers.
Collapse
Affiliation(s)
- Enna Hong
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huiyan Zeng
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xu Qiao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Liting Deng
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Long Gu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianwen Wang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiajun Chen
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Minghui Guan
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Mengxian Li
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhou Zhou
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunzhen Yang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Shrimant B, Kulkarni T, Hasan M, Arnold C, Khan N, Mondal AN, Arges CG. Desalting Plasma Protein Solutions by Membrane Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11206-11216. [PMID: 38391265 DOI: 10.1021/acsami.3c16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Plasma protein therapies are used by millions of people across the globe to treat a litany of diseases and serious medical conditions. One challenge in the manufacture of plasma protein therapies is the removal of salt ions (e.g., sodium, phosphate, and chloride) from the protein solution. The conventional approach to remove salt ions is the use of diafiltration membranes (e.g., tangential flow filtration) and ion-exchange chromatography. However, the ion-exchange resins within the chromatographic column as well as filtration membranes are subject to fouling by the plasma protein. In this work, we investigate the membrane capacitive deionization (MCDI) as an alternative separation platform for removing ions from plasma protein solutions with negligible protein loss. MCDI has been previously deployed for brackish water desalination, nutrient recovery, mineral recovery, and removal of pollutants from water. However, this is the first time this technique has been applied for removing 28% of ions (sodium, chloride, and phosphate) from human serum albumin solutions with less than 3% protein loss from the process stream. Furthermore, the MCDI experiments utilized highly conductive poly(phenylene alkylene)-based ion exchange membranes (IEMs). These IEMs combined with ionomer-coated nylon meshes in the spacer channel ameliorate Ohmic resistances in MCDI improving the energy efficiency. Overall, we envision MCDI as an effective separation platform in biopharmaceutical manufacturing for deionizing plasma protein solutions and other pharmaceutical formulations without a loss of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Bharat Shrimant
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tanmay Kulkarni
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mahmudul Hasan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | - Christopher G Arges
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Wang F, Sun Z, Zhang H, Zhu H. Study on AEMs with Excellent Comprehensive Performance Prepared by Covalently Cross-Linked p-Triphenyl with SEBS Remotely Grafted Piperidine Cations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7894-7903. [PMID: 38300277 DOI: 10.1021/acsami.3c18256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and β positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaonan Sun
- China Fire and Rescue Institute, Beijing 102201, China
| | - Hanfei Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Han J, Zhang Y, Zheng X, Lu Y, Li W, Zhou X, Ren Z, Liu Y, Hu M, Xiao L, Zhuang L. Elastic and Conductive Cross-linked Anion Exchange Membranes Based on Polyphenylene Oxide and Poly(vinyl alcohol) for H 2 -O 2 Fuel Cells. CHEMSUSCHEM 2024; 17:e202300985. [PMID: 37698086 DOI: 10.1002/cssc.202300985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
A series of cross-linked AEMs (c-DQPPO/PVA) are synthesized by using rigid polyphenylene oxide and flexible poly(vinyl alcohol) as the backbones. Dual cations are grafted on the PPO backbone to improve the ion exchange capacity (IEC), while glutaraldehyde is introduced to enhance compatibility and reduce swelling ratio of AEMs. In addition to the enhanced mechanical properties resulting from the rigid-flexible cross-linked network, c-DQPPO/PVA AEMs also exhibit impressive ionic conductivity, which can be attributed to their high IEC, good hydrophilicity of PVA, and well-defined micro-morphology. Additionally, due to confined dimension behavior and ordered micro-morphology, c-DQPPO/PVA AEMs demonstrate excellent chemical stability. Specifically, c-DQPPO/PVA-7.5 exhibits a wet-state tensile strength of 12.5 MPa and an elongation at break of 53.0 % at 25 °C. Its OH- conductivity and swelling degree at 80 °C are measured to be 125.7 mS cm-1 and 8.2 %, respectively, with an IEC of 3.05 mmol g-1 . After 30 days in a 1 M NaOH solution at 80 °C, c-DQPPO/PVA-7.5 experiences degradation rates of 12.8 % for tensile strength, 27.4 % for elongation at break, 14.7 % for IEC, and 19.2 % for ion conductivity. With its excellent properties, c-DQPPO/PVA-7.5 exhibits a peak power density of 0.751 W cm-2 at 60 °C in an H2 -O2 fuel cell.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiumeng Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yuyang Lu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wanting Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Li Q, Hu M, Ge C, Yang Y, Xiao L, Zhuang L, Abruña HD. Ionomer degradation in catalyst layers of anion exchange membrane fuel cells. Chem Sci 2023; 14:10429-10434. [PMID: 37800009 PMCID: PMC10548514 DOI: 10.1039/d3sc03649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Anion exchange membrane fuel cells (AEMFCs) that operate at high pH, offer the advantage of enabling the use of abundant 3d-transition metal-based electrocatalysts. While they have shown remarkable improvement in performance, their long-term durability remains insufficient for practical applications with the alkaline polymer electrolytes (APEs) being the limiting factor. The stability of APEs is generally evaluated in concentrated alkaline solutions, which overlooks/oversimplifies the complex electrochemical environment of the catalyst layer in membrane electrode assembly (MEA) devices. Herein, we report a study of the degradation of the membrane and ionomer independently under realistic H2-air (CO2 free) fuel cell operation, using proton nuclear magnetic resonance (1H-NMR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). While the membrane degradation was minimal after the AEMFC stability test, the ionomer in the catalyst layers degraded approximately 20% to 30% with the cathode being more severely affected than the anode. The ionomer degradation decreased the catalyst utilization and significantly increased the ionic resistance, leading to significant performance degradation in the AEMFC stability test. These findings emphasize the importance of ionomer stability and the need to consider the electrochemical environments of MEAs when evaluating the stability of APEs.
Collapse
Affiliation(s)
- Qihao Li
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University Wuhan 430072 PR China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University Wuhan 430072 PR China
| | - Yao Yang
- Department of Chemistry, Miller Institute, University of California, Berkeley Berkeley California 94720 USA
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University Wuhan 430072 PR China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University Wuhan 430072 PR China
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| |
Collapse
|
10
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Giron Rodriguez C, Joensen BÓ, Moss AB, Larrazábal GO, Whelligan DK, Seger B, Varcoe JR, Willson TR. Influence of Headgroups in Ethylene-Tetrafluoroethylene-Based Radiation-Grafted Anion Exchange Membranes for CO 2 Electrolysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1508-1517. [PMID: 36743393 PMCID: PMC9890565 DOI: 10.1021/acssuschemeng.2c06205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The performance of zero-gap CO2 electrolysis (CO2E) is significantly influenced by the membrane's chemical structure and physical properties due to its effects on the local reaction environment and water/ion transport. Radiation-grafted anion-exchange membranes (RG-AEM) have demonstrated high ionic conductivity and durability, making them a promising alternative for CO2E. These membranes were fabricated using two different thicknesses of ethylene-tetrafluoroethylene polymer substrates (25 and 50 μm) and three different headgroup chemistries: benzyl-trimethylammonium, benzyl-N-methylpyrrolidinium, and benzyl-N-methylpiperidinium (MPIP). Our membrane characterization and testing in zero-gap cells over Ag electrocatalysts under commercially relevant conditions showed correlations between the water uptake, ionic conductivity, hydration, and cationic-head groups with the CO2E efficiency. The thinner 25 μm-based AEM with the MPIP-headgroup (ion-exchange capacities of 2.1 ± 0.1 mmol g-1) provided balanced in situ test characteristics with lower cell potentials, high CO selectivity, reduced liquid product crossover, and enhanced water management while maintaining stable operation compared to the commercial AEMs. The CO2 electrolyzer with an MPIP-AEM operated for over 200 h at 150 mA cm-2 with CO selectivities up to 80% and low cell potentials (around 3.1 V) while also demonstrating high conductivities and chemical stability during performance at elevated temperatures (above 60 °C).
Collapse
Affiliation(s)
- Carlos
A. Giron Rodriguez
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bjørt Óladottir Joensen
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Asger Barkholt Moss
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gastón O. Larrazábal
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Daniel K. Whelligan
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Brian Seger
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - John R. Varcoe
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Terry R. Willson
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
12
|
Willdorf-Cohen S, Zhegur-Khais A, Ponce-González J, Bsoul-Haj S, Varcoe JR, Diesendruck CE, Dekel DR. Alkaline Stability of Anion-Exchange Membranes. ACS APPLIED ENERGY MATERIALS 2023; 6:1085-1092. [PMID: 36937111 PMCID: PMC10016746 DOI: 10.1021/acsaem.2c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Sapir Willdorf-Cohen
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Avital Zhegur-Khais
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Julia Ponce-González
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Saja Bsoul-Haj
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - John R. Varcoe
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Charles E. Diesendruck
- Schulich
Faculty of Chemistry, Technion—Israel
Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| |
Collapse
|
13
|
Allushi A, Bakvand PM, Jannasch P. Polyfluorenes Bearing N, N-Dimethylpiperidinium Cations on Short Spacers for Durable Anion Exchange Membranes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrit Allushi
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Pegah Mansouri Bakvand
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Patric Jannasch
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| |
Collapse
|
14
|
Akhmetova A, Myrzakhmetov B, Wang Y, Bakenov Z, Mentbayeva A. Development of Quaternized Chitosan Integrated with Nanofibrous Polyacrylonitrile Mat as an Anion-Exchange Membrane. ACS OMEGA 2022; 7:45371-45380. [PMID: 36530230 PMCID: PMC9753170 DOI: 10.1021/acsomega.2c05961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 06/05/2023]
Abstract
A two-phase anion-exchange membrane was prepared from quaternized chitosan (QCS) integrated with an electrospun polyacrylonitrile (PAN) scaffold by spin coating. To synthesize QCS, glycidyltrimethylammonium chloride in various amounts was introduced into the structure of CS. The characterization of the cast cross-linked QCS (CQCS) membranes by impedance spectroscopy revealed the ionic conductivity (IC) in the range of 2.8 × 10-4 to 8.2 × 10-4 S cm-1 and the degree of quaternization (DQ) of 26.4-51.0%, where the CQCS film with the DQ of 51.0% showed excellent performance. When CQCS was reinforced with a PAN fiber mat, the newly developed composite membrane demonstrated the highest IC of 34 × 10-4 S cm-1 at 80 °C, low swelling, and an almost eightfold increase in tensile strength at a fully hydrated state compared to pristine materials. Moreover, the CQCS/PAN membrane was chemically stable and revealed increasing hydroxide transport during 1 month immersion in alkaline media.
Collapse
Affiliation(s)
- Aktilek Akhmetova
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Nur-Sultan010000, Kazakhstan
| | - Bauyrzhan Myrzakhmetov
- Center
for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan010000, Kazakhstan
| | - Yanwei Wang
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Nur-Sultan010000, Kazakhstan
- Center
for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan010000, Kazakhstan
| | - Zhumabay Bakenov
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Nur-Sultan010000, Kazakhstan
- Center
for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan010000, Kazakhstan
| | - Almagul Mentbayeva
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Nur-Sultan010000, Kazakhstan
| |
Collapse
|
15
|
Mansouri Bakvand P, Jannasch P. Poly(arylene alkylene)s with pendent benzyl-tethered ammonium cations for anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Xue B, Huang PP, Zhu MZ, Fu SQ, Ge JH, Li X, Liu PN. Highly Efficient and para-Selective C-H Functionalization of Polystyrene Providing a Versatile Platform for Diverse Applications. ACS Macro Lett 2022; 11:1252-1257. [PMID: 36260783 DOI: 10.1021/acsmacrolett.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Postpolymerization modification of polystyrene (PS) can afford numerous value-added materials with different functions and applications, but it has been hampered by the lack of efficient methods. We report herein a highly efficient and para-selective conversion of the C-H bonds of the aromatic ring of PS into diverse functional groups using a combination of thianthrenation and thio-Suzuki-Miyaura coupling reaction. Notably, the thianthrenation efficiency of PS is as high as 99% and the degree of thianthrenation can be conveniently controlled using stoichiometric tuning of the amount of thianthrene-S-oxide added, resulting in 24-99 mol % thianthrenation. In the subsequent thio-Suzuki-Miyaura coupling reaction, 18 functionalized PS containing various functional groups (-CH2OH, -OMe, -SMe, -OTBS, -CH3, -NHBoc, -OCOMe, -CHO, -COMe, -Si(Me)3, etc.) were successfully prepared with a high degree of functionalization (64-99 mol %). The obtained functionalized PS can be readily converted into diverse functional materials, including solid-phase synthesis resins, aggregation-induced emission fluorophores, as well as ionomer binders and ion-exchange membranes for energy conversion devices. This method imparts diverse functionality onto PS with extremely high efficiency and selectivity, providing a versatile platform to transform existing commodity PS plastics into high-performance materials.
Collapse
Affiliation(s)
- Boxin Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pan-Pan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Zhi Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shu-Qing Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ji-Hong Ge
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Li J, Yang C, Wang S, Xia Z, Sun G. Chemically stable piperidinium cations for anion exchange membranes. RSC Adv 2022; 12:26542-26549. [PMID: 36275149 PMCID: PMC9486533 DOI: 10.1039/d2ra02286a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The chemical stability of the anion exchange membranes (AEMs) is determinative towards the engineering applications of anion exchange membrane fuel cells (AEMFCs) and other AEM-based electrochemical devices, yet remains a challenge due to deficiencies in the structural design of cations. In this work, an effective design strategy for ultra-stable piperidinium cations is presented based on the systematic investigation of the chemical stability of piperidinium in harsh alkaline media. Firstly, benzyl-substituted piperidinium was degraded by about 23% in a 7 M KOH solution at 100 °C after 1436 h, which was much more stable than pyrrolidinium due to its lower ring strain. The introduction of substituent effects at the α-C position was proved to be an effective strategy for enhancing the chemical stability of the piperidinium functional group. As a result, the butyl-substituted piperidinium cation showed no obvious structural changes after being treated in the 7 M KOH solution at 100 °C for 1050 h. Afterwards, GC-MS and NMR analysis indicated that the α-C atoms in the substituents of piperidinium are fragile to the nucleophilic attack of OH-. Based on the above results, the electronic and steric effects of different alkyl substitutions were analyzed. This work provides critical insights into the structural design of chemically stable piperidinium functional groups for the AEM and boosts its application in electrochemical devices, such as fuel cells and alkaline water electrolysis.
Collapse
Affiliation(s)
- Jinyuan Li
- Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Congrong Yang
- Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences Dalian 116023 China
| | - Suli Wang
- Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences Dalian 116023 China
| | - Zhangxun Xia
- Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences Dalian 116023 China
| | - Gongquan Sun
- Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
18
|
Yang W, Yan J, Xu P, Chen J, Fang Q, Lin D, Yan Y, Zhang Q. Role of Ionic Concentration and Distribution in Anionic Conductivity: Case Study on a Series of Cobaltocenium-Containing Anion Exchange Membranes with Precise Structure Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Peng Xu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jin Chen
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qianyi Fang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
19
|
Zhao Z, Zhang M, Du W, Xiao Y, Yang Z, Dong D, Zhang X, Fan M. Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38132-38143. [PMID: 35971597 DOI: 10.1021/acsami.2c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which operate on a variety of green fuels, can achieve high power without emitting greenhouse gases. However, the lack of high ionic conductivity and long-term durability of anion-exchange membranes (AEMs) as their key components is a major obstacle hindering the commercial application of AEMFCs. Here, a series of homogeneous semi-interpenetrating network (semi-IPN) AEMs formed by cross-linking a copolymer of styrene (St) and 4-vinylbenzyl chloride (VBC) with branched polyethylenimine (BPEI) were designed. The pure carbon copolymer skeleton without sulfone/ether bonds accompanied by the semi-IPN endows the AEMs with excellent chemical stability. Moreover, the cross-linking effect of flexible BPEI chains is supposed to promote the "strong-flexible" mechanical properties, while the presence of multiquaternary ammonium groups can boost the formation of microphase separation, thereby enhancing the ionic conductivity of these AEMs. Consequently, the optimized (S1V1)3Q AEM exhibits an excellent hydroxide conductivity of 106 mS cm-1 at 80 °C, as well as more than 81% residual conductivity after soaking in 1 M NaOH at 60 °C for 720 h. Furthermore, the H2/O2 fuel cell assembled with (S1V1)3Q AEM delivers a peak power density of 150.2 mW cm-2 at 60 °C and 40% relative humidity. All results indicate that the approach of combining a pure carbon backbone polymer with a semi-IPN structure may be a viable strategy for fabricating AEMs that can be used in AEMFCs for long-term applications.
Collapse
Affiliation(s)
- Zhixin Zhao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenhao Du
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yafei Xiao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhaojie Yang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Dawei Dong
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Zhang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minmin Fan
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
20
|
Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00828-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Chen QG, Lee MT. Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design. Polymers (Basel) 2022; 14:polym14142860. [PMID: 35890636 PMCID: PMC9317406 DOI: 10.3390/polym14142860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
This work studied the polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymers functionalized by butyl quaternary ammonium (C4Q) groups and alkyl side chains of different chain lengths (Cn, n = 0 to 24). The hydrated membrane morphology was modeled by dissipative particle dynamics simulation at hydration levels from 10 to 30. A hydroxide model was devised to characterize the diffusivity of anions under the coarse-grained framework. In general, the ionomers with alkyl side chains provided ion conductivity of a similar level at a lower ion exchange capacity. All hydrated SEBS–C4Q–Cn ionomers showed clear phase separation of the hydrophobic and hydrophilic domains, featuring 18.6 mS/cm to 36.8 mS/cm ion conductivity. The hydrophilic channels expanded as the water content increased, forming more effective ion conductive pathways. Introducing excess alkyl side chains enhanced the nano-segregation, leading to more ordered structures and longer correlation lengths of the aqueous phase. The membrane morphology was controlled by the length of alkyl side-chains as well as their tethering positions. Ionomers with functionalized side chains tethered on the same block resulted in well-connective water networks and higher conductivities. The detailed structural analysis provides synthesis guidelines to fabricate anion exchange membranes with improved performances.
Collapse
|
22
|
Ul Hassan N, Zachman MJ, Mandal M, Adabi Firouzjaie H, Kohl PA, Cullen DA, Mustain WE. Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noor Ul Hassan
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J. Zachman
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mrinmay Mandal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Horie Adabi Firouzjaie
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Paul A. Kohl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A. Cullen
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William E. Mustain
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
23
|
Wu M, Zhang X, Zhao Y, Yang C, Jing S, Wu Q, Brozena A, Miller JT, Libretto NJ, Wu T, Bhattacharyya S, Garaga MN, Zhang Y, Qi Y, Greenbaum SG, Briber RM, Yan Y, Hu L. A high-performance hydroxide exchange membrane enabled by Cu 2+-crosslinked chitosan. NATURE NANOTECHNOLOGY 2022; 17:629-636. [PMID: 35437322 DOI: 10.1038/s41565-022-01112-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xin Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yun Zhao
- Centre for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Chunpeng Yang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Qisheng Wu
- School of Engineering, Brown University, Providence, RI, USA
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, University of Purdue, West Lafayette, IN, USA
| | - Nicole J Libretto
- Davidson School of Chemical Engineering, University of Purdue, West Lafayette, IN, USA
| | - Tianpin Wu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | | | | | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, Upton, NY, USA
| | - Yue Qi
- School of Engineering, Brown University, Providence, RI, USA
| | | | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yushan Yan
- Centre for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
24
|
Ge X, Zhang F, Wu L, Yang Z, Xu T. Current Challenges and Perspectives of Polymer Electrolyte Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiaolin Ge
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Fan Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Liang Wu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Zhengjin Yang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Tongwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
25
|
Yao ZC, Tang T, Jiang Z, Wang L, Hu JS, Wan LJ. Electrocatalytic Hydrogen Oxidation in Alkaline Media: From Mechanistic Insights to Catalyst Design. ACS NANO 2022; 16:5153-5183. [PMID: 35420784 DOI: 10.1021/acsnano.2c00641] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the potential to circumvent the need for scarce and cost-prohibitive platinum-based catalysts in proton-exchange membrane fuel cells, anion-exchange membrane fuel cells (AEMFCs) are emerging as alternative technologies with zero carbon emission. Numerous noble metal-free catalysts have been developed with excellent catalytic performance for cathodic oxygen reduction reaction in AEMFCs. However, the anodic catalysts for hydrogen oxidation reaction (HOR) still rely on noble metal materials. Since the kinetics of HOR in alkaline media is 2-3 orders of magnitude lower than that in acidic media, it is a major challenge to either improve the performance of noble metal catalysts or to develop high-performance noble metal-free catalysts. Additionally, the mechanisms of alkaline HOR are not yet clear and still under debate, further hampering the design of electrocatalysts. Against this backdrop, this review starts with the prevailing theories for alkaline HOR on the basis of diverse activity descriptors, i.e., hydrogen binding energy theory and bifunctional theory. The design principles and recent advances of HOR catalysts employing the aforementioned theories are then summarized. Next, the strategies and recent progress in improving the antioxidation capability of HOR catalysts, a thorny issue which has not received sufficient attention, are discussed. Moreover, the significance of correlating computational models with real catalyst structure and the electrode/electrolyte interface is further emphasized. Lastly, the remaining controversies about the alkaline HOR mechanisms as well as the challenges and possible research directions in this field are presented.
Collapse
Affiliation(s)
- Ze-Cheng Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Binding and Degradation Reaction of Hydroxide Ions with Several Quaternary Ammonium Head Groups of Anion Exchange Membranes Investigated by the DFT Method. Molecules 2022; 27:molecules27092686. [PMID: 35566033 PMCID: PMC9104685 DOI: 10.3390/molecules27092686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Commercialization of anion exchange membrane fuel cells (AEMFCs) has been limited due to the chemical degradation of various quaternary ammonium (QA) head groups, which affects the transportation of hydroxide (OH−) ions in AEMs. Understanding how various QA head groups bind and interact with hydroxide ions at the molecular level is of fundamental importance to developing high-performance AEMs. In this work, the binding and degradation reaction of hydroxide ions with several QA head groups—(a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO), (c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium (TMHA)—are investigated using the density functional theory (DFT) method. Results of binding energies (“∆” EBinding) show the following order of the binding strength of hydroxide ions with the six QA head groups: (a) > (c) > (f) > (d) > (e) > (b), suggesting that the group (b) has a high transportation rate of hydroxide ions via QA head groups of the AEM. This trend is in good agreement with the trend of ion exchange capacity from experimental data. Further analysis of the absolute values of the LUMO energies for the six QA head groups suggests the following order for chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Considering the comprehensive studies of the nucleophilic substitution (SN2) degradation reactions for QA head groups (c) and (f), the chemical stability of QA (f) is found to be higher than that of QA (c), because the activation energy (“∆” EA) of QA (c) is lower than that of QA (f), while the reaction energies (“∆” ER) for QA (c) and QA (f) are similar at the different hydration levels (HLs). These results are also in line with the trends of LUMO energies and available chemical stability data found through experiments.
Collapse
|
27
|
Jiang T, Wu C, Zhou Y, Cheng S, Yang S, Wei H, Ding Y, Wu Y. Highly stable poly(p-quaterphenylene alkylene)-based anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Cruz-Rosado A, Romero-Hernández JE, Ríos-López M, López-Morales S, Cedillo G, Ríos-Ruiz LM, Cetina-Mancilla E, Palacios-Alquisira J, Zolotukhin MG, Vivaldo-Lima E. Molecular weight development in the superacid-catalyzed polyhydroxyalkylation of 1-propylisatin and biphenyl at stoichiometric conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Qian J, Lu Q, Xu F, He G, Xia J. Fabrication of three-dimentional triarylmethane polymers derivatives as efficient counter electrodes for dye-sensitized solar cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Li L, Zhang N, Wang JA, Ma L, Bai L, Zhang A, Chen Y, Hao C, Yan X, Zhang F, He G. Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Yu N, Dong J, Wang T, Jin Y, Tang W, Yang J. Two new anion exchange membranes based on poly(bis-arylimidazolium) ionenes blend polybenzimidazole. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Aristizábal SL, Habboub OS, Pulido BA, Cetina-Mancilla E, Olvera LI, Forster M, Nunes SP, Scherf U, Zolotukhin MG. One-Step, Room Temperature Synthesis of Well-Defined, Organo-Soluble Multifunctional Aromatic Polyimides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra L. Aristizábal
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ola S. Habboub
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bruno A. Pulido
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Enoc Cetina-Mancilla
- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Lilian I. Olvera
- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Michael Forster
- Wuppertal Center for Smart Materials & Systems, Bergische Universität Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ullrich Scherf
- Wuppertal Center for Smart Materials & Systems, Bergische Universität Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany
| | - Mikhail G. Zolotukhin
- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
33
|
PBI nanofiber mat-reinforced anion exchange membranes with covalently linked interfaces for use in water electrolysers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Min J, Barpuzary D, Ham H, Kang GC, Park MJ. Charged Block Copolymers: From Fundamentals to Electromechanical Applications. Acc Chem Res 2021; 54:4024-4035. [PMID: 34559505 DOI: 10.1021/acs.accounts.1c00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Charged block copolymers are promising materials for next-generation battery technologies and soft electronics. Although once it was only possible to prepare randomly organized structures, nowadays, well-ordered charged block copolymers can be prepared. In addition, theoretical and experimental analyses of the thermodynamic properties of charged polymers have provided insights into how to control nanostructures via electrostatic interactions and improve the ionic conductivity without compromising mechanical strength, which is crucial for practical applications. In this Account, we discuss methods to control the self-assembly and ion diffusion behavior of charged block copolymers by varying the type of tethered ionic moieties, local concentration of embedded ions with controlled electrostatic interactions, and nanoscale morphology. We discuss with particular emphasis on the structure-transport relationship of charged block copolymers using various ionic additives to control the phase behavior electrostatically as well as the ion transport properties. Through this, we establish the role of interconnected ionic channels in promoting ion-conduction and the importance of developing three-dimensional interconnected morphologies such as gyroid, orthorhombic Fddd (O70) networks, body-centered cubic (bcc), face-centered cubic (fcc), and A15 structures with well-defined interfaces in creating less tortuous ion-conduction pathways. Our prolonged surge and synthetic advances are pushing the frontiers of charged block copolymers to have virtually homogeneous ionic domains with suppressed ion agglomeration via the nanoconfinement of closely bound ionic moieties, resulting in efficient ion conduction and high mechanical strength.Subsequently, we discuss how, by using zwitterions, we have radically improved the ionic conductivity of single-ion conducting polymers, which have potential for use in next-generation electrochemical devices owing to the constrained anion depletion. Key to the improvement stems from hierarchically ordered ionic crystals in nanodomains of the single-ion block copolymers through the self-organization of the dipolar/ionic moieties under confinement. By precisely tuning the distances between ionic sites and the dipolar orientation in the ionic domains with varied zwitterion contents, unprecedented dielectric constants close to those of aqueous electrolytes have been achieved, leading to the development of high-conductivity solid-state single-ion conducting polymers with leak-free characteristics. Further, using these materials, low-voltage-driven artificial muscles have been prepared that show a large bending strain and millisecond-scale mechanical deformations at 1 V in air without fatigue, exceeding the performance of previously reported polymer actuators. Finally, smart multiresponsive actuators based on tailor-made charged polymers capable of programmable deformation with high force and self-locking without power consumption are suggested as candidates for use in soft robotics.
Collapse
Affiliation(s)
- Jaemin Min
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Dipankar Barpuzary
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Hyeonseong Ham
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Gyeong-Chan Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| |
Collapse
|
35
|
Yu W, Zhang J, Liang X, Ge X, Wei C, Ge Z, Zhang K, Li G, Song W, Shehzad MA, Wu L, Xu T. Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Tang W, Yang Y, Liu X, Dong J, Li H, Yang J. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Wang F, Wang D, Nagao Y. OH - Conductive Properties and Water Uptake of Anion Exchange Thin Films. CHEMSUSCHEM 2021; 14:2694-2697. [PMID: 33928758 DOI: 10.1002/cssc.202100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Several investigations have indicated that proton conduction and hydration properties of acidic ionomers differ from those of membranes. However, relations between the OH- conductivity and water uptake in thin film forms of anion exchange membranes have not been reported yet. For this study, new in situ measurements were established to elucidate the OH- conductivity and water uptake without allowing any influence of CO2 from the air. Poly[(9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)], denoted as PFB+ , was synthesized as a model ionomer. The highest OH- conductivity of 273 nm-thick PFB+ film was 5.3×10-2 S cm-1 at 25 °C under 95 % relative humidity (RH), which is comparable to the reported OH- conductivity of PFB+ membrane. Reduced OH- conductivity was found in the thinner film at 95 % RH. The decreased OH- conductivity is explainable by the reduced number of water molecules contained in the thinner film. The OH- conductivity was reduced only slightly under the same water uptake.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Dongjin Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
38
|
Improving the performance of quaternized SEBS based anion exchange membranes by adjusting the functional group and side chain structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Otero TF. Electroactive macromolecular motors as model materials of ectotherm muscles. RSC Adv 2021; 11:21489-21506. [PMID: 35478837 PMCID: PMC9034182 DOI: 10.1039/d1ra02573b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
The electrochemical reaction in liquid electrolytes of conducting polymers, carbon nanotubes, graphenes, among other materials, replicates the active components (macromolecular electro-chemical motors, ions and solvent) and volume variation of the sarcomere in any natural muscles during actuation, allowing the development of electro-chemo-mechanical artificial muscles. Materials, reactions and artificial muscles have been used as model materials, model reactions and model devices of the muscles from ectotherm animals. We present in this perspective the experimental results and a quantitative description of the thermal influence on the reaction extension and energetic achievements of those muscular models using different experimental methodologies. By raising the temperature for 40 °C keeping the extension of the muscular movement the cooperative actuation of the macromolecular motors harvest, saving chemical energy, up to 60% of the reaction energy from the thermal environment. The synergic thermal influence on either, the reaction rate (Arrhenius), the conformational movement rates of the motors (ESCR model) and the diffusion coefficients of ions across polymer matrix (WLF equation) can support the physical chemical foundations for the selection by nature of ectotherm muscles. Macromolecular motors act, simultaneously, as electro-chemo-mechanical and thermo-mechanical transducers. Technological and biological perspectives are presented.
Collapse
Affiliation(s)
- Toribio Fernández Otero
- Technical University of Cartagena, Laboratory of Electrochemistry, Intelligent Materials and Devices, Department of Chemical and Environmental Engineering Campus Alfonso XIII 30203 Cartagena Spain
| |
Collapse
|
42
|
Jang J, Ahn MK, Lee SB, Min CM, Kang BG, Lee JS. Conductive and Stable Crosslinked Anion Exchange Membranes Based on Poly(arylene ether sulfone). Macromol Res 2021. [DOI: 10.1007/s13233-021-9023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Xue B, Cui W, Zhou S, Zhang Q, Zheng J, Li S, Zhang S. Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Boxin Xue
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Weidong Cui
- Inner Mongolia University of Technology, Hohhot 010021, China
| | - Shengyang Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816, China
| |
Collapse
|
44
|
Jiang T, Zhou Y, Yang Y, Wu C, Fang H, Yang S, Wei H, Ding Y. Dimensionally and oxidatively stable anion exchange membranes based on bication cross-linked poly(meta-terphenylene alkylene)s. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Zhang J, He Y, Zhang K, Liang X, Bance‐Soualhi R, Zhu Y, Ge X, Shehzad MA, Yu W, Ge Z, Wu L, Varcoe JR, Xu T. Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast
OH
−
conduction. AIChE J 2021. [DOI: 10.1002/aic.17133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jianjun Zhang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Yubin He
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Kaiyu Zhang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Xian Liang
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | | | - Yuan Zhu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Muhammad A. Shehzad
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Weisheng Yu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Zijuan Ge
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| | | | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China Hefei China
| |
Collapse
|
46
|
Xiao J, Oliveira AM, Wang L, Zhao Y, Wang T, Wang J, Setzler BP, Yan Y. Water-Fed Hydroxide Exchange Membrane Electrolyzer Enabled by a Fluoride-Incorporated Nickel–Iron Oxyhydroxide Oxygen Evolution Electrode. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04200] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Junwu Xiao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Alexandra M. Oliveira
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lan Wang
- W7energy LLC, 200 Powder Mill Road, Wilmington, Delaware 19803, United States
| | - Yun Zhao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Teng Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Junhua Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Brian P. Setzler
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
47
|
|
48
|
Lu W, Yang Z, Huang H, Wei F, Li W, Yu Y, Gao Y, Zhou Y, Zhang G. Piperidinium-Functionalized Poly(Vinylbenzyl Chloride) Cross-linked by Polybenzimidazole as an Anion Exchange Membrane with a Continuous Ionic Transport Pathway. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wangting Lu
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Zhenzhen Yang
- School of Chemical and Environmental Engineering, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - He Huang
- Fuel Cell System and Engineering Research Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Feng Wei
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Wenhui Li
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Youhua Zhou
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Geng Zhang
- Department of Chemistry, College of Science, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, P. R. China
| |
Collapse
|
49
|
Sugawara Y, Kobayashi H, Honma I, Yamaguchi T. Effect of Metal Coordination Fashion on Oxygen Electrocatalysis of Cobalt-Manganese Oxides. ACS OMEGA 2020; 5:29388-29397. [PMID: 33225170 PMCID: PMC7675927 DOI: 10.1021/acsomega.0c04254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 05/11/2023]
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the most critical reactions that limit the efficiency of fuel cells, water electrolyzers, and metal-air batteries. Therefore, a need exists to develop cost-effective and highly active alternative electrocatalysts for ORR and OER. This study investigates the influence of metal coordination fashion on electrocatalytic ORR and OER activities among three types of Co-Mn bimetallic oxides (CMOs): tunnel-type (CMO_T), layer-type (CMO_L), and spinel-type (CMO_S) structures. An electrochemical evaluation for CMOs verifies that CMO_L has the highest ORR and OER specific activities, which is relatively better than the previously reported bifunctional metal oxides. Additionally, atomic configuration analysis for the oxides suggests that the excellent ORR and OER activities of CMO_L result from the difference in Co and Mn coordination states. This paper not only presents an excellent electrocatalyst for alkaline fuel cells and water electrolyzers but also provides an important guideline for the design of oxygen electrocatalysts.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroaki Kobayashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Itaru Honma
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takeo Yamaguchi
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
50
|
Mayadevi TS, Sung S, Varghese L, Kim TH. Poly( meta/para-Terphenylene-Methyl Piperidinium)-Based Anion Exchange Membranes: The Effect of Backbone Structure in AEMFC Application. MEMBRANES 2020; 10:E329. [PMID: 33167367 PMCID: PMC7694387 DOI: 10.3390/membranes10110329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
A series of poly(meta/para-terphenylene-methyl piperidinium)-based anion exchange membranes devoid of benzylic sites or aryl ether bonds, that are vulnerable to degradation by hydroxide ions, are synthesized and investigated for their application as novel anion exchange membranes. The copolymers are composed of both linear para-terphenyl units and kink-structured meta-terphenyl units. The meta-connectivity in terphenyl units permits the polymer backbones to fold back, maximizing the interactions among the hydrocarbon polymer chains and enhancing the peripheral formation of ion aggregates, due to the free volume generated by the kink structure. The effects of the copolymer composition between para-terphenyl and meta-terphenyl on the morphology and the electrochemical and physicochemical properties of the corresponding polymer membranes are investigated.
Collapse
Affiliation(s)
- T. S. Mayadevi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Seounghwa Sung
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Listo Varghese
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| |
Collapse
|