1
|
Cui W, Wang J, Ding C, Van Cappellen P, Ho EA, Ren CL. A functionalized microwave biosensor for rapid, reagent-free detection of E. coli in water samples. Biosens Bioelectron 2025; 278:117334. [PMID: 40073794 DOI: 10.1016/j.bios.2025.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/16/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Escherichia coli (E. coli) O157:H7 (O157), one of the most common Shiga toxin-producing E. coli, can contaminate water systems causing severe illnesses often accompanied with diarrhea and sometimes life threatening. Frequent monitoring of E. coli in water systems is critical to protect public health. Most traditional methods for E. coli detection are slow in responding to E. coli outbreaks due to the need for sample transportation from the site to the lab, expensive equipment, and highly trained personnel for the detection. This work presents a novel reagent-free detection method that employs a microwave biosensor functionalized with an antibody specific to E. coli to offer rapid and sensitive E. coli detection. By monitoring the resonance frequency shift caused by the binding between the E. coli in the water sample and the antibody coated on the sensor using a vector network analyzer (VNA), this microwave-based biosensor achieved a limit of detection (LOD) of 647 CFU/ml. This LOD can be further reduced to 6.47 CFU/ml with a simple preconcentration step prior to the sensing procedure. The sensor has also been tested to detect E. coli in natural water systems with a low-cost, palm-sized portable VNA, suggesting its excellent feasibility for real-time on-site E.coli detection.
Collapse
Affiliation(s)
- Weijia Cui
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | - Jin Wang
- School of Pharmacy, University of Waterloo, Canada
| | - Clarissa Ding
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | - Phillippe Van Cappellen
- Department of Earth and Environmental Sciences, University of Waterloo, Canada; Water Institute, University of Waterloo, Canada
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Canada; Water Institute, University of Waterloo, Canada
| | - Carolyn L Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada; Water Institute, University of Waterloo, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Canada.
| |
Collapse
|
2
|
Yang S, Wang Y, Jiang Y, Qiang T. An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution. BIOSENSORS 2025; 15:45. [PMID: 39852096 PMCID: PMC11764409 DOI: 10.3390/bios15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and Escherichia coli (E. coli) in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and E. coli. The results demonstrate that microfluidics could effectively enrich WBCs with an efficiency of 88.3%. For WBC detection, the resonance frequency of the sensing chip decreases with increasing concentration, while for E. coli detection, the capacitance value of the sensing chip increases with elevated concentration. Furthermore, the measurement data are processed using machine learning. Specifically, the WBC measurement data are subjected to a further linear fitting. In addition, the prediction model for E. coli concentration, employing four different algorithms, achieves a maximum accuracy of 95.24%. Consequently, the proposed integrated chip can be employed for the clinical diagnosis of WBCs and E. coli, providing a novel approach for medical and biological research involving cells and bacteria.
Collapse
Affiliation(s)
- Sen Yang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China; (S.Y.); (Y.W.); (Y.J.)
| | - Yanxiong Wang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China; (S.Y.); (Y.W.); (Y.J.)
- School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Jiang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China; (S.Y.); (Y.W.); (Y.J.)
| | - Tian Qiang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China; (S.Y.); (Y.W.); (Y.J.)
| |
Collapse
|
3
|
Zia AB, Foulds IG. Automated Dynamic Inlet Microfluidics (ADIM) system: cost-effective biaxial nanoliter droplet on demand generation platform and its application in agglutination assays. LAB ON A CHIP 2024; 25:57-68. [PMID: 39606937 DOI: 10.1039/d4lc00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The paper demonstrates an adaptation of a Prusa Mini+ 3D printer through the integration of 3D printed modules, creating a system capable of producing varied droplets from multiple Eppendorf tubes. Building upon our previous model, this system enhances calibration methodology enabling any fused deposition modeling (FDM) printer to produce mono-disperse droplets (coefficient of variance (CV%) <2% for train of 100 droplets) with 6900 assays per hour rate. The cost of the developed system is 85% lower than that of existing droplet generation solutions on the market, and 30% more economical than the previous iteration of the system. Additionally, the system's utility in quantification of agglutination assays is highlighted using image analysis, capable of distinguishing between agglutinated and non-agglutinated samples. By offering significant savings and ease of use, this system aims to lower the barriers to entry for microfluidic research, potentially broadening the scope of scientific exploration and application in this field.
Collapse
Affiliation(s)
- Abdul Basit Zia
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Ian G Foulds
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
4
|
Yetiskin E, Erdem I, Gucluer S, Ozcelik A. A Simple Pump-Free Approach to Generating High-Throughput Microdroplets Using Oscillating Microcone Arrays. MICROMACHINES 2024; 15:1365. [PMID: 39597177 PMCID: PMC11597012 DOI: 10.3390/mi15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
Droplet generation is crucial in various scientific and industrial fields, such as drug delivery, diagnostics, and inkjet printing. While microfluidic platforms enable precise droplet formation, traditional methods often require costly and complex setups, limiting their accessibility. This study introduces a simple, low-cost approach using an off-the-shelf unit and a 3D-printed reservoir. The device, equipped with a driver board, piezo-ring transducer, and a metal sheet with holes, generates oil-in-water (O/W) droplets with an average diameter of 4.62 ± 0.67 µm without external fluid pumps. Its simplicity, cost-effectiveness, and scalability make it highly suitable for both lab-on-chip and industrial applications, demonstrating the feasibility of large-scale uniform droplet production.
Collapse
Affiliation(s)
- Erturan Yetiskin
- Graduate School of Natural and Applied Science, Aydin Adnan Menderes University, Aydin 09010, Türkiye;
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Ilayda Erdem
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Sinan Gucluer
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| | - Adem Ozcelik
- Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye (S.G.)
| |
Collapse
|
5
|
Vardin AP, Aksoy F, Yesiloz G. A Novel Acoustic Modulation of Oscillating Thin Elastic Membrane for Enhanced Streaming in Microfluidics and Nanoscale Liposome Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403463. [PMID: 39324290 PMCID: PMC11600698 DOI: 10.1002/smll.202403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Liposomes are widely utilized in therapeutic nanosystems as promising drug carriers for cancer treatment, which requires a meticulous synthesis approach to control the nanoprecipitation process. Acoustofluidic platforms offer a favorable synthesis environment by providing robust agitation and rapid mixing. Here, a novel high-throughput acoustofluidic micromixer is presented for a solvent and solvent-free synthesis of ultra-small and size-tunable liposomes. The size-tunability is achieved by incorporating glycerol as a new technique into the synthesis reagents, serving as a size regulator. The proposed device utilizes the synergistic effects of vibrating trapped microbubbles and an oscillating thin elastic membrane to generate vigorous acoustic microstreaming. The working principle and mixing mechanism of the device are explored numerically and experimentally. The platform exhibits remarkable mixing efficacy for aqueous and viscous solutions at flow rates up to 8000 µL/h, which makes it unique for high-throughput liposome formation and preventing aggregation. As a proof of concept, this study investigates the impact of phospholipid type and concentration, flow rate, and glycerol on the size and size distribution of liposomes. The results reveal a significant size reduction, from ≈900 nm to 40 nm, achieved by merely introducing 75% glycerol into the synthesis reagents, highlighting an innovative approach toward size-tunable liposomes.
Collapse
Affiliation(s)
- Ali Pourabdollah Vardin
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Faruk Aksoy
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| |
Collapse
|
6
|
Krauss SW, Weiss M. Controlling phase separations and reactions in trapped microfluidic droplets. Sci Rep 2024; 14:20998. [PMID: 39251851 PMCID: PMC11385582 DOI: 10.1038/s41598-024-71586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Microfluidics and droplet-based assays are the basis for numerous high-throughput experiments, including bio-inspired microreactors and selection platforms for directed evolution. While elaborate techniques are available for the production of picoliter-sized droplets, there is an increasing demand for subsequent manipulation and control of the droplet interior. Here, we report on a straightforward method to rapidly adjust the size of single to several hundred double-emulsion droplets in a microfluidic sieve by varying the carrier fluid's salt concentration. We show that the concomitant concentration changes in the droplet interior can drive a reversible demixing transition in a biomimetic binary fluid. As another application, we show that growing and shrinking of trapped droplets can be utilized to achieve a reversible dissociation of double-stranded DNA into single strands, i.e. cycles of reversible DNA hybridization, similar to PCR cycles, can be achieved by reversibly changing the droplet size at constant temperature. Altogether, our approach shows how a simple and temporally tunable manipulation of the size and the chemistry in prefabricated droplets can be achieved by an external control parameter.
Collapse
Affiliation(s)
- Sebastian W Krauss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| |
Collapse
|
7
|
Zia AB, Farrell J, Foulds IG. Automated dynamic inlet microfluidics system: 3D printer adaptation for cost-effective, low volume, on-demand multi-analyte droplet generator. LAB ON A CHIP 2024; 24:3015-3026. [PMID: 38745471 DOI: 10.1039/d4lc00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The paper demonstrates an adaptation of a 3D printer (Prusa Mini+) with novel modules to develop a droplet generation system that generates combinatorial droplets from a standard 96 well plate. The calibration methodology developed would allow any fused deposition modeling (FDM) printer to generate monodisperse droplets (coefficient of variance (CV%) < 5%) from well plates or vials of any geometry. The system maintains precision across various volumes while maintaining a C.V. range of 0.81% to 3.61%, with an increased precision for larger volumes. The cost of the system developed is 70% less than commercially available droplet generation packages. Successful droplet library storage is accomplished via 3D printed cartridge connectors. The implemented system has been calibrated for Tygon® and PTFE at different velocities and volumetric configurations.
Collapse
Affiliation(s)
- Abdul Basit Zia
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Justin Farrell
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Ian G Foulds
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
8
|
Nazir F, Munir I, Yesiloz G. A Microfluidics-Assisted Double-Barreled Nanobioconjugate Synthesis Introducing Aprotinin as a New Moonlight Nanocarrier Protein: Tested toward Physiologically Relevant 3D-Spheroid Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18311-18326. [PMID: 38564228 DOI: 10.1021/acsami.3c16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nanoplatforms with manipulable payload release profiles. Here, we report a novel anticancer nanodrug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Doxorubicin (Apr-Dox) nanobioconjugate was prepared via a single-step microfluidics coflow mixing technique, a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously, i.e., Apr-Dox in 1:11 ratio (the antimetastatic carrier drug aprotinin and the chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e., pH) drug release ability, this nanobioconjugate achieves superior bioperformances, including high cellular uptake, efficient tumor penetration, and accumulation into the acidic tumor microenvironment, besides inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nanobioconjugates has been observed and validated compared to the anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nanobioconjugates toward breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nanobioconjugate shows a high potential for targeted drug delivery via a natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy as both an antimetastatic and a drug-carrying agent.
Collapse
Affiliation(s)
- Faiqa Nazir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| |
Collapse
|
9
|
Huang S, Wu J, Zheng L, Long Y, Chen J, Li J, Dai B, Lin F, Zhuang S, Zhang D. 3D free-assembly modular microfluidics inspired by movable type printing. MICROSYSTEMS & NANOENGINEERING 2023; 9:111. [PMID: 37705925 PMCID: PMC10495351 DOI: 10.1038/s41378-023-00585-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
Reconfigurable modular microfluidics presents an opportunity for flexibly constructing prototypes of advanced microfluidic systems. Nevertheless, the strategy of directly integrating modules cannot easily fulfill the requirements of common applications, e.g., the incorporation of materials with biochemical compatibility and optical transparency and the execution of small batch production of disposable chips for laboratory trials and initial tests. Here, we propose a manufacturing scheme inspired by the movable type printing technique to realize 3D free-assembly modular microfluidics. Double-layer 3D microfluidic structures can be produced by replicating the assembled molds. A library of modularized molds is presented for flow control, droplet generation and manipulation and cell trapping and coculture. In addition, a variety of modularized attachments, including valves, light sources and microscopic cameras, have been developed with the capability to be mounted onto chips on demand. Microfluidic systems, including those for concentration gradient generation, droplet-based microfluidics, cell trapping and drug screening, are demonstrated. This scheme enables rapid prototyping of microfluidic systems and construction of on-chip research platforms, with the intent of achieving high efficiency of proof-of-concept tests and small batch manufacturing.
Collapse
Affiliation(s)
- Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Junyi Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Jianlang Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| |
Collapse
|
10
|
Monserrat Lopez D, Rottmann P, Puebla-Hellmann G, Drechsler U, Mayor M, Panke S, Fussenegger M, Lörtscher E. Direct electrification of silicon microfluidics for electric field applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:81. [PMID: 37342556 PMCID: PMC10277806 DOI: 10.1038/s41378-023-00552-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration. Using silicon as the channel material, microfabrication techniques can be used to create nearby electrodes. Despite the advantages that silicon provides, its opacity has prevented its usage in most important microfluidic applications that need optical access. To overcome this barrier, silicon-on-insulator technology in microfluidics is introduced to create optical viewports and channel-interfacing electrodes. More specifically, the microfluidic channel walls are directly electrified via selective, nanoscale etching to introduce insulation segments inside the silicon device layer, thereby achieving the most homogeneous electric field distributions and lowest operation voltages feasible across microfluidic channels. These ideal electrostatic conditions enable a drastic energy reduction, as effectively shown via picoinjection and fluorescence-activated droplet sorting applications at voltages below 6 and 15 V, respectively, facilitating low-voltage electric field applications in next-generation microfluidics.
Collapse
Affiliation(s)
- Diego Monserrat Lopez
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Philipp Rottmann
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gabriel Puebla-Hellmann
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Ute Drechsler
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Marcel Mayor
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
| | - Sven Panke
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
11
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
12
|
Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst 2022; 147:2294-2316. [DOI: 10.1039/d1an02321g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the recent advances in the fundamentals of single-cell droplet microfluidics and its applications in biomedicine, providing insights into design and establishment of single-cell microsystems and their further performance.
Collapse
Affiliation(s)
- Dan Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
13
|
Srikanth S, Dudala S, Jayapiriya US, Mohan JM, Raut S, Dubey SK, Ishii I, Javed A, Goel S. Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Sci Rep 2021; 11:9750. [PMID: 33963200 PMCID: PMC8105317 DOI: 10.1038/s41598-021-88068-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Controlled, stable and uniform temperature environment with quick response are crucial needs for many lab-on-chip (LOC) applications requiring thermal management. Laser Induced Graphene (LIG) heater is one such mechanism capable of maintaining a wide range of steady state temperature. LIG heaters are thin, flexible, and inexpensive and can be fabricated easily in different geometric configurations. In this perspective, herein, the electro-thermal performance of the LIG heater has been examined for different laser power values and scanning speeds. The experimented laser ablated patterns exhibited varying electrical conductivity corresponding to different combinations of power and speed of the laser. The conductivity of the pattern can be tailored by tuning the parameters which exhibit, a wide range of temperatures making them suitable for diverse lab-on-chip applications. A maximum temperature of 589 °C was observed for a combination of 15% laser power and 5.5% scanning speed. A LOC platform was realized by integrating the developed LIG heaters with a droplet-based microfluidic device. The performance of this LOC platform was analyzed for effective use of LIG heaters to synthesize Gold nanoparticles (GNP). Finally, the functionality of the synthesized GNPs was validated by utilizing them as catalyst in enzymatic glucose biofuel cell and in electrochemical applications.
Collapse
Affiliation(s)
- Sangam Srikanth
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sohan Dudala
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - U S Jayapiriya
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - J Murali Mohan
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sushil Raut
- Digital Monozukuri (Manufacturing) Education Research Centre, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Satish Kumar Dubey
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Idaku Ishii
- Smart Robotics Lab, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Arshad Javed
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|