1
|
Maciel EVS, Habeck T, Meyners C, Lermyte F. Self-packed size-exclusion columns enable versatile high-throughput native, top-down, and ion mobility-mass spectrometry studies on proteins and complexes. Talanta 2025; 291:127868. [PMID: 40056653 DOI: 10.1016/j.talanta.2025.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Native MS (nMS) is a key structural biology technique that makes it possible to study intact proteins and their interactions. Unfortunately, non-volatile salts are incompatible with nMS, which demands a laborious desalting procedure. Non-denaturing size-exclusion chromatography (SEC) allows both rapid desalting and separation and has previously been explored for nMS automation. However, SEC at conventional scale requires rather large sample amounts as well as harsh ESI conditions, which can cause protein unfolding. Capillary LC allows softer conditions; however, the few commercially available SEC columns appropriate for this flow rate are prohibitively expensive for many laboratories. Existing protocols for packing buffer exchange columns rely on specialized equipment and/or result in columns that have limited capacity for size-based protein separation. Here, we present self-packed miniaturized SEC columns with different stationary phases and customizable dimensions. The columns, produced via slurry packing with an ordinary LC pump were used across a range of samples in several applications including nMS, top-down MS (TDMS), ligand screening, and ion mobility (IM)-MS. Native separation allowed acquisition of data from samples containing more than one protein. We acquired native TDMS data of 3 proteins in 12 min, with up to 47 % sequence coverage. IM-MS of alpha-synuclein at different charge states was measured in ca. 60 min (including calibrants), with results that match the literature. Finally, we used SEC-nMS to rapidly screen proteolysis-targeting chimera candidates and performed collision-induced unfolding (CIU) of a PROTAC-induced ternary complex. Through this work, we highlight the potential of SEC to support developments in structural MS.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Tanja Habeck
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Christian Meyners
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Frederik Lermyte
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
2
|
Grimaud A, Babovic M, Holck FH, Jensen ON, Schwämmle V. How to deal with internal fragment ions? Mol Cell Proteomics 2025:100896. [PMID: 39954811 DOI: 10.1016/j.mcpro.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/29/2024] [Accepted: 12/15/2024] [Indexed: 02/17/2025] Open
Abstract
Tandem mass spectrometry of peptides and proteins generates mass spectra of their gas-phase fragmentation product ions, including N-terminal, C-terminal, and internal fragment ions. Whereas N- and C-terminal ions are routinely assigned and identified using computational methods, internal fragment ions are often difficult to annotate correctly. They become particularly relevant for long peptides and full proteoforms where the peptide backbone is more likely to be fragmented multiple times. Internal fragment ions potentially offer tremendous information regarding amino acid sequences and positions of post-translational modifications of peptides and intact proteins. However, their practical application is challenged by the vast number of theoretical internal fragments that exist for long amino acid sequences, leading to a high risk of false-positive annotations. We analyze the mass spectral contributions of internal fragment ions in spectra from middle-down and top-down experiments and introduce a novel graph-based annotation approach designed to manage the complexity of internal fragments. Our graph-based representation allows us to compare multiple candidate proteoforms in a single graph, and to assess different candidate annotations in a fragment ion spectrum. We demonstrate cases from middle-down and top-down data where internal ions enhance amino acid sequence coverage of polypeptides and proteins and accurate localization of post-translational modifications. We conclude that our graph-based method provides a general approach to process complex tandem mass spectra, enhance annotation of internal fragment ions, and improve proteoform sequencing and characterization by mass spectrometry.
Collapse
Affiliation(s)
- Arthur Grimaud
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Masa Babovic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Frederik Haugaard Holck
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
3
|
Ren J, Chen P, Zhang Y, He X, Li L, Li P. Direct Implementation of MS n Using Frequency Scanning Collision Induced Dissociation in a Digital Ion Trap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:309-317. [PMID: 39711502 DOI: 10.1021/jasms.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tandem mass spectrometry (MSn) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MSn analysis with a single trap and its small size. However, conventional MSn analysis in ITMS requires repeated isolation and excitation processes multiple times, causing high complexity of the entire scanning process. Additionally, the fragment ion detection in ITMS is limited by low-mass cutoff (LMCO) and the weak fragmentation yield. In this study, a method named reverse scanning-collision induced dissociation (RS-CID) is proposed, which involves increasing RF and AC frequencies while maintaining RF voltage constant during the CID process. Twelve representative illegal drugs were analyzed adopting this method, enhancing the intensities of low-mass fragment ions compared to conventional dissociation method. Moreover, experimental results with ketamine and methamphetamine show that RS-CID effectively reduces the LMCO effect and slightly improves CID efficiency. It also enables direct acquisition of their multigeneration fragment ions spectra in a single sequence of ion injection, cooling, isolation, RS-CID, cooling, mass scanning and empty. The experiments to distinguish between the isomers ab-4en-pinaca and adb-3en-butinaca as well as the isomeric compounds 5f-cumyl-pegaclone and cumyl-pipetinaca were also successful by this method. In summary, RS-CID enables MSn analysis in a single sequence and improves the low-mass fragment ions intensity. It can simplify workflows, achieve faster analysis and provide more valuable mass spectral information.
Collapse
Affiliation(s)
- Jie Ren
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Pingping Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| |
Collapse
|
4
|
Mikawy NN, Rojas Ramírez C, DeFiglia SA, Szot CW, Le J, Lantz C, Wei B, Zenaidee MA, Blakney GT, Nesvizhskii AI, Loo JA, Ruotolo BT, Shabanowitz J, Anderson LC, Håkansson K. Are Internal Fragments Observable in Electron Based Top-Down Mass Spectrometry? Mol Cell Proteomics 2024; 23:100814. [PMID: 39029587 PMCID: PMC11388692 DOI: 10.1016/j.mcpro.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS3 was performed to validate/refute potential internal fragment assignments, including differentiating MS3 fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A DeFiglia
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Carson W Szot
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Greg T Blakney
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
6
|
Zhu Y, Liu Z, Liu J, Zhao H, Feng R, Shu K, Wang F, Chang C. Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2024; 96:8474-8483. [PMID: 38739687 PMCID: PMC11140674 DOI: 10.1021/acs.analchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry unlocks insights into the protein structure and sequence through fragmentation patterns. While N- and C-terminal fragments are traditionally relied upon, this work highlights the critical role of internal fragments in achieving near-complete sequencing of protein. Previous limitations of internal fragment utilization, owing to their abundance and potential for random matching, are addressed here with the development of Panda-UV, a novel software tool combining spectral calibration, and Pearson correlation coefficient scoring for confident fragment assignment. Panda-UV showcases its power through comprehensive benchmarks on three model proteins. The inclusion of internal fragments boosts identified fragment numbers by 26% and enhances average protein sequence coverage to a remarkable 93% for intact proteins, unlocking the hidden region of the largest protein carbonic anhydrase II in model proteins. Notably, an average of 65% of internal fragments can be identified in multiple replicates, demonstrating the high confidence of the fragments Panda-UV provided. Finally, the sequence coverages of mAb subunits can be increased up to 86% and the complementary determining regions (CDRs) are nearly completely sequenced in a single experiment. The source codes of Panda-UV are available at https://github.com/PHOENIXcenter/Panda-UV.
Collapse
Affiliation(s)
- Yinlong Zhu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialiang Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of
Pharmacy, China Medical University, Shenyang 110122, China
| | - Heng Zhao
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Feng
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| | - Kunxian Shu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fangjun Wang
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chang
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
7
|
Kang WY, Mondal A, Bonney JR, Perez A, Prentice BM. Structural Elucidation of Ubiquitin via Gas-Phase Ion/Ion Cross-Linking Reactions Using Sodium-Cationized Reagents Coupled with Infrared Multiphoton Dissociation. Anal Chem 2024; 96:8518-8527. [PMID: 38711366 PMCID: PMC11161031 DOI: 10.1021/acs.analchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.
Collapse
Affiliation(s)
| | - Arup Mondal
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
8
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
9
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Beaumal C, Deslignière E, Diemer H, Carapito C, Cianférani S, Hernandez-Alba O. Improved characterization of trastuzumab deruxtecan with PTCR and internal fragments implemented in middle-down MS workflows. Anal Bioanal Chem 2024; 416:519-532. [PMID: 38008785 DOI: 10.1007/s00216-023-05059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France.
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France.
| |
Collapse
|
11
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
12
|
Walker JN, Lam R, Brodbelt JS. Enhanced Characterization of Histones Using 193 nm Ultraviolet Photodissociation and Proton Transfer Charge Reduction. Anal Chem 2023; 95:5985-5993. [PMID: 36989418 DOI: 10.1021/acs.analchem.2c05765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Top-down characterization of histones, proteins that are critical participants in an array of DNA-dependent processes, offers the potential to examine the relationship between histone structure and mechanisms of genetic regulation. Mapping patterns of post-translational modifications (PTMs) of histones requires extensive backbone cleavages to bracket the sites of mass shifts corresponding to specific PTMs. Ultraviolet photodissociation (UVPD) causes substantial fragmentation of proteins, which is well-suited for PTM localization, but the resulting spectra are congested with fragment ions that may have overlapping isotopic distributions that confound deconvolution. Gas-phase proton transfer charge reduction (PTCR) decreases the charge states of highly charged ions, thus alleviating this congestion and facilitating the identification of additional sequence-determining and PTM-localizing fragment ions. By integrating UVPD with PTCR for histone proteoform analyses, sequence coverages up to 91% were achieved for calf thymus histone H4 containing acetylation marks at the N-terminus and Lys12 as well as a dimethylation at Arg3. UVPD-PTCR exhibited large gains in characterization for other histones, such as histone H2A, increasing the sequence coverage from 59 to 77% for monoacetylated H2A.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raymond Lam
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Dunham SD, Wei B, Lantz C, Loo JA, Brodbelt JS. Impact of Internal Fragments on Top-Down Analysis of Intact Proteins by 193 nm UVPD. J Proteome Res 2023; 22:170-181. [PMID: 36503236 DOI: 10.1021/acs.jproteome.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
193 nm ultraviolet photodissociation (UVPD) allows high sequence coverage to be obtained for intact proteins using terminal fragments alone. However, internal fragments, those that contain neither N- nor C- terminus, are typically ignored, neglecting their potential to bolster characterization of intact proteins. Here, we explore internal fragments generated by 193 nm UVPD for proteins ranging in size from 17-47 kDa and using the ClipsMS algorithm to facilitate searches for internal fragments. Internal fragments were only retained if identified in multiple replicates in order to reduce spurious assignments and to explore the reproducibility of internal fragments generated by UVPD. Inclusion of internal fragment improved sequence coverage by an average of 18% and 32% for UVPD and HCD, respectively, across all proteins and charge states studied. However, only an average of 18% of UVPD internal fragments were identified in two out of three replicates relative to the average number identified across all replicates for all proteins studied. Conversely, for HCD, an average of 63% of internal fragments were retained across replicates. These trends reflect an increased risk of false-positive identifications and a need for caution when considering internal fragments for UVPD. Additionally, proton-transfer charge reduction (PTCR) reactions were performed following UVPD or HCD to assess the impact on internal fragment identifications, allowing up to 20% more fragment ions to be retained across multiple replicates. At this time, it is difficult to recommend the inclusion of the internal fragment when searching UVPD spectra without further work to develop strategies for reducing the possibilities of false-positive identifications. All mass spectra are available in the public repository jPOST with the accession number JPST001885.
Collapse
Affiliation(s)
- Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Xu F, Wang W, Ding L, Fang X, Ding CF. Synchronized Reverse Scan Collision Induced Dissociation in Digital Ion Trap Mass Spectrometer for Improving Fragment Ion Detection. Anal Chem 2022; 94:17827-17834. [PMID: 36512629 DOI: 10.1021/acs.analchem.2c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of fragment ion detection methods is of great importance for mass spectrometer advancement or substance identification. To date, collision induced dissociation (CID) remains the most commonly used ion activation method in MS/MS experiments, and the effectiveness of CID in an ion trap mass spectrometer is limited by low mass cutoff and weak fragmentation yields. Theoretically, controlling the q value is the key to maintain the fragment efficiency and trapping efficiency of MS/MS, thus improving the detection of fragment ion, while currently reported techniques usually require complex circuitry and often produce different CID patterns. In this paper, with the developed synchronized reversed scanning-collision induced dissociation (SRS-CID) technique, we demonstrate its effective improvement in fragment ion detection. The SRS-CID is implemented on a digital ion trap mass spectrometer (DITMS) by reverse scanning the q values during CID process, or specifically, the frequency is increased during the CID process. With the SRS-CID technique, the fragmentation efficiency of precursor ions can be slightly improved. For reserpine analyte, the trapping efficiency for low-mass fragment ions is improved at least 3 times, and for YGGFL, the trapping efficiency for low-mass fragment ions is improved at least 9 times. These experimental results can also be validated by simulations, and the kinetic energy variation plot suggests consecutive fragmentation occurs. In any case, the SRS-CID provides a solution to the low efficiency of fragment ion detection during tandem MS analysis, which will certainly be useful in the future.
Collapse
Affiliation(s)
- Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Weimin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Li Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiang Fang
- National Institute of Metrology, Chemical Metrology & Analytical Science Division, Beijing 100029, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Lantz C, Wei B, Zhao B, Jung W, Goring AK, Le J, Miller J, Loo RRO, Loo JA. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc 2022; 144:21826-21830. [PMID: 36441927 PMCID: PMC10017227 DOI: 10.1021/jacs.2c06726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Boyu Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Justin Miller
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Brodbelt JS. Deciphering combinatorial post-translational modifications by top-down mass spectrometry. Curr Opin Chem Biol 2022; 70:102180. [PMID: 35779351 PMCID: PMC9489649 DOI: 10.1016/j.cbpa.2022.102180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) create vast structural and functional diversity of proteins, ultimately modulating protein function and degradation, influencing cellular signaling, and regulating transcription. The combinatorial patterns of PTMs increase the heterogeneity of proteins and further mediates their interactions. Advances in mass spectrometry-based proteomics have resulted in identification of thousands of proteins and allowed characterization of numerous types and sites of PTMs. Examination of intact proteins, termed the top-down approach, offers the potential to map protein sequences and localize multiple PTMs on each protein, providing the most comprehensive cataloging of proteoforms. This review describes some of the dividends of using mass spectrometry to analyze intact proteins and showcases innovative strategies that have enhanced the promise of top-down proteomics for exploring the impact of combinatorial PTMs in unsurpassed detail.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
19
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
20
|
2-Pyridine Carboxaldehyde for Semi-Automated Soft Spot Identification in Cyclic Peptides. Int J Mol Sci 2022; 23:ijms23084269. [PMID: 35457087 PMCID: PMC9028278 DOI: 10.3390/ijms23084269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclic peptides are an attractive option as therapeutics due to their ability to disrupt crucial protein-protein interactions and their flexibility in display type screening strategies, but they come with their own bioanalytical challenges in metabolite identification. Initial amide hydrolysis of a cyclic peptide results in a ring opening event in which the sequence is linearized. Unfortunately, the mass of the singly hydrolyzed sequence is the same (M + 18.0106 Da) irrespective of the initial site of hydrolysis, or soft spot. Soft spot identification at this point typically requires time-consuming manual interpretation of the tandem mass spectra, resulting in a substantial bottleneck in the hit to lead process. To overcome this, derivatization using 2-pyridine carboxaldehyde, which shows high selectivity for the alpha amine on the N-terminus, was employed. This strategy results in moderate- to high-efficiency derivatization with a unique mass tag and diagnostic ions that serve to highlight the first amino acid in the newly linearized peptide. The derivatization method and analytical strategy are demonstrated on a whole cell lysate digest, and the soft spot identification strategy is shown with two commercially available cyclic peptides: JB1 and somatostatin. Effective utilization of the automated sample preparation and interpretation of the resulting spectra shown here will serve to reduce the hit-to-lead time for generating promising proteolytically stable peptide candidates.
Collapse
|
21
|
Dunham SD, Sanders JD, Holden DD, Brodbelt JS. Improving the Center Section Sequence Coverage of Large Proteins Using Stepped-Fragment Ion Protection Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:446-456. [PMID: 35119856 DOI: 10.1021/jasms.1c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry has gained attention in recent years for its ability to provide high sequence coverage of intact proteins. However, secondary dissociation of fragment ions, in which fragment ions subjected to multiple laser pulses decompose into small products, is a common phenomenon during UVPD that contributes to limited coverage in the midsection of protein sequences. To counter secondary dissociation, a method involving the application of notched waveforms to modulate the trajectories of fragment ions away from the laser beam, termed fragment ion protection (FIP), was previously developed to reduce the probability of secondary dissociation. This, in turn, increased the number of identified large fragment ions. In the present study, FIP was applied to UVPD of large proteins ranging in size from 29 to 55 kDa, enhancing the abundances of large fragment ions. A stepped-FIP strategy was implemented in which UVPD mass spectra were collected using multiple different amplitudes of the FIP waveforms and then the results from the mass spectra were combined. By using stepped-FIP, the number of fragment ions in the midsections of the sequences increased for all proteins. For example, whereas no fragment ions were identified in the middle section of the sequence for glutamate dehydrogenase (55 kDa, 55+ charge state), 10 sequence ions were identified by using UVPD-FIP.
Collapse
Affiliation(s)
- Sean D Dunham
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Dustin D Holden
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Towards understanding the formation of internal fragments generated by collisionally activated dissociation for top-down mass spectrometry. Anal Chim Acta 2022; 1194:339400. [PMID: 35063165 PMCID: PMC9088748 DOI: 10.1016/j.aca.2021.339400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
Top-down mass spectrometry (TD-MS) generates fragment ions that returns information on the polypeptide amino acid sequence. In addition to terminal fragments, internal fragments that result from multiple cleavage events can also be formed. Traditionally, internal fragments are largely ignored due to a lack of available software to reliably assign them, mainly caused by a poor understanding of their formation mechanism. To accurately assign internal fragments, their formation process needs to be better understood. Here, we applied a statistical method to compare fragmentation patterns of internal and terminal fragments of peptides and proteins generated by collisionally activated dissociation (CAD). Internal fragments share similar fragmentation propensities with terminal fragments (e.g., enhanced cleavages N-terminal to proline and C-terminal to acidic residues), suggesting that their formation follows conventional CAD pathways. Internal fragments should be generated by subsequent cleavages of terminal fragments and their formation can be explained by the well-known mobile proton model. In addition, internal fragments can be coupled with terminal fragments to form complementary product ions that span the entire protein sequence. These enhance our understanding of internal fragment formation and can help improve sequencing algorithms to accurately assign internal fragments, which will ultimately lead to more efficient and comprehensive TD-MS analysis of proteins and proteoforms.
Collapse
|
23
|
Boyton I, Goodchild SC, Diaz D, Elbourne A, Collins-Praino LE, Care A. Characterizing the Dynamic Disassembly/Reassembly Mechanisms of Encapsulin Protein Nanocages. ACS OMEGA 2022; 7:823-836. [PMID: 35036749 PMCID: PMC8757444 DOI: 10.1021/acsomega.1c05472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Encapsulins, self-assembling icosahedral protein nanocages derived from prokaryotes, represent a versatile set of tools for nanobiotechnology. However, a comprehensive understanding of the mechanisms underlying encapsulin self-assembly, disassembly, and reassembly is lacking. Here, we characterize the disassembly/reassembly properties of three encapsulin nanocages that possess different structural architectures: T = 1 (24 nm), T = 3 (32 nm), and T = 4 (42 nm). Using spectroscopic techniques and electron microscopy, encapsulin architectures were found to exhibit varying sensitivities to the denaturant guanidine hydrochloride (GuHCl), extreme pH, and elevated temperature. While all three encapsulins showed the capacity to reassemble following GuHCl-induced disassembly (within 75 min), only the smallest T = 1 nanocage reassembled after disassembly in basic pH (within 15 min). Furthermore, atomic force microscopy revealed that all encapsulins showed a significant loss of structural integrity after undergoing sequential disassembly/reassembly steps. These findings provide insights into encapsulins' disassembly/reassembly dynamics, thus informing their future design, modification, and application.
Collapse
Affiliation(s)
- India Boyton
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Sophia C. Goodchild
- Department
of Molecular Sciences, Macquarie University, Macquarie Park, New South
Wales 2109, Australia
| | - Dennis Diaz
- Department
of Molecular Sciences, Macquarie University, Macquarie Park, New South
Wales 2109, Australia
| | - Aaron Elbourne
- School
of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lyndsey E. Collins-Praino
- Adelaide
Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Andrew Care
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
- ARC Centre
of Excellence in Synthetic Biology, Macquarie
University, Macquarie Park, New South Wales 2109, Australia
| |
Collapse
|
24
|
Rolfs Z, Smith LM. Internal Fragment Ions Disambiguate and Increase Identifications in Top-Down Proteomics. J Proteome Res 2021; 20:5412-5418. [PMID: 34738820 DOI: 10.1021/acs.jproteome.1c00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large fraction of observed fragment ion intensity remains unidentified in top-down proteomics. The elucidation of these unknown fragment ions could enable researchers to identify additional proteoforms and reduce proteoform ambiguity in their analyses. Internal fragment ions have received considerable attention as a major source of these unidentified fragment ions. Internal fragments are product ions that contain neither protein terminus, in contrast with terminal ions that contain a single terminus. There are many more possible internal fragments than terminal fragments, and the resulting computational complexity has historically limited the application of internal fragment ions to low-complexity samples containing only one or a few proteins of interest. We implemented internal fragment ion functionality in MetaMorpheus to allow the proteome-wide annotation of internal fragment ions. MetaMorpheus first uses terminal fragment ions to identify putative proteoforms and then employs internal fragment ions to disambiguate similar proteoforms. In the analysis of mammalian cell lysates, we found that MetaMorpheus could disambiguate over half of its previously ambiguous proteoforms while also providing up to a 7% increase in proteoform-spectrum matches identified at a 1% false discovery rate.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Macias LA, Sipe SN, Santos IC, Bashyal A, Mehaffey MR, Brodbelt JS. Influence of Primary Structure on Fragmentation of Native-Like Proteins by Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2860-2873. [PMID: 34714071 PMCID: PMC8639798 DOI: 10.1021/jasms.1c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Analysis of native-like protein structures in the gas phase via native mass spectrometry and auxiliary techniques has become a powerful tool for structural biology applications. In combination with ultraviolet photodissociation (UVPD), native top-down mass spectrometry informs backbone flexibility, topology, hydrogen bonding networks, and conformational changes in protein structure. Although it is known that the primary structure affects dissociation of peptides and proteins in the gas phase, its effect on the types and locations of backbone cleavages promoted by UVPD and concomitant influence on structural characterization of native-like proteins is not well understood. Here, trends in the fragmentation of native-like proteins were evaluated by tracking the propensity of 10 fragment types (a, a+1, b, c, x, x+1, y, y-1, Y, and z) in relation to primary structure in a native-top down UVPD data set encompassing >9600 fragment ions. Differing fragmentation trends are reported for the production of distinct fragment types, attributed to a combination of both direct dissociation pathways from excited electronic states and those surmised to involve intramolecular vibrational energy redistribution after internal conversion. The latter pathways were systematically evaluated to evince the role of proton mobility in the generation of "CID-like" fragments through UVPD, providing pertinent insight into the characterization of native-like proteins. Fragmentation trends presented here are envisioned to enhance analysis of the protein higher-order structure or augment scoring algorithms in the high-throughput analysis of intact proteins.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês C Santos
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Zenaidee MA, Wei B, Lantz C, Wu HT, Lambeth TR, Diedrich JK, Loo RRO, Julian RR, Loo JA. Internal Fragments Generated from Different Top-Down Mass Spectrometry Fragmentation Methods Extend Protein Sequence Coverage. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1752-1758. [PMID: 34101447 PMCID: PMC9090460 DOI: 10.1021/jasms.1c00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Top-down mass spectrometry (TD-MS) of intact proteins results in fragment ions that can be correlated to the protein primary sequence. Fragments generated can either be terminal fragments that contain the N- or C-terminus or internal fragments that contain neither termini. Traditionally in TD-MS experiments, the generation of internal fragments has been avoided because of ambiguity in assigning these fragments. Here, we demonstrate that in TD-MS experiments internal fragments can be formed and assigned in collision-based, electron-based, and photon-based fragmentation methods and are rich with sequence information, allowing for a greater extent of the primary protein sequence to be explained. For the three test proteins cytochrome c, myoglobin, and carbonic anhydrase II, the inclusion of internal fragments in the analysis resulted in approximately 15-20% more sequence coverage, with no less than 85% sequence coverage obtained. Combining terminal fragment and internal fragment assignments results in near complete protein sequence coverage. Hence, by including both terminal and internal fragment assignments in TD-MS analysis, deep protein sequence analysis, allowing for the localization of modification sites more reliably, can be possible.
Collapse
Affiliation(s)
- Muhammad A. Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Hoi Ting Wu
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Tyler R. Lambeth
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Ryan R. Julian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|