1
|
Chen W, Liu X, Zheng Z, Liu Y, Jia X, Cui J, Tan Y, Du Z, Lu D, Liu Z, Cao H, Liu T, Liu W, Lyu Q. Establishment of an efficient structure-based protein clustering strategy to discovery the galactose 4-O-sulfotransferases with unexplored structural features. Int J Biol Macromol 2025; 308:142577. [PMID: 40154702 DOI: 10.1016/j.ijbiomac.2025.142577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Sulfation at the 4-OH position of galactose or its derivatives is a common and significant modification for polysaccharides. It confers different biological activities to polysaccharides and can be obtained by sulfonate group transfer, which is catalyzed by galactose 4-O-sulfotransferase (G4ST). Consequently, G4STs serves as a valuable tool for investigating the impact of sulfation on biological activity and for the synthesis of novel sulfated sugars. Despite its significance, only a few vertebrate-derived G4STs have been characterized, highlighting the need for exploring G4STs from diverse sources and for understanding of their structure-function relationships. In this study, we attempted for the first time to identify G4STs derived from microbes. Amino acid sequence screening was conducted, followed by protein structure prediction and clustering, resulting in 100 candidate proteins, which were classified into four clades. Notably, we successfully confirmed G4ST activity in one protein from clade1, named BST61. Structural insight into BST61 revealed the key residues involved in substrate binding, and, more importantly, a three residues-surrounded and conserved spatial position functioning in galactose recognition was determined. Using the conserved spatial position as a robust filter to re-screen the 100 candidate proteins, new sulfotransferases towards galactose were discovered as expected. These findings provided precise methods for mining G4STs, greatly expanding the application of G4STs for the analysis and preparation of sulfated sugars.
Collapse
Affiliation(s)
- Wencui Chen
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiaohua Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhi Zheng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunfei Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuli Jia
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, and State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| | - Jiexin Cui
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, and State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| | - Yenzhen Tan
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, and State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Dechen Lu
- Marine College, Shandong University, Weihai 264209, China
| | - Zhende Liu
- Haitang (Jiangsu) Biotechnology Co, Ltd., Nantong, Jiangsu, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, and State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Qianqian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
2
|
Priyadarshinee A, Amulya E, Vambhurkar G, Jain A, Puri N, Sahane P, Srivastava S. Unveiling the revolutionary approach for psoriasis management: Leveraging the breakthrough capabilities of hyaluronic acid. Int J Biol Macromol 2025; 310:143089. [PMID: 40220828 DOI: 10.1016/j.ijbiomac.2025.143089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Psoriasis is an unexceptional autoimmune-mediated, inflammatory skin disorder impacting systemic skin functions. The pathophysiology of psoriasis comprises hyperproliferation of cells on the epidermis, differentiation of keratinocytes, and the impaired barrier function of the epidermal layer of the skin, developing in the thickening of the epidermal layer. From a range of inflammatory mediators concerned during the pathogenesis of psoriasis, IL-17, -23, and TNF-α exert a significant influence on the upregulation of the symptoms. There are diverse conventional approaches dealing with psoriasis, including topical, systemic, biological, and herbal formulations. The demand for innovative formulations has emerged as several adverse effects correspond to conventionally pre-existing formulations. As hyaluronic acid (HA) has manifold structural and functional characteristics that can be worthwhile in regulating the symptoms of multiple skin inflammatory conditions, it can be used in novel formulations to amplify therapeutic effectiveness and achieve enviable responses. Moreover, HA can also serve the role of a biomarker for psoriasis according to its molecular weight. Furthermore, the mechanistic role of HA in its native form can be advantageous in ameliorating the symptoms of psoriasis. This review unequivocally covers fundamental aspects and the latest advancements in HA-based formulations for mitigating psoriasis symptoms. Furthermore, we deliberated on the role of HA as a biomarker in the physiological system of humans, in accordance with its molecular weight, the rationale behind its selection, and its mechanistic role, and how HA profoundly augments the impactfulness of various formulations in eliciting a prominent therapeutic improvement and mitigating symptoms associated with this disease.
Collapse
Affiliation(s)
- Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Akshita Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Qiao M, Li Y, Li Y, Chang M, Zhang X, Yuan S. Unlocking of Hidden Mesopores for Enzyme Encapsulation by Dynamic Linkers in Stable Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202409951. [PMID: 39177482 DOI: 10.1002/anie.202409951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Mesoporous metal-organic frameworks (MOFs) are promising supports for the immobilization of enzymes, yet their applications are often limited by small pore apertures that constrain the size of encapsulated enzymes to below 5 nm. In this study, we introduced labile linkers (4,4',4''-(2,4,6-boroxintriyl)-tribenzoate, TBTB) with dynamic boroxine bonds into mesoporous PCN-333, resulting in PCN-333-TBTB with enhanced enzyme loading and protection capabilities. The selective breaking of B-O bonds creates defects in PCN-333, which effectively expands both window and cavity sizes, thereby unlocking hidden mesopores for enzyme encapsulation. Consequently, this strategy not only increases the adsorption kinetics of small enzymes (<5 nm) such as cytochrome c (Cyt C) and horseradish peroxidase (HRP), but also enables the immobilization of various large-sized enzymes (>5 nm), such as glycoenzymes. The glycoenzymes@PCN-333-TBTB platform was successfully applied to synthesize thirteen complex oligosaccharides and polysaccharides, demonstrating high activity and enhanced enzyme stability. The dynamic linker-mediated enzyme encapsulation strategy enables the immobilization of enzymes exceeding the inherent pore size of MOFs, thus broadening the scope of enzymatic catalytic reactions achievable with MOF materials.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Chang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
6
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
8
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
DeAngelis PL. Chemoenzymatic synthesis with the Pasteurella hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers. PROTEOGLYCAN RESEARCH 2024; 2:e70000. [PMID: 39735554 PMCID: PMC11673988 DOI: 10.1002/pgr2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 12/31/2024]
Abstract
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] n ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Pasteurella multocida Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (n = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (n = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
10
|
Qiao M, Wang Z, Zhang J, Li Y, Chen LA, Zhang F, Dordick JS, Linhardt RJ, Cai C, Huang H, Zhang X. Nanopore-regulated in situ polymerization for synthesis of homogeneous heparan sulfate with low dispersity. Carbohydr Polym 2024; 341:122297. [PMID: 38876729 DOI: 10.1016/j.carbpol.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
The biological activities of heparan sulfate (HS) are intimately related to their molecular weights, degree and pattern of sulfation and homogeneity. The existing methods for synthesizing homogeneous sugar chains of low dispersity involve multiple steps and require stepwise isolation and purification processes. Here, we designed a mesoporous metal-organic capsule for the encapsulation of glycosyltransferase and obtained a microreactor capable of enzymatically catalyzing polymerization reactions to prepare homogeneous heparosan of low dispersity, the precursor of HS and heparin. Since the sugar chain extension occurs in the pores of the microreactor, low molecular weight heparosan can be synthesized through space-restricted catalysis. Moreover, the glycosylation co-product, uridine diphosphate (UDP), can be chelated with the exposed metal sites of the metal-organic capsule, which inhibits trans-cleavage to reduce the molecular weight dispersity. This microreactor offers the advantages of efficiency, reusability, and obviates the need for stepwise isolation and purification processes. Using the synthesized heparosan, we further successfully prepared homogeneous 6-O-sulfated HS of low dispersity with a molecular weight of approximately 6 kDa and a polydispersity index (PDI) of 1.032. Notably, the HS generated exhibited minimal anticoagulant activity, and its binding affinity to fibroblast growth factor 1 was comparable to that of low molecular weight heparins.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junjie Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Zheng J, Lin XJ, Xu H, Sohail M, Chen LA, Zhang X. Enzyme-mediated green synthesis of glycosaminoglycans and catalytic process intensification. Biotechnol Adv 2024; 74:108394. [PMID: 38857660 DOI: 10.1016/j.biotechadv.2024.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides that play pivotal roles in biological functions, including the regulation of cell proliferation, enzyme inhibition, and activation of growth factor receptors. Therefore, the synthesis of GAGs is a hot research topic in drug development. The enzymatic synthesis of GAGs has received widespread attention due to their eco-friendly nature, high regioselectivity, and stereoselectivity. The enhancement of the enzymatic synthesis process is the key to its industrial applications. In this review, we overviewed the construction of more efficient in vitro biomimetic synthesis systems of glycosaminoglycans and presented the different strategies to improve enzyme catalysis, including the combination of chemical and enzymatic methods, solid-phase synthesis, and protein engineering to solve the problems of enzyme stability, separation and purification of the product, preparation of structurally defined sugar chains, etc., and discussed the challenges and opportunities in large-scale green synthesis of GAGs.
Collapse
Affiliation(s)
- Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Xiao-Jun Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Han Xu
- Jiangbei New Area biopharmaceutical Public Service Platform, 210031 Nanjing, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Liang-An Chen
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China.
| |
Collapse
|
12
|
Zhao S, Zhang T, Kan Y, Li H, Li JP. Overview of the current procedures in synthesis of heparin saccharides. Carbohydr Polym 2024; 339:122220. [PMID: 38823902 DOI: 10.1016/j.carbpol.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 → 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.
Collapse
Affiliation(s)
- Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
13
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
14
|
Deng JQ, Li Y, Wang YJ, Cao YL, Xin SY, Li XY, Xi RM, Wang FS, Sheng JZ. Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies. Nat Commun 2024; 15:3755. [PMID: 38704385 PMCID: PMC11069525 DOI: 10.1038/s41467-024-48193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.
Collapse
Affiliation(s)
- Jian-Qun Deng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu-Jia Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Lin Cao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Si-Yu Xin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yu Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Min Xi
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Feng-Shan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Ju-Zheng Sheng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
- National Glycoengineering Research Center, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Stancanelli E, Krahn JA, Viverette E, Dutcher R, Pagadala V, Borgnia MJ, Liu J, Pedersen LC. Structural and Functional Analysis of Heparosan Synthase 2 from Pasteurella multocida (PmHS2) to Improve the Synthesis of Heparin. ACS Catal 2024; 14:6577-6588. [PMID: 39990868 PMCID: PMC11845225 DOI: 10.1021/acscatal.4c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Heparin is a widely used drug to treat thrombotic disorders in hospitals. Heparosan synthase 2 from Pasteurella multocida (PmHS2) is a key enzyme used for the chemoenzymatic synthesis of heparin oligosaccharides. It has both activities: glucosaminyl transferase activity and glucuronyl transferase activity; however, the mechanism to carry out the glyco-oligomerization is unknown. Here, we report crystal structures of PmHS2 constructs with bound uridine diphosphate (UDP) and a cryo-EM structure of PmHS2 in complex with UDP and a heptasaccharide (NS 7-mer) substrate. Using a LC-MC analytical method, we discovered the enzyme displays both a two-step concerted oligomerization mode and a distributive oligomerization mode depending on the non-reducing end of the starting oligosaccharide primer. Removal of 7 amino acid residues from the C-terminus results in an enzymatically active monomer instead of dimer and loses the concerted oligomerization mode of activity. In addition, the monomer construct can transfer N-acetyl glucosamine at a substrate concentration that is ∼7-fold higher than wildtype enzyme. It was also determined that an F529A mutant can transfer an N-sulfo glucosamine (GlcNS) saccharide from a previously inactive UDP-GlcNS donor. Performing the glyco-transfer reaction at a high substrate concentration and the capability of using unnatural donors are desirable to simplify the chemoenzymatic synthesis to prepare heparin-based therapeutics.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juno A. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Elizabeth Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Robert Dutcher
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Sheng LL, Cai YM, Li Y, Huang SL, Sheng JZ. Advancements in heparosan production through metabolic engineering and improved fermentation. Carbohydr Polym 2024; 331:121881. [PMID: 38388039 DOI: 10.1016/j.carbpol.2024.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Heparin is one of the most widely used natural drugs, and has been the preferred anticoagulant and antithrombotic agent in the clinical setting for nearly a century. Heparin also shows increasing therapeutic potential for treating inflammation, cancer, and microbial and viral diseases, including COVID-19. With advancements in synthetic biology, heparin production through microbial engineering of heparosan offers a cost-effective and scalable alternative to traditional extraction from animal tissues. Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of bioengineered heparin, possessing a chain length that is critically important for the production of heparin-based therapeutics with specific molecular weight (MW) distributions. Recent advancements in metabolic engineering of microbial cell factories have resulted in high-yield heparosan production. This review systematically analyzes the key modules involved in microbial heparosan biosynthesis and the latest metabolic engineering strategies for enhancing production, regulating MW, and optimizing the fermentation scale-up of heparosan. It also discusses future studies, remaining challenges, and prospects in the field.
Collapse
Affiliation(s)
- Li-Li Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Min Cai
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Si-Ling Huang
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| |
Collapse
|
17
|
Lu D, Wang W, Li X, Wang L, Guo Y, Zhu C, Wang X, Lian B, Bai J, Zhang Q. Identification and characterization of a PL35 GAGs lyase with 4-O-sulfated N-acetylgalactosamine (A-type)-rich structures producing property. Int J Biol Macromol 2024; 266:131283. [PMID: 38561119 DOI: 10.1016/j.ijbiomac.2024.131283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.
Collapse
Affiliation(s)
- Danrong Lu
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Wenwen Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Xiaoyun Li
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Luping Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Yankai Guo
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Changjian Zhu
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Xiaohui Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Bo Lian
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Jingkun Bai
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China.
| | - Qingdong Zhang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China.
| |
Collapse
|
18
|
Stancanelli E, Liu W, Su G, Padagala V, Liu J. Developing a solid-phase method for the enzymatic synthesis of heparan sulfate and chondroitin sulfate backbones. Glycobiology 2024; 34:cwad093. [PMID: 37995272 PMCID: PMC10969526 DOI: 10.1093/glycob/cwad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Despite the recent progress on the solution-phase enzymatic synthesis of heparan sulfate (HS) and chondroitin sulfate (CS), solid-phase enzymatic synthesis has not been fully investigated. Here, we describe the solid-phase enzymatic synthesis of HS and CS backbone oligosaccharides using specialized linkers. We demonstrate the use of immobilized HS linker to synthesize CS, and the use of immobilized CS linker to synthesize HS. The linkers were then digested with chondroitin ABCase and heparin lyases, respectively, to obtain the products. Our findings uncover a potential approach for accelerating the synthesis of structurally homogeneous HS and CS oligosaccharides.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Wei Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Tongjiaxiang 24, Golou district, Nanjing, Jiangsu, 210009, PR China
| | - Guowei Su
- Glycan Therapeutics, LLC Research and Development, Suite #103, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Vijay Padagala
- Glycan Therapeutics, LLC Research and Development, Suite #103, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| |
Collapse
|
19
|
Gao W, Li Y, Zhang X, Qiao M, Ji Y, Zheng J, Gao L, Yuan S, Huang H. DNA-Directed Assembly of Hierarchical MOF-Cellulose Nanofiber Microbioreactors with "Branch-Fruit" Structures. NANO LETTERS 2024; 24:3404-3412. [PMID: 38451852 DOI: 10.1021/acs.nanolett.3c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Assembling metal-organic frameworks (MOFs) into ordered multidimensional porous superstructures promises the encapsulation of enzymes for heterogeneous biocatalysts. However, the full potential of this approach has been limited by the poor stability of enzymes and the uncontrolled assembly of MOF nanoparticles onto suitable supports. In this study, a novel and exceptionally robust Ni-imidazole-based MOF was synthesized in water at room temperature, enabling in situ enzyme encapsulation. Based on this MOF platform, we developed a DNA-directed assembly strategy to achieve the uniform placement of MOF nanoparticles onto bacterial cellulose nanofibers, resulting in a distinctive "branch-fruit" structure. The resulting hybrid materials demonstrated remarkable versatility across various catalytic systems, accommodating natural enzymes, nanoenzymes, and multienzyme cascades, thus showcasing enormous potential as universal microbioreactors. Furthermore, the hierarchical composites facilitated rapid diffusion of the bulky substrate while maintaining the enzyme stability, with ∼3.5-fold higher relative activity compared to the traditional enzyme@MOF immobilized in bacterial cellulose nanofibers.
Collapse
Affiliation(s)
- Wanning Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
21
|
Esposito F, Sinquin C, Colliec-Jouault S, Cuenot S, Pugnière M, Ngo G, Traboni S, Zykwinska A, Bedini E. Multi-step semi-synthesis, structural characterization and growth factor interaction study of regiochemically sulfated diabolican polysaccharides. Int J Biol Macromol 2024; 260:129483. [PMID: 38242385 DOI: 10.1016/j.ijbiomac.2024.129483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Diabolican is an exopolysaccharide (EPS) produced by Vibrio diabolicus HE800, a mesophilic bacterium firstly isolated from a deep-sea hydrothermal field. Its glycosaminoglycan (GAG)-like structure, consisting of a tetrasaccharide repeating unit composed of two aminosugars (N-acetyl-glucosamine and N-acetyl-galactosamine) and two glucuronic acid units, suggested to subject it to regioselective sulfation processes, in order to obtain some sulfated derivatives potentially acting as GAG mimics. To this aim, a multi-step semi-synthetic approach, relying upon tailored sequence of regioselective protection, sulfation and deprotection steps, was employed in this work. The chemical structure of the obtained sulfated diabolican derivatives was characterized by a multi-technique analytic approach, in order to define both degree of sulfation (DS) and sulfation pattern within the polysaccharide repeating unit, above all. Finally, binding affinity for some growth factors relevant for biomedical applications was measured for both starting diabolican and sulfated derivatives thereof. Collected data suggested that sulfation pattern could be a key structural element for the selective interaction with signaling proteins not only in the case of native GAGs, as already known, but also for GAG-like structures obtained by regioselective sulfation of naturally unsulfated polysaccharides.
Collapse
Affiliation(s)
- Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | | | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France
| | | | - Giang Ngo
- IRCM, Univ Montpellier, ICM, INSERM, Montpellier, France
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France.
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
22
|
Kumar MS, S V, Dolai M, Nag A, Bylappa Y, Das AK. Viscosity-sensitive and AIE-active bimodal fluorescent probe for the selective detection of OCl - and Cu 2+: a dual sensing approach via DFT and biological studies using green gram seeds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:676-685. [PMID: 38189149 DOI: 10.1039/d3ay01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl- and Cu2+. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in H2O-CH3CN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis. Interestingly, this probe can also be effectively employed as a dual-mode fluorescent probe for light up fluorescent detection of OCl- and Cu2+ at different emission wavelengths of 439 nm and 457 nm via chemodosimetric and chelation pathways, respectively. The fast-sensing ability of NCP towards OCl- was shown by a low detection limit of 0.546 μM and the binding affinity of NCP with Cu2+ was proved by a low detection limit of 3.97 μM and a high binding constant of 1.66 × 103 M-1. The sensing mechanism of NCP towards OCl- and Cu2+ was verified by UV-vis spectroscopy, fluorescence analysis, 1H-NMR analysis, mass spectroscopy, DFT study and Job plot analysis. For practical applications, the binding of NCP with OCl- and Cu2+ was determined using a dipstick method and a cell imaging study in a physiological medium using green gram seeds.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, W.B., India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Yatheesharadhya Bylappa
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
23
|
Esposito F, Traboni S, Iadonisi A, Bedini E. Towards the semi-synthesis of phosphorylated mimics of glycosaminoglycans: Screening of methods for the regioselective phosphorylation of chondroitin. Carbohydr Polym 2024; 324:121517. [PMID: 37985053 DOI: 10.1016/j.carbpol.2023.121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
Glycosaminoglycan (GAG) mimics carrying phosphate rather than sulfate anionic groups have been poorly investigated, in spite of their interesting perspectives. While some GAG-mimicking phosphorylated polymers have been reported, to the best of our knowledge no phosphorylated polysaccharides having the same backbone of natural sulfated GAGs have been accessed yet. To fill this gap, in this work two standard phosphorylation protocols and two recently reported procedures have been screened on a set of polysaccharide species composed by microbial sourced chondroitin and three partially protected, semi-synthetic derivatives thereof. A detailed structural characterization by 1H, 13C and 31P NMR spectroscopy revealed the higher versatility of the innovative, biomimetic reaction employing monopotassium salt of phosphoenolpyruvate (PEPK) with respect to standard phosphorylating agents (phosphoric acid or phosphorus oxychloride). Indeed, PEP-K and H3PO4 gave similar results in the regioselective phosphorylation of the primary hydroxyls of unprotected chondroitin, while only the former reacted on partially protected chondroitin derivatives in a controlled, regioselective fashion, affording chondroitin phosphate (CP) polysaccharides with different derivatization patterns. The reported results represent the first, key steps towards the systematic semi-synthesis of phosphorylated GAGs as a new class of GAG mimics and to the evaluation of their biological activities in comparison with native sulfated GAGs.
Collapse
Affiliation(s)
- Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
24
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
25
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
26
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
27
|
Holmes SG, Desai UR. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Biomolecules 2023; 13:1633. [PMID: 38002315 PMCID: PMC10669598 DOI: 10.3390/biom13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
28
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
29
|
Sun JY, Deng JQ, Du RR, Xin SY, Cao YL, Lu Z, Guo XP, Wang FS, Sheng JZ. Novel β1,4 N-acetylglucosaminyltransferase in de novo enzymatic synthesis of hyaluronic acid oligosaccharides. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12671-5. [PMID: 37405432 DOI: 10.1007/s00253-023-12671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
The efficiency of de novo synthesis of hyaluronic acid (HA) using Pasteurella multocida hyaluronate synthase (PmHAS) is limited by its low catalytic activity during the initial reaction steps when monosaccharides are the acceptor substrates. In this study, we identified and characterized a β-1,4-N-acetylglucosaminyl-transferase (EcGnT) derived from the O-antigen gene synthesis cluster of Escherichia coli O8:K48:H9. Recombinant β1,4 EcGnT effectively catalyzed the production of HA disaccharides when the glucuronic acid monosaccharide derivative 4-nitrophenyl-β-D-glucuronide (GlcA-pNP) was used as the acceptor. Compared with PmHAS, β1,4 EcGnT exhibited superior N-acetylglucosamine transfer activity (~ 12-fold) with GlcA-pNP as the acceptor, making it a better option for the initial step of de novo HA oligosaccharide synthesis. We then developed a biocatalytic approach for size-controlled HA oligosaccharide synthesis using the disaccharide produced by β1,4 EcGnT as a starting material, followed by stepwise PmHAS-catalyzed synthesis of longer oligosaccharides. Using this approach, we produced a series of HA chains of up to 10 sugar monomers. Overall, our study identifies a novel bacterial β1,4 N-acetylglucosaminyltransferase and establishes a more efficient process for HA oligosaccharide synthesis that enables size-controlled production of HA oligosaccharides. KEY POINTS: • A novel β-1,4-N-acetylglucosaminyl-transferase (EcGnT) from E. coli O8:K48:H9. • EcGnT is superior to PmHAS for enabling de novo HA oligosaccharide synthesis. • Size-controlled HA oligosaccharide synthesis relay using EcGnT and PmHAS.
Collapse
Affiliation(s)
- Jiu-Ying Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jian-Qun Deng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Ran-Ran Du
- Bloomage BioTechnology Corp., Ltd., Jinan, 250010, China
| | - Si-Yu Xin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ya-Lin Cao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhen Lu
- Bloomage BioTechnology Corp., Ltd., Jinan, 250010, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan, 250010, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
30
|
Li M, Pedersen LC, Xu D. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Front Mol Biosci 2023; 10:1194293. [PMID: 37275960 PMCID: PMC10235622 DOI: 10.3389/fmolb.2023.1194293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heparan sulfate-binding proteins (HSBPs) are structurally diverse extracellular and membrane attached proteins that interact with HS under normal physiological conditions. Interactions with HS offer an additional level of control over the localization and function of HSBPs, which enables them to behave in a more refined manner. Because all cell signaling events start at the cell membrane, and cell-cell communication relies on translocation of soluble factors across the extracellular matrix, HS occupies an apical position in cellular signal transduction by interacting with hundreds of growth factors, cytokines, chemokines, enzymes, enzyme inhibitors, receptors and adhesion molecules. These extracellular and membrane proteins can play important roles in physiological and pathological conditions. For most HS-binding proteins, the interaction with HS represents an essential element in regulating their normal physiological functions. Such dependence on HS suggests that manipulating HS-protein interactions could be explored as a therapeutic strategy to selectively antagonize/activate HS-binding proteins. In this review, we will discuss current understanding of the diverse nature of HS-HSBP interactions, and the latest advancements in targeting the HS-binding site of HSBPs using structurally-defined HS oligosaccharides and monoclonal antibodies.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| |
Collapse
|
31
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
32
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
33
|
Perez S, Makshakova O, Angulo J, Bedini E, Bisio A, de Paz JL, Fadda E, Guerrini M, Hricovini M, Hricovini M, Lisacek F, Nieto PM, Pagel K, Paiardi G, Richter R, Samsonov SA, Vivès RR, Nikitovic D, Ricard Blum S. Glycosaminoglycans: What Remains To Be Deciphered? JACS AU 2023; 3:628-656. [PMID: 37006755 PMCID: PMC10052243 DOI: 10.1021/jacsau.2c00569] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.
Collapse
Affiliation(s)
- Serge Perez
- Centre
de Recherche sur les Macromolecules, Vegetales,
University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041 France
| | - Olga Makshakova
- FRC
Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| | - Jesus Angulo
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Emiliano Bedini
- Department
of Chemical Sciences, University of Naples
Federico II, Naples,I-80126, Italy
| | - Antonella Bisio
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Jose Luis de Paz
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Elisa Fadda
- Department
of Chemistry and Hamilton Institute, Maynooth
University, Maynooth W23 F2H6, Ireland
| | - Marco Guerrini
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Michal Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Milos Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Frederique Lisacek
- Computer
Science Department & Section of Biology, University of Geneva & Swiss Institue of Bioinformatics, Geneva CH-1227, Switzerland
| | - Pedro M. Nieto
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Kevin Pagel
- Institut
für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Giulia Paiardi
- Molecular
and Cellular Modeling Group, Heidelberg Institute for Theoretical
Studies, Heidelberg University, Heidelberg 69118, Germany
| | - Ralf Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology and Bragg Centre for
Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sergey A. Samsonov
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdsank 80-309, Poland
| | - Romain R. Vivès
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Dragana Nikitovic
- School
of Histology-Embriology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Sylvie Ricard Blum
- University
Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry,
UMR 5246, Villeurbanne F 69622 Cedex, France
| |
Collapse
|
34
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
35
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
36
|
Colliec-Jouault S, Esposito F, Ledru H, Sinquin C, Marchand L, Fillaudeau A, Routier S, Buron F, Lopin-Bon C, Cuenot S, Bedini E, Zykwinska A. Glycosaminoglycan Mimetics Obtained by Microwave-Assisted Sulfation of Marine Bacterium Sourced Infernan Exopolysaccharide. Biomacromolecules 2023; 24:462-470. [PMID: 36563405 DOI: 10.1021/acs.biomac.2c01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) are fundamental constituents of both the cell surface and extracellular matrix. By playing a key role in cell-cell and cell-matrix interactions, GAGs are involved in many physiological and pathological processes. To design GAG mimetics with similar therapeutic potential as the natural ones, the specific structural features, among them sulfate content, sulfation pattern, and chain length, should be considered. In the present study, we describe a sulfation method based on microwave radiation to obtain highly sulfated derivatives as GAG mimetics. The starting low-molecular-weight (LMW) derivative was prepared from the infernan exopolysaccharide, a highly branched naturally slightly sulfated heteropolysaccharide synthesized by the deep-sea hydrothermal vent bacterium Alteromonas infernus. LMW highly sulfated infernan derivatives obtained by conventional heating sulfation have already been shown to display GAG-mimetic properties. Here, the potential of microwave-assisted sulfation versus that of the conventional method to obtain GAG mimetics was explored. Structural analysis by NMR revealed that highly sulfated derivatives from the two methods shared similar structural features, emphasizing that microwave-assisted sulfation with a 12-fold shorter reaction time is as efficient as the classical one.
Collapse
Affiliation(s)
| | - Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126Napoli, Italy
| | - Hélène Ledru
- Institut de Chimie Organique et Analytique─UMR 7311, Université d'Orléans et CNRS, Rue de Chartres, BP 6759, 45067Orléans Cedex 2, France
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000Nantes, France
| | - Laetitia Marchand
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000Nantes, France
| | - Arnaud Fillaudeau
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000Nantes, France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique─UMR 7311, Université d'Orléans et CNRS, Rue de Chartres, BP 6759, 45067Orléans Cedex 2, France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique─UMR 7311, Université d'Orléans et CNRS, Rue de Chartres, BP 6759, 45067Orléans Cedex 2, France
| | - Chrystel Lopin-Bon
- Institut de Chimie Organique et Analytique─UMR 7311, Université d'Orléans et CNRS, Rue de Chartres, BP 6759, 45067Orléans Cedex 2, France
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel─IMN, Nantes Université and CNRS, Nantes44322, France
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126Napoli, Italy
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000Nantes, France
| |
Collapse
|
37
|
Zhang L, Liu Y, Xu Z, Hao T, Wang PG, Zhao W, Li T. Design and Synthesis of Neutralizable Fondaparinux. JACS AU 2022; 2:2791-2799. [PMID: 36590263 PMCID: PMC9795572 DOI: 10.1021/jacsau.2c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Fondaparinux, a clinically approved anticoagulant pentasaccharide for the treatment of thrombotic diseases, displays better efficacy and biosafety than other heparin-based anticoagulant drugs. However, there is no suitable antidote available for fondaparinux to efficiently manage its potential bleeding risks, thereby precluding its widespread use. Herein, we describe a convergent and stereocontrolled approach to efficiently synthesize an aminopentyl-functionalized pentasaccharide, which is further used to prepare fondaparinux-based biotin conjugates and clusters. Biological activity evaluation demonstrates that the anticoagulant activity of the fondaparinux-based biotin conjugate and trimer is, respectively, neutralized by avidin and protamine as effective antidotes. This work suggests that our synthetic biotin conjugate and trimer have potential for the development of neutralizable and safe anticoagulant drugs.
Collapse
Affiliation(s)
- Liangwei Zhang
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yating Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Zhuojia Xu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Hao
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng George Wang
- School
of Medicine, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei Zhao
- College
of Pharmacy, Nankai University, Tianjin 300353, China
| | - Tiehai Li
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory
of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
He P, Zhang X, Xia K, Green DE, Baytas S, Xu Y, Pham T, Liu J, Zhang F, Almond A, Linhardt RJ, DeAngelis PL. Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors. Nat Commun 2022; 13:7438. [PMID: 36460670 PMCID: PMC9718760 DOI: 10.1038/s41467-022-34788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond ('S-link') between sugar residues in place of a natural 'O-linked' bond. S-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.
Collapse
Affiliation(s)
- Peng He
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA
| | - Sultan Baytas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Truong Pham
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Andrew Almond
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1, 7DN, United Kingdom
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA.
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA.
| |
Collapse
|
39
|
Lomba-Riego L, Calvino-Sanles E, Brea RJ. In situ synthesis of artificial lipids. Curr Opin Chem Biol 2022; 71:102210. [PMID: 36116189 DOI: 10.1016/j.cbpa.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Lipids constitute one of the most enigmatic family of biological molecules. Although the importance of lipids as basic units of compartmental structure and energy storage is well-acknowledged, deciphering the biosynthesis and precise roles of specific lipid species has been challenging. To better understand the structure and function of these biomolecules, there is a burgeoning interest in developing strategies to produce noncanonical lipids in a controlled manner. This review covers recent advances in the area of in situ generation of synthetic lipids. Specifically, we report several approaches that constitute a powerful toolbox for achieving noncanonical lipid synthesis. We describe how these methodologies enable the direct construction of synthetic lipids, helping to address fundamental questions related to the cell biology of lipid biosynthesis, trafficking, and signaling. We envision that highlighting the current advances in artificial lipid synthesis will pave the way for broader interest into this emerging class of biomimetic molecules.
Collapse
Affiliation(s)
- Lucia Lomba-Riego
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Esther Calvino-Sanles
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain.
| |
Collapse
|
40
|
Zhang J, Liang L, Yang W, Ramadan S, Baryal K, Huo C, Bernard JJ, Liu J, Hsieh‐Wilson L, Zhang F, Linhardt RJ, Huang X. Expedient Synthesis of a Library of Heparan Sulfate-Like "Head-to-Tail" Linked Multimers for Structure and Activity Relationship Studies. Angew Chem Int Ed Engl 2022; 61:e202209730. [PMID: 36199167 PMCID: PMC9675719 DOI: 10.1002/anie.202209730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure-activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS-like pseudo-hexasaccharide library, where HS disaccharides were linked in a "head-to-tail" fashion from the reducing end of a disaccharide module to the non-reducing end of a neighboring module. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF-2) with similar structure-activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head-to-tail linked pseudo-oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.
Collapse
Affiliation(s)
- Jicheng Zhang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Li Liang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Weizhun Yang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Kedar Baryal
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Chang‐Xin Huo
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Jamie J. Bernard
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMI 48824USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Fuming Zhang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Robert J. Linhardt
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Xuefei Huang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA,Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
41
|
Sun L, Chopra P, Boons G. Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides having a Domain Structure. Angew Chem Int Ed Engl 2022; 61:e202211112. [PMID: 36148891 PMCID: PMC9828060 DOI: 10.1002/anie.202211112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Heparan sulfate (HS) has a domain structure in which regions that are modified by epimerization and sulfonation (NS domains) are interspersed by unmodified fragments (NA domains). There is data to support that domain organization of HS can regulate binding of proteins, however, such model has been difficult to probe. Here, we report a chemoenzymatic methodology that can provide HS oligosaccharides composed of two or more NS domains separated by NA domains of different length. It is based on the chemical synthesis of a HS oligosaccharide that enzymatically was extended by various GlcA-GlcNAc units and terminated in GlcNAc having an azido moiety at C-6 position. HS oligosaccharides having an azide and alkyne moiety could be assembled by copper catalyzed alkyne-azide cycloaddition to give compounds having various NS domains separated by unsulfonated regions. Competition binding studies showed that the length of an NA domain modulates the binding of the chemokines CCL5 and CXCL8.
Collapse
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
- Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrecht (TheNetherlands
- Chemistry DepartmentUniversity of GeorgiaAthensGA-30602USA
| |
Collapse
|
42
|
Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, Du G, Kang Z. Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14129-14139. [PMID: 36300844 DOI: 10.1021/acs.jafc.2c05709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a nonsulfated linear glycosaminoglycan with a negative charge. Different from the high-molecular-weight HAs, the low-molecular-weight HAs (LMW-HAs, 4-120 kDa) and hyaluronan oligosaccharides (O-HAs, <4 kDa) exhibit certain unique biological properties, owing to which these have a wide range of applications in the field of medicine. However, the chemical synthesis of high-purity LMW-HAs and O-HAs requires complex procedures, which renders this process difficult to achieve. The degradation of HA is achieved under the catalysis of hyaluronidases. In recent years, various hyaluronidase genes have been identified, and their enzymatic properties have been analyzed. In this context, the present review summarizes the hyaluronidases from different sources, which have been characterized. The review focuses on the crystal structure and the catalytic mechanism underlying the biological properties of hyaluronidases. In addition, the molecular weight distributions and the preparation approaches of the enzymatic products LMW-HAs and O-HAs are described. The general orientation of the research on hyaluronidases was speculated based on the existing literature. Accordingly, the efficient large-scale production of LMW-HAs and O-HAs using the green enzymatic approach was anticipated.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., 678 Tianchen Avenue, Jinan 250010, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lizhi Liao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
43
|
Gandy LA, Canning AJ, Lou H, Xia K, He P, Su G, Cairns T, Liu J, Zhang F, Linhardt RJ, Cohen G, Wang C. Molecular determinants of the interaction between HSV-1 glycoprotein D and heparan sulfate. Front Mol Biosci 2022; 9:1043713. [PMID: 36419932 PMCID: PMC9678342 DOI: 10.3389/fmolb.2022.1043713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.
Collapse
Affiliation(s)
- Lauren A. Gandy
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ashley J. Canning
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Peng He
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Guowei Su
- Glycan Therapeutics, Raleigh, NC, United States
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Liu
- Glycan Therapeutics, Raleigh, NC, United States
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gary Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
44
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
45
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
46
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Uchimura K, Nishitsuji K, Chiu L, Ohgita T, Saito H, Allain F, Gannedi V, Wong C, Hung S. Design and Synthesis of 6-O-Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. Chembiochem 2022; 23:e202200191. [PMID: 35585797 PMCID: PMC9401075 DOI: 10.1002/cbic.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Dysregulation of amyloidogenic proteins and their abnormal processing and deposition in tissues cause systemic and localized amyloidosis. Formation of amyloid β (Aβ) fibrils that deposit as amyloid plaques in Alzheimer's disease (AD) brains is an earliest pathological hallmark. The polysulfated heparan sulfate (HS)/heparin (HP) is one of the non-protein components of Aβ deposits that not only modulates Aβ aggregation, but also acts as a receptor for Aβ fibrils to mediate their cytotoxicity. Interfering with the interaction between HS/HP and Aβ could be a therapeutic strategy to arrest amyloidosis. Here we have synthesized the 6-O-phosphorylated HS/HP oligosaccharides and reported their competitive effects on the inhibition of HP-mediated Aβ fibril formation in vitro using a thioflavin T fluorescence assay and a tapping mode atomic force microscopy.
Collapse
Affiliation(s)
- Kenji Uchimura
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Kazuchika Nishitsuji
- Department of BiochemistryWakayama Medical University811–1 KimiideraWakayama641-8509Japan
| | - Li‐Ting Chiu
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
| | - Takashi Ohgita
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Hiroyuki Saito
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Fabrice Allain
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | | | - Chi‐Huey Wong
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines Road BCC 338La JollaCA 92037USA
| | - Shang‐Cheng Hung
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of Applied ScienceNational Taitung University369, Section 2 University RoadTaitung95092Taiwan
| |
Collapse
|
48
|
Xu H, Fu N, Zheng J, Sohail M, Zhang X. Mn-doped bimetallic synergistic catalysis boosts for enzymatic phosphorylation of N-Acetylglucosamine/ N-Acetylgalactosamine and their derivatives. Bioorg Chem 2022; 128:106041. [PMID: 35907378 DOI: 10.1016/j.bioorg.2022.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Metal-organic frameworks (MOFs), as advanced enzyme immobilization platforms for improving biocatalysis and protein biophysics, are rarely investigated as solid supports in the enzymatic synthesis of carbohydrate and derivatives, which can be attributed to the complex biochemical reaction mechanisms and the adverse interactions between the high polarity of substrate sugars, glycoenzymes and traditional MOFs. Here, we introduced divalent metal ion Mn2+ into MOF to prepare bimetallic MOF microreactor that encapsulated N-acetylhexosamine 1-Kinase (NahK), a critical anomeric kinase involved in the enzymatic synthesis of sugar nucleotide. The introduced Mn ions not only adjusted the microstructure of MOFs, but also participated in the enzymatic catalysis as cofactor, thus facilitated the N-acetylglucosamine/ N-acetylgalactosamine (GlcNAc/GalNAc) phosphorylation. The Mn-doped NahK@Zn-metal organic material (MOM), integrated with high catalytic activity, high stability, and high recoverability, solved the issues of immobilization related to glucokinase activity. These features significantly improved the operability and reduced the processing cost, assuring industrial application prospects for sugar nucleotides synthesis.
Collapse
Affiliation(s)
- Han Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jie Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
49
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
50
|
Li Y, Zhao P, Zhang Y, Zhen J, Zhao L, Cai Y, Lu Q, Huang G. Fecal-associated microbiome differences between phlegm-dampness constitution and balanced constitution. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|