1
|
Zhao W, Luo J, Wang F, Shi Y, Zhang J, Zhang Y, Li Y, Wang X, Chen Y, Zhang X, Wang X, Mu Y, Ji D, Xiao S, Wang Q, Zhang L, Zhang C, Zhou D. Engineering sialylated N-glycans on adeno-associated virus capsids for targeted gene delivery and therapeutic applications. J Control Release 2025; 380:563-578. [PMID: 39938722 DOI: 10.1016/j.jconrel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Glycans with diverse biological functions have been extensively identified on enveloped viruses, whereas glycosylation on adeno-associated virus (AAV) serotypes remains poorly understood. Identifying potential glycosylation sites on AAVs could provide critical docking sites for rational engineering of AAV capsids, enabling targeted delivery of therapeutic genes. This study presents a strategy that integrates azido-monosaccharide metabolic incorporation, 1,2-diamino-4,5-methylenedioxybenzene-labeled sialic acid analysis, and mass spectrometry to identify N-glycosylation sites and glycoforms on AAVs. We identified sialylated N- oligosaccharides, particularly the conserved NNNS motif, on AAV2, AAV6, AAV7, and AAV9 capsids. These glycans play critical roles in maintaining capsid stability and enhancing resistance to neutralizing antibodies. Furthermore, we engineered an AAV vector with an azido-labeled terminal sialic acid, which was conjugated via click chemistry to cyclic Arg-Gly-Asp (RGD), a high-affinity ligand for integrin αvβ3, to generate an integrin-targeted delivery vehicle. This approach enabled the efficient delivery of c-Met-targeting shRNA in a glioma mouse model and facilitated CRISPR/Cas9-mediated SMOC2 knockout in a mouse model of kidney fibrosis using single-guide RNA (sgRNA). Our findings establish a foundation for creating editable AAV vectors through sialylated termini, thereby expanding their potential applications in basic research and therapeutic development.
Collapse
Affiliation(s)
- Weixuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jinhuan Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fudi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jiawen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China.
| |
Collapse
|
2
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Daramola O, Gautam S, Gutierrez Reyes CD, Fowowe M, Onigbinde S, Nwaiwu J, Mechref Y. LC-MS/MS of isomeric N-and O-glycopeptides on mesoporous graphitized carbon column. Anal Chim Acta 2024; 1317:342907. [PMID: 39030008 PMCID: PMC11789930 DOI: 10.1016/j.aca.2024.342907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The study of glycopeptides is associated with challenges regarding the microheterogeneity of different isomeric glycans occupying the same glycosylation sites in glycoproteins. It is immensely valuable to perform both qualitative and quantitative site-specific glycosylation analysis of glycopeptide isomers due to their link to several diseases. Achieving isomeric separation of glycopeptides is particularly challenging due to the low abundance of glycopeptides as well as inefficient ionization. Although some methods have demonstrated the isomeric separation of glycopeptides, a more efficient nanoflow-based stationary phase is needed for the isomeric separation of both N- and O-glycopeptides. RESULTS In this study, the separation of N- and O-glycopeptide isomers at 75 °C was achieved with an in-house packed 1 cm long mesoporous graphitized carbon (MGC) column. Different gradient compositions of the optimized mobile phase for separating permethylated glycans on MGC column were tested, and we observed efficient separation of N- and O-glycopeptide isomers at a gradient elution time of 120 min. After achieving the isomeric separation of sialylated glycopeptides from model glycoproteins derived from bovine fetuin, the separation of isomeric glycopeptides derived from asialofetuin, α-1 glycoprotein and human blood serum were also demonstrated. Furthermore, the developed method for the separation of isomeric N- and O-glycopeptide on MGC column showed high reproducibility over three months. We observed an average retention time shift of 1 min and consistent resolution of separated peaks throughout three months. SIGNIFICANCE AND NOVELTY MGC column can serve as an efficient tool for obtaining the isomeric separation of N- and O-glycopeptide from complex biological samples in future studies. This will enable a more profound understanding of the roles played by isomeric N- and O-glycopeptide in important biological processes and their correlations to various disease progressions.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | | | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
4
|
Atashi M, Jiang P, Nwaiwu J, Gutierrez Reyes CD, Nguyen HMT, Li Y, Ahmadi P, Purba WT, Mechref Y. 15N metabolic labeling-TMT multiplexing approach to facilitate the quantitation of glycopeptides derived from cell lines. Anal Bioanal Chem 2024; 416:4071-4082. [PMID: 38958703 PMCID: PMC11749005 DOI: 10.1007/s00216-024-05352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
The study of glycoproteomics presents a set of unique challenges, primarily due to the low abundance of glycopeptides and their intricate heterogeneity, which is specific to each site. Glycoproteins play a crucial role in numerous biological functions, including cell signaling, adhesion, and intercellular communication, and are increasingly recognized as vital markers in the diagnosis and study of various diseases. Consequently, a quantitative approach to glycopeptide research is essential. One effective strategy to address this need is the use of multiplex glycopeptide labeling. By harnessing the synergies of 15N metabolic labeling via the isotopic detection of amino sugars with glutamine (IDAWG) technique for glycan parts and tandem mass tag (TMT)pro labeling for peptide backbones, we have developed a method that allows for the accurate quantification and comparison of multiple samples simultaneously. The adoption of the liquid chromatography-synchronous precursor selection (LC-SPS-MS3) technique minimizes fragmentation interference, enhancing data reliability, as shown by a 97% TMT labeling efficiency. This method allows for detailed, high-throughput analysis of 32 diverse samples from 231BR cell lines, using both 14N and 15N glycopeptides at a 1:1 ratio. A key component of our methodology was the precise correction for isotope and TMTpro distortions, significantly improving quantification accuracy to less than 5% distortion. This breakthrough enhances the efficiency and accuracy of glycoproteomic studies, increasing our understanding of glycoproteins in health and disease. Its applicability to various cancer cell types sets a new standard in quantitative glycoproteomics, enabling deeper investigation into glycopeptide profiles.
Collapse
Affiliation(s)
- Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | | | - Hanh Minh Thu Nguyen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX, 76204, USA
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Waziha Tasnim Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
5
|
Girgis M, Petruncio G, Russo P, Peyton S, Paige M, Campos D, Sanda M. Analysis of N- and O-linked site-specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. Proteomics 2024; 24:e2300281. [PMID: 38171879 DOI: 10.1002/pmic.202300281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Bioengineering, College of Engineering & Computing, George Mason University, Fairfax, Virginia, USA
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Gregory Petruncio
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Steven Peyton
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Mikell Paige
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Diana Campos
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| | - Miloslav Sanda
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
6
|
Daramola O, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Nwaiwu J, Onigbinde S, Adeniyi M, Solomon J, Bhuiyan MMAA, Mechref Y. Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites 2024; 14:50. [PMID: 38248853 PMCID: PMC10819816 DOI: 10.3390/metabo14010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Bruno A. Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Md Mostofa Al Amin Bhuiyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| |
Collapse
|
7
|
Wang J, Onigbinde S, Purba W, Nwaiwu J, Mechref Y. O-Glycoproteomics Sample Preparation and Analysis Using NanoHPLC and Tandem MS. Methods Mol Biol 2024; 2762:281-290. [PMID: 38315372 PMCID: PMC11770557 DOI: 10.1007/978-1-0716-3666-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycosylation refers to the biological processes that covalently attach carbohydrates to the peptide backbone after the synthesis of proteins. As one of the most common post-translational modifications (PTMs), glycosylation can greatly affect proteins' features and functions. Moreover, aberrant glycosylation has been linked to various diseases. There are two major types of glycosylation, known as N-linked and O-linked glycosylation. Here, we focus on O-linked glycosylation and thoroughly describe a bottom-up strategy to perform O-linked glycoproteomics studies. The experimental section involves enzymatic digestions using trypsin and O-glycoprotease at 37 °C. The prepared samples containing O-glycopeptides are analyzed using nanoHPLC coupled with tandem mass spectrometry (MS) for accurate identification and quantification.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
8
|
Jiang P, Huang Y, Gutierrez Reyes CD, Zhong J, Mechref Y. Isomeric Separation of α2,3/α2,6-Linked 2-Aminobenzamide (2AB)-Labeled Sialoglycopeptides by C18-LC-MS/MS. Anal Chem 2023; 95:18388-18397. [PMID: 38069741 DOI: 10.1021/acs.analchem.3c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Cristian D Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
9
|
Delafield DG, Miles HN, Ricke WA, Li L. Inclusion of Porous Graphitic Carbon Chromatography Yields Greater Protein Identification and Compartment and Process Coverage and Enables More Reflective Protein-Level Label-Free Quantitation. J Proteome Res 2023; 22:3508-3518. [PMID: 37815119 PMCID: PMC10732698 DOI: 10.1021/acs.jproteome.3c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The ubiquity of mass spectrometry-based bottom-up proteomic analyses as a component of biological investigation mandates the validation of methodologies that increase acquisition efficiency, improve sample coverage, and enhance profiling depth. Chromatographic separation is often ignored as an area of potential improvement, with most analyses relying on traditional reversed-phase liquid chromatography (RPLC); this consistent reliance on a single chromatographic paradigm fundamentally limits our view of the observable proteome. Herein, we build upon early reports and validate porous graphitic carbon chromatography (PGC) as a facile means to substantially enhance proteomic coverage without changes to sample preparation, instrument configuration, or acquisition methods. Analysis of offline fractionated cell line digests using both separations revealed an increase in peptide and protein identifications by 43% and 24%, respectively. Increased identifications provided more comprehensive coverage of cellular components and biological processes independent of protein abundance, highlighting the substantial quantity of proteomic information that may go undetected in standard analyses. We further utilize these data to reveal that label-free quantitative analyses using RPLC separations alone may not be reflective of actual protein constituency. Together, these data highlight the value and comprehension offered through PGC-MS proteomic analyses. RAW proteomic data have been uploaded to the MassIVE repository with the primary accession code MSV000091495.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Atashi M, Reyes CDG, Sandilya V, Purba W, Ahmadi P, Hakim MA, Kobeissy F, Plazzi G, Moresco M, Lanuzza B, Ferri R, Mechref Y. LC-MS/MS Quantitation of HILIC-Enriched N-glycopeptides Derived from Low-Abundance Serum Glycoproteins in Patients with Narcolepsy Type 1. Biomolecules 2023; 13:1589. [PMID: 38002271 PMCID: PMC10669497 DOI: 10.3390/biom13111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.
Collapse
Affiliation(s)
- Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Firas Kobeissy
- Department of biochemistry and molecular genetics, Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 11072020, Lebanon;
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GE 30310, USA
| | - Giuseppe Plazzi
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Moresco
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| |
Collapse
|
11
|
Wang J, Yu A, Cho BG, Mechref Y. Assessing the hydrophobicity of glycopeptides using reversed-phase liquid chromatography and tandem mass spectrometry. J Chromatogr A 2023; 1706:464237. [PMID: 37523904 DOI: 10.1016/j.chroma.2023.464237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Retention time is one of the most important parameters that has been widely used to demonstrate the separation results obtained from liquid chromatography (LC) platforms. However, retention time can shift when samples are tested with different instruments and laboratories, which hinders the identification process of analytes when comparing data collected from different LC systems. To address this problem, hydrophobicity index was introduced for retention time normalization of the glycopeptides separated by reversed-phase LC (RPLC). Tandem MS was used for the detection and identification of glycopeptides. In addition, the influence of different types of glycans on the hydrophobicity of peptide backbones was studied by comparing the retention time of glycopeptides with their non-glycosylated counterparts. The hydrophobicity of tryptic digested glycopeptides derived from model glycoproteins, including bovine fetuin, α1-acid glycoprotein, and haptoglobin from human plasma, were evaluated based on the hydrophobicity index of the standard peptides from a peptide retention time calibration mixture. The reduction of hydrophobicity of multiple peptide backbones was observed due to the hydrophilic glycan structures. By comparing the hydrophobicity index of glycopeptides collected from different time and instruments, the day-to-day and lab-to-lab comparisons suggested high reliability and reproducibility of this approach. The RSD% of hydrophobicity index from inter-lab experiments was 1.2%, while the RSD% of retention time was 5.1%. Then, the applications of this method were demonstrated on complex glycopeptide samples extracted from human blood serum. The hydrophobicity index can be applied to address the retention time shift when using different instruments, thereby boosting confidence of the characterization of glycopeptides.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, United States.
| |
Collapse
|
12
|
Maliepaard JCL, Damen JMA, Boons GJPH, Reiding KR. Glycoproteomics-Compatible MS/MS-Based Quantification of Glycopeptide Isomers. Anal Chem 2023. [PMID: 37319314 DOI: 10.1021/acs.analchem.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycosylation is an essential protein modification occurring on the majority of extracellular human proteins, with mass spectrometry (MS) being an indispensable tool for its analysis, that not only determines glycan compositions, but also the position of the glycan at specific sites via glycoproteomics. However, glycans are complex branching structures with monosaccharides interconnected in a variety of biologically relevant linkages, isomeric properties that are invisible when the readout is mass alone. Here, we developed an LC-MS/MS-based workflow for determining glycopeptide isomer ratios. Making use of isomerically defined glyco(peptide) standards, we observed marked differences in fragmentation behavior between isomer pairs when subjected to collision energy gradients, specifically in terms of the galactosylation/sialylation branching and linkage. These behaviors were developed into component variables that allowed for relative quantification of isomerism within mixtures. Importantly, at least for small peptides, the isomer quantification appeared to be largely independent from the peptide portion of the conjugate, allowing a broad application of the method.
Collapse
Affiliation(s)
- Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|
13
|
Mancera-Arteu M, Benavente F, Sanz-Nebot V, Giménez E. Sensitive Analysis of Recombinant Human Erythropoietin Glycopeptides by On-Line Phenylboronic Acid Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry. J Proteome Res 2023; 22:826-836. [PMID: 36763563 PMCID: PMC9990126 DOI: 10.1021/acs.jproteome.2c00569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In this study, several chromatographic sorbents: porous graphitic carbon (PGC), aminopropyl hydrophilic interaction (aminopropyl-HILIC), and phenylboronic acid (PBA) were assessed for the analysis of glycopeptides by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS). As the PBA sorbent provided the most promising results, a PBA-SPE-CE-MS method was developed for the selective and sensitive preconcentration of glycopeptides from enzymatic digests of glycoproteins. Recombinant human erythropoietin (rhEPO) was selected as the model glycoprotein and subjected to enzymatic digestion with several proteases. The tryptic O126 and N83 glycopeptides from rhEPO were targeted to optimize the methodology. Under the optimized conditions, intraday precision, linearity, limits of detection (LODs), and microcartridge lifetime were evaluated, obtaining improved results compared to that from a previously reported TiO2-SPE-CE-MS method, especially for LODs of N-glycopeptides (up to 500 times lower than by CE-MS and up to 200 times lower than by TiO2-SPE-CE-MS). Moreover, rhEPO Glu-C digests were also analyzed by PBA-SPE-CE-MS to better characterize N24 and N38 glycopeptides. Finally, the established method was used to analyze two rhEPO products (EPOCIM and NeuroEPO plus), demonstrating its applicability in biopharmaceutical analysis. The sensitivity of the proposed PBA-SPE-CE-MS method improves the existing CE-MS methodologies for glycopeptide analysis and shows a great potential in glycoprotein analysis to deeply characterize protein glycosites even at low concentrations of the protein digest.
Collapse
Affiliation(s)
- Montserrat Mancera-Arteu
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
14
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
15
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
16
|
Delafield DG, Miles HN, Ricke WA, Li L. Higher Temperature Porous Graphitic Carbon Separations Differentially Impact Distinct Glycopeptide Classes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:64-74. [PMID: 36450095 PMCID: PMC9812930 DOI: 10.1021/jasms.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based discovery glycoproteomics is highly dependent on the use of chromatography paradigms amenable to analyte retention and separation. When compared against established stationary phases such as reversed-phase and hydrophilic interaction liquid chromatography, reports utilizing porous graphitic carbon have detailed its numerous advantages. Recent efforts have highlighted the utility in porous graphitic carbon in high-throughput glycoproteomics, principally through enhanced profiling depth and liquid-phase resolution at higher column temperatures. However, increasing column temperature has been shown to impart disparaging effects in glycopeptide identification. Herein we further elucidate this trend, describing qualitative and semiquantitative effects of increased column temperature on glycopeptide identification rates, signal intensity, resolution, and spectral count linear response. Through analysis of enriched bovine and human glycopeptides, species with high mannose and sialylated glycans were shown to most significantly benefit and suffer from high column temperatures, respectively. These results provide insight as to how porous graphitic carbon separations may be appropriately leveraged for glycopeptide identification while raising concerns over quantitative and semiquantitative label-free comparisons as the temperature changes. RAW MS glycoproteomic data are available via ProteomeXchange with identifier PXD034354.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
18
|
Tóth G, Sugár S, Balbisi M, Molnár BA, Bugyi F, Fügedi KD, Drahos L, Turiák L. Optimized Sample Preparation and Microscale Separation Methods for High-Sensitivity Analysis of Hydrophilic Peptides. Molecules 2022; 27:molecules27196645. [PMID: 36235181 PMCID: PMC9573374 DOI: 10.3390/molecules27196645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The optimization of solid-phase extraction (SPE) purification and chromatographic separation is usually neglected during proteomics studies. However, the effects on detection performance are not negligible, especially when working with highly glycosylated samples. We performed a comparative study of different SPE setups, including an in-house optimized method and reversed-phase chromatographic gradients for the analysis of highly glycosylated plasma fractions as a model sample for glycopeptide analysis. The in-house-developed SPE method outperformed the graphite-based and hydrophilic interaction liquid chromatography (HILIC) purification methods in detection performance, recovery, and repeatability. During optimization of the chromatography, peak distribution was maximized to increase the peptide detection rate. As a result, we present sample purification and chromatographic separation methods optimized for the analysis of hydrophilic samples, the most important of which is heavily N-glycosylated protein mixtures.
Collapse
Affiliation(s)
- Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Mirjam Balbisi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Balázs András Molnár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Fanni Bugyi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Kata Dorina Fügedi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-13-82-6548
| |
Collapse
|
19
|
Gautam S, Hiemstra S, Goli M, Mechref Y. Development of an In-Source Peltier Heater for Pulled Capillary Nanospray Emitter Columns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1799-1802. [PMID: 35881499 DOI: 10.1021/jasms.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Column compartments in liquid chromatography (LC) systems house the LC columns. These compartments are responsible for maintaining a suitable column environment for achieving optimal chromatographic performance. However, the advancements in instrument and column designs demand newer technologies. It is a well-established concept that decreasing the dead volume of the column improves the column resolution, thereby providing enhanced chromatographic separation. One of the major contributors in the dead volume is the line connecting the column in the LC compartment to the ion source in the mass spectrometer. Using in-source emitter columns is one strategy to enhance the resolution. However, ion sources without temperature control are not suitable for columns that are used at high temperatures. In this work, we are introducing a nano electrospray ionization source with an integrated Peltier heater designed for pulled capillary nanospray emitter columns. Although the performance of the device is demonstrated by showing the isomeric separation of permethylated glycans using a mesoporous graphitized carbon packed pulled capillary emitter, it can easily be paired with any nanospray emitter column that requires temperature control.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Scott Hiemstra
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
20
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
21
|
She YM, Dai S, Tam RY. Highly sensitive characterization of non-human glycan structures of monoclonal antibody drugs utilizing tandem mass spectrometry. Sci Rep 2022; 12:15109. [PMID: 36068283 PMCID: PMC9448817 DOI: 10.1038/s41598-022-19488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is an important attribute of monoclonal antibodies (mAbs) for assessing manufacturing quality. Analysis of non-human glycans containing terminal galactose-α1,3-galactose and N-glycolylneuraminic acid is essential due to the potential immunogenicity and insufficient efficacy caused by mAb expression in non-human mammalian cells. Using parallel sequencing of isobaric glycopeptides and isomeric glycans that were separated by reversed-phase and porous graphitic carbon LC, we report a highly sensitive LC MS/MS method for the comprehensive characterization of low-abundance non-human glycans and their closely related structural isomers. We demonstrate that the straightforward use of high-abundance diagnostic ions and complementary fragments under the positive ionization low-energy collision-induced dissociation is a universal approach to rapidly discriminate branch-linkage structures of biantennary glycans. Our findings reveal the structural diversity of non-human glycans and sulfation of α-galactosylated glycans, providing both an analytical method and candidate structures that could potentially be used in the crucial quality control of therapeutic mAb products.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Roger Y Tam
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| |
Collapse
|
22
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
23
|
Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022; 414:5461-5472. [PMID: 35137243 PMCID: PMC9246830 DOI: 10.1007/s00216-022-03934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/01/2022]
Abstract
Continual developments in instrumental and analytical techniques have aided in establishing rigorous connections between protein glycosylation and human illness. These illnesses, such as various forms of cancer, are often associated with poor prognoses, prompting the need for more comprehensive characterization of the glycoproteome. While innovative instrumental and computational strategies have largely benefited glycoproteomic analyses, less attention is given to benefits gained through alternative, optimized chromatographic techniques. Porous graphitic carbon (PGC) chromatography has gained considerable interest in glycomics research due to its mobile phase flexibility, increased retention of polar analytes, and improved structural elucidation at higher temperatures. PGC has yet to be systematically compared against or in tandem with standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up glycoproteomic experiments, leaving the potential benefits unexplored. Performing comparative analysis of single and biphasic separation regimes at a range of column temperatures illustrates complementary advantages for each method. PGC separation is shown to selectively retain shorter, more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC separations, providing a means towards facile, multidimensional glycopeptide characterization. Beyond this, we demonstrate how utilization of multiple separation regimes and column temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer cells. RAW MS proteomic and glycoproteomic datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024196 (10.6019/PXD024196) and PXD024195, respectively.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - William A Ricke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
- George M. O'Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA.
| |
Collapse
|
24
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
25
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
26
|
Espadas G, Morales-Sanfrutos J, Medina R, Lucas MC, Novoa EM, Sabidó E. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. J Chromatogr A 2022; 1665:462803. [PMID: 35042139 DOI: 10.1016/j.chroma.2022.462803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 01/10/2023]
Abstract
Over 170 post-transcriptional RNA modifications have been described and are common in all kingdoms of life. These modifications range from methylation to complex chemical structures, with methylation being the most abundant. RNA modifications play a key role in RNA folding and function and their dysregulation in humans has been linked to several diseases such as cancer, metabolic diseases or neurological disorder. Nowadays, liquid chromatography-tandem mass spectrometry is considered the gold standard method for the identification and quantification of these modifications due to its sensitivity and accuracy. However, the analysis of modified ribonucleosides by mass spectrometry is complex due to the presence of positional isomers. In this scenario, optimal separation of these compounds by highly sensitive liquid chromatography combined with the generation of high-information spectra is critical to unequivocally identify them, especially in high-complex mixtures. Here we present an analytical method that comprises a new type of mixed-mode nano-flow liquid chromatography column combined with high- and low-collision energy data-independent mass spectrometric acquisition for the identification and quantitation of modified ribonucleosides. The method produces content-rich spectra and combines targeted and screening capabilities thus enabling the identification of a variety of modified nucleosides in biological matrices by single-shot liquid chromatographic analysis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Guadalupe Espadas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Julia Morales-Sanfrutos
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
| | - Morghan C Lucas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Maria Novoa
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
27
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
28
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
29
|
Peng Y, Gu B, Sun Z, Li Y, Zhang Y, Lu H. Linkage-selective derivatization for glycosylation site- and glycoform-specific characterization of sialic acid isomers using mass spectrometry. Chem Commun (Camb) 2021; 57:9590-9593. [PMID: 34546253 DOI: 10.1039/d1cc04142h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we developed a linkage-selective derivatization approach for the differentiation and relative quantification of α-2,3- and α-2,6-linked sialic acids in a site- and glycoform-specific manner. Linkage-selective derivatization with isotope molecules discriminates the isomeric glycopeptides easily using MS and provided a tool for biomarker discovery using the quantitative analysis of isomeric glycopeptides.
Collapse
Affiliation(s)
- Ye Peng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Bing Gu
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdo 510000, China.
| | - Zhenyu Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Zhong J, Huang Y, Mechref Y. Derivatization of Sialylated Glycopeptides (DOSG) Enabling Site-Specific Isomeric Profiling Using LC-MS/MS. Anal Chem 2021; 93:5763-5772. [DOI: 10.1021/acs.analchem.0c05149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
31
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
32
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
33
|
Thaysen-Andersen M, Kolarich D, Packer NH. Glycomics & Glycoproteomics: From Analytics to Function. Mol Omics 2020; 17:8-10. [PMID: 33295916 DOI: 10.1039/d0mo90019b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Morten Thaysen-Andersen, Daniel Kolarich and Nicolle H. Packer introduce the Molecular Omics themed issue on Glycomics & Glycoproteomics: From Analytics to Function.
Collapse
|
34
|
Molnarova K, Kozlík P. Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers. Molecules 2020; 25:E4655. [PMID: 33065988 PMCID: PMC7594091 DOI: 10.3390/molecules25204655] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023] Open
Abstract
Protein glycosylation analysis is challenging due to the structural variety of complex conjugates. However, chromatographically separating glycans attached to tryptic peptides enables their site-specific characterization. For this purpose, we have shown the importance of selecting a suitable hydrophilic interaction liquid chromatography (HILIC) stationary phase in the separation of glycopeptides and their isomers. Three different HILIC stationary phases, i.e., HALO® penta-HILIC, Glycan ethylene bridged hybrid (BEH) Amide, and ZIC-HILIC, were compared in the separation of complex N-glycopeptides of hemopexin and Immunoglobulin G glycoproteins. The retention time increased with the polarity of the glycans attached to the same peptide backbone in all HILIC columns tested in this study, except for the ZIC-HILIC column when adding sialic acid to the glycan moiety, which caused electrostatic repulsion with the negatively charged sulfobetaine functional group, thereby decreasing retention. The HALO® penta-HILIC column provided the best separation results, and the ZIC-HILIC column the worst. Moreover, we showed the potential of these HILIC columns for the isomeric separation of fucosylated and sialylated glycoforms. Therefore, HILIC is a useful tool for the comprehensive characterization of glycoproteins and their isomers.
Collapse
Affiliation(s)
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128-43 Prague, Czech Republic;
| |
Collapse
|