1
|
Kiyuna LA, Horcas‐Nieto JM, Odendaal C, Langelaar‐Makkinje M, Gerding A, Broekhuis MJC, Bonanini F, Singh M, Kurek D, Harms AC, Hankemeier T, Foijer F, Derks TGJ, Bakker BM. iPSC-Derived Liver Organoids as a Tool to Study Medium Chain Acyl-CoA Dehydrogenase Deficiency. J Inherit Metab Dis 2025; 48:e70028. [PMID: 40199742 PMCID: PMC11978564 DOI: 10.1002/jimd.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disease, characterized by biallelic variants in the ACADM gene. Interestingly, even with the same genotype, patients often present with very heterogeneous symptoms, ranging from fully asymptomatic to life-threatening hypoketotic hypoglycemia. The mechanisms underlying this heterogeneity remain unclear. Therefore, there is a need for in vitro models of MCADD that recapitulate the clinical phenotype as a tool to study the pathophysiology of the disease. Fibroblasts of control and symptomatic MCADD patients with the c.985A>G (p.K329E) were reprogrammed into induced pluripotent stem cells (iPSCs). iPSCs were then differentiated into hepatic expandable organoids (EHOs), further matured to Mat-EHOs, and functionally characterized. EHOs and Mat-EHOs performed typical hepatic metabolic functions, such as albumin and urea production. The organoids metabolized fatty acids, as confirmed by acyl-carnitine profiling and high-resolution respirometry. MCAD protein was fully ablated in MCADD organoids, in agreement with the instability of the mutated MCAD protein. MCADD organoids accumulated medium-chain acyl-carnitines, with a strongly elevated C8/C10 ratio, characteristic of the biochemical phenotype of the disease. Notably, C2 and C14 acyl-carnitines were found decreased in MCADD Mat-EHOs. Finally, MCADD organoids exhibited differential expression of genes involved in ω-oxidation, mitochondrial β-oxidation, TCA cycle, and peroxisomal coenzyme A metabolism, particularly upregulation of NUDT7. iPSC-derived organoids of MCADD patients recapitulated the major biochemical phenotype of the disease. Mat-EHOs expressed relevant pathways involved in putative compensatory mechanisms, notably CoA metabolism and the TCA cycle. The upregulation of NUDT7 expression may play a role in preventing excessive accumulation of dicarboxylic acids in MCADD. This patient-specific hepatic organoid system is a promising platform to study the phenotypic heterogeneity between MCADD patients.
Collapse
Affiliation(s)
- Ligia A. Kiyuna
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - José M. Horcas‐Nieto
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Christoff Odendaal
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Miriam Langelaar‐Makkinje
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Albert Gerding
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Mathilde J. C. Broekhuis
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | | | - Madhulika Singh
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug Research, Leiden UniversityLeidenthe Netherlands
| | | | - Amy C. Harms
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug Research, Leiden UniversityLeidenthe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug Research, Leiden UniversityLeidenthe Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Terry G. J. Derks
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Barbara M. Bakker
- Laboratory of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| |
Collapse
|
2
|
Kiyuna LA, Krishnamurthy KA, Homan EB, Langelaar-Makkinje M, Gerding A, Bos T, Oosterhuis D, Overduin RJ, Schreuder AB, de Meijer VE, Olinga P, Derks TGJ, van Eunen K, Bakker BM, Oosterveer MH. Precision-cut liver slices as an ex vivo model to assess impaired hepatic glucose production. Commun Biol 2024; 7:1479. [PMID: 39521914 PMCID: PMC11550398 DOI: 10.1038/s42003-024-07070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Fasting hypoglycemia is a severe and incompletely understood symptom of various inborn errors of metabolism (IEM). Precision-cut liver slices (PCLS) represent a promising model for studying glucose production ex vivo. This study quantified the net glucose production of human and murine PCLS in the presence of different gluconeogenic precursors. Dihydroxyacetone-supplemented slices from the fed mice yielded the highest rate, further stimulated by forskolin and dibutyryl-cAMP. Moreover, using 13C isotope tracing, we assessed the contribution of glycogenolysis and gluconeogenesis to net glucose production over time. Pharmacological inhibition of the glucose 6-phosphate transporter SLC37A4 markedly reduced net glucose production and increased lactate secretion and glycogen storage, while glucose production was completely abolished in PCLS from glycogen storage disease type Ia and Ib patients. In conclusion, this study identifies PCLS as an effective ex vivo model to study hepatic glucose production and opens opportunities for its future application in IEM research and beyond.
Collapse
Affiliation(s)
- Ligia Akemi Kiyuna
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Esther B Homan
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Trijnie Bos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Ruben J Overduin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea B Schreuder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen van Eunen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Maaike H Oosterveer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Hilovsky D, Hartsell J, Young JD, Liu X. Stable Isotope Tracing Analysis in Cancer Research: Advancements and Challenges in Identifying Dysregulated Cancer Metabolism and Treatment Strategies. Metabolites 2024; 14:318. [PMID: 38921453 PMCID: PMC11205609 DOI: 10.3390/metabo14060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, driving the development of therapies targeting cancer metabolism. Stable isotope tracing has emerged as a widely adopted tool for monitoring cancer metabolism both in vitro and in vivo. Advances in instrumentation and the development of new tracers, metabolite databases, and data analysis tools have expanded the scope of cancer metabolism studies across these scales. In this review, we explore the latest advancements in metabolic analysis, spanning from experimental design in stable isotope-labeling metabolomics to sophisticated data analysis techniques. We highlight successful applications in cancer research, particularly focusing on ongoing clinical trials utilizing stable isotope tracing to characterize disease progression, treatment responses, and potential mechanisms of resistance to anticancer therapies. Furthermore, we outline key challenges and discuss potential strategies to address them, aiming to enhance our understanding of the biochemical basis of cancer metabolism.
Collapse
Affiliation(s)
- Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Joshua Hartsell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| |
Collapse
|
4
|
Ariaans G, Tiersma JF, Evers B, Gerding A, Waaijer SJH, Koster RA, Touw DJ, Bakker BM, Reijngoud DJ, de Jong S, Jalving M. Everolimus decreases [U- 13C]glucose utilization by pyruvate carboxylase in breast cancer cells in vitro and in vivo. Biomed Pharmacother 2024; 173:116362. [PMID: 38432130 DOI: 10.1016/j.biopha.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Reprogrammed metabolism is a hallmark of cancer, but notoriously difficult to target due to metabolic plasticity, especially in response to single metabolic interventions. Combining mTOR inhibitor everolimus and mitochondrial complex 1 inhibitor metformin results in metabolic synergy in in vitro models of triple-negative breast cancer. Here, we investigated whether the effect of this drug combination on tumor size is reflected in changes in tumor metabolism using [U-13C]glucose labeling in an MDA-MB-231 triple negative breast cancer xenograft model. The in vitro effects of everolimus and metformin treatment on oxidative phosphorylation and glycolysis reflected changes in 13C-labeling of metabolites in MDA-MB-231 cells. Treatment of MDA-MB-231 xenografts in SCID/Beige mice with everolimus resulted in slower tumor growth and reduced tumor size and tumor viability by 35%. Metformin treatment moderately inhibited tumor growth but did not enhance everolimus-induced effects. High serum levels of everolimus were reached, whereas levels of metformin were relatively low. Everolimus decreased TCA cycle metabolite labeling and inhibited pyruvate carboxylase activity. Metformin only caused a mild reduction in glycolytic metabolite labeling and did not affect pyruvate carboxylase activity or TCA cycle metabolite labeling. In conclusion, treatment with everolimus, but not metformin, decreased tumor size and viability. Furthermore, the efficacy of everolimus was reflected in reduced 13C-labeling of TCA cycle intermediates and reduced pyruvate carboxylase activity. By using in-depth analysis of drug-induced changes in glucose metabolism in combination with measurement of drug levels in tumor and plasma, effects of metabolically targeted drugs can be explained, and novel targets can be identified.
Collapse
Affiliation(s)
- Gerke Ariaans
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jiske F Tiersma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernardus Evers
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert Gerding
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Remco A Koster
- Department of Clinical Pharmacy and Pharmacology, Laboratory for Clinical and Forensic Toxicology and Drugs Analysis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, Laboratory for Clinical and Forensic Toxicology and Drugs Analysis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
van Trijp MPH, Rios-Morales M, Witteman B, Abegaz F, Gerding A, An R, Koehorst M, Evers B, van Dongen KCV, Zoetendal EG, Schols H, Afman LA, Reijngoud DJ, Bakker BM, Hooiveld GJ. Intraintestinal fermentation of fructo- and galacto-oligosaccharides and the fate of short-chain fatty acids in humans. iScience 2024; 27:109208. [PMID: 38420581 PMCID: PMC10901090 DOI: 10.1016/j.isci.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon. We studied the fate of SCFA as substrates for glucose and lipid metabolism by the host after infusion of 13C-SCFA. In the human distal ileum, no fermentation of FOS:GOS, nor SCFA production, or bacterial cross-feeding was observed. The relative composition of intestinal microbiota changed rapidly during the test day, which demonstrates the relevance of postprandial intestinal sampling to track acute responses of the microbial community toward interventions. SCFA were vividly taken up and metabolized by the host as shown by incorporation of 13C in various host metabolites.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
- Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede 6716 RP, the Netherlands
| | - Fentaw Abegaz
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Statistics and Probability Unit, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ran An
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Martijn Koehorst
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Bernard Evers
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Katja C V van Dongen
- Division of Toxicology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, the Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
6
|
Russo S, Kwiatkowski M, Wolters JC, Gerding A, Hermans J, Govorukhina N, Bischoff R, Melgert BN. Effects of lysine deacetylase inhibitor treatment on LPS responses of alveolar-like macrophages. J Leukoc Biol 2024; 115:435-449. [PMID: 37811856 DOI: 10.1093/jleuko/qiad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Macrophages are key immune cells that can adapt their metabolic phenotype in response to different stimuli. Lysine deacetylases are important enzymes regulating inflammatory gene expression and lysine deacetylase inhibitors have been shown to exert anti-inflammatory effects in models of chronic obstructive pulmonary disease. We hypothesized that these anti-inflammatory effects may be associated with metabolic changes in macrophages. To validate this hypothesis, we used an unbiased and a targeted proteomic approach to investigate metabolic enzymes, as well as liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry, to quantify metabolites in combination with the measurement of functional parameters in primary murine alveolar-like macrophages after lipopolysaccharide-induced activation in the presence or absence of lysine deacetylase inhibition. We found that lysine deacetylase inhibition resulted in reduced production of inflammatory mediators such as tumor necrosis factor α and interleukin 1β. However, only minor changes in macrophage metabolism were observed, as only one of the lysine deacetylase inhibitors slightly increased mitochondrial respiration while no changes in metabolite levels were seen. However, lysine deacetylase inhibition specifically enhanced expression of proteins involved in ubiquitination, which may be a driver of the anti-inflammatory effects of lysine deacetylase inhibitors. Our data illustrate that a multiomics approach provides novel insights into how macrophages interact with cues from their environment. More detailed studies investigating ubiquitination as a potential driver of lysine deacetylase inhibition will help developing novel anti-inflammatory drugs for difficult-to-treat diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Sara Russo
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Marcel Kwiatkowski
- Functional Proteo-Metabolomics, Department of Biochemistry, University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Jos Hermans
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| |
Collapse
|
7
|
Nurjanah S, Gerding A, Vieira-Lara MA, Evers B, Langelaar-Makkinje M, Spiekerkoetter U, Bakker BM, Tucci S. Heptanoate Improves Compensatory Mechanism of Glucose Homeostasis in Mitochondrial Long-Chain Fatty Acid Oxidation Defect. Nutrients 2023; 15:4689. [PMID: 37960342 PMCID: PMC10649308 DOI: 10.3390/nu15214689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.
Collapse
Affiliation(s)
- Siti Nurjanah
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Albert Gerding
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
- Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Marcel A. Vieira-Lara
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Bernard Evers
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
| | - Barbara M. Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Horcas-Nieto JM, Versloot CJ, Langelaar-Makkinje M, Gerding A, Blokzijl T, Koster MH, Baanstra M, Martini IA, Coppes RP, Bourdon C, van Ijzendoorn SCD, Kim P, Bandsma RHJ, Bakker BM. Organoids as a model to study intestinal and liver dysfunction in severe malnutrition. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166635. [PMID: 36581145 DOI: 10.1016/j.bbadis.2022.166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Affiliation(s)
- José M Horcas-Nieto
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Christian J Versloot
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam H Koster
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ingrid A Martini
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Céline Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sven C D van Ijzendoorn
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Kim
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Robert H J Bandsma
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
9
|
Palmblad M, Asein E, Bergman NP, Ivanova A, Ramasauskas L, Reyes HM, Ruchti S, Soto-Jácome L, Bergquist J. Semantic Annotation of Experimental Methods in Analytical Chemistry. Anal Chem 2022; 94:15464-15471. [PMID: 36281827 PMCID: PMC9647698 DOI: 10.1021/acs.analchem.2c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
A major obstacle for reusing and integrating existing data is finding the data that is most relevant in a given context. The primary metadata resource is the scientific literature describing the experiments that produced the data. To stimulate the development of natural language processing methods for extracting this information from articles, we have manually annotated 100 recent open access publications in Analytical Chemistry as semantic graphs. We focused on articles mentioning mass spectrometry in their experimental sections, as we are particularly interested in the topic, which is also within the domain of several ontologies and controlled vocabularies. The resulting gold standard dataset is publicly available and directly applicable to validating automated methods for retrieving this metadata from the literature. In the process, we also made a number of observations on the structure and description of experiments and open access publication in this journal.
Collapse
Affiliation(s)
- Magnus Palmblad
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Enahoro Asein
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nina P. Bergman
- Analytical
Pharmaceutical Chemistry, Department of Medicinal Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Arina Ivanova
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | - Lukas Ramasauskas
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Stefan Ruchti
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Jonas Bergquist
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
10
|
Tian B, Chen M, Liu L, Rui B, Deng Z, Zhang Z, Shen T. 13C metabolic flux analysis: Classification and characterization from the perspective of mathematical modeling and application in physiological research of neural cell. Front Mol Neurosci 2022; 15:883466. [PMID: 36157075 PMCID: PMC9493264 DOI: 10.3389/fnmol.2022.883466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has emerged as a forceful tool for quantifying in vivo metabolic pathway activity of different biological systems. This technology plays an important role in understanding intracellular metabolism and revealing patho-physiology mechanism. Recently, it has evolved into a method family with great diversity in experiments, analytics, and mathematics. In this review, we classify and characterize the various branch of 13C-MFA from a unified perspective of mathematical modeling. By linking different parts in the model to each step of its workflow, the specific technologies of 13C-MFA are put into discussion, including the isotope labeling model (ILM), isotope pattern measuring technique, optimization algorithm and statistical method. Its application in physiological research in neural cell has also been reviewed.
Collapse
Affiliation(s)
- Birui Tian
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Meifeng Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Bin Rui
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA, United States
| | - Zhouhui Deng
- China Guizhou Science Data Center Gui’an Supercomputing Center, Guiyang, China
| | - Zhengdong Zhang
- College of Mathematics and Information Science, Guiyang University, Guiyang, China
- *Correspondence: Zhengdong Zhang,
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
- Tie Shen,
| |
Collapse
|
11
|
Dellero Y, Berardocco S, Berges C, Filangi O, Bouchereau A. Validation of carbon isotopologue distribution measurements by GC-MS and application to 13C-metabolic flux analysis of the tricarboxylic acid cycle in Brassica napus leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:885051. [PMID: 36704152 PMCID: PMC9871494 DOI: 10.3389/fpls.2022.885051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/28/2022] [Indexed: 05/14/2023]
Abstract
The estimation of metabolic fluxes in photosynthetic organisms represents an important challenge that has gained interest over the last decade with the development of 13C-Metabolic Flux Analysis at isotopically non-stationary steady-state. This approach requires a high level of accuracy for the measurement of Carbon Isotopologue Distribution in plant metabolites. But this accuracy has still not been evaluated at the isotopologue level for GC-MS, leading to uncertainties for the metabolic fluxes calculated based on these fragments. Here, we developed a workflow to validate the measurements of CIDs from plant metabolites with GC-MS by producing tailor-made E. coli standard extracts harboring a predictable binomial CID for some organic and amino acids. Overall, most of our TMS-derivatives mass fragments were validated with these standards and at natural isotope abundance in plant matrices. Then, we applied this validated MS method to investigate the light/dark regulation of plant TCA cycle by incorporating U-13C-pyruvate to Brassica napus leaf discs. We took advantage of pathway-specific isotopologues/isotopomers observed between two and six hours of labeling to show that the TCA cycle can operate in a cyclic manner under both light and dark conditions. Interestingly, this forward cyclic flux mode has a nearly four-fold higher contribution for pyruvate-to-citrate and pyruvate-to-malate fluxes than the phosphoenolpyruvate carboxylase (PEPc) flux reassimilating carbon derived from some mitochondrial enzymes. The contribution of stored citrate to the mitochondrial TCA cycle activity was also questioned based on dynamics of 13C-enrichment in citrate, glutamate and succinate and variations of citrate total amounts under light and dark conditions. Interestingly, there was a light-dependent 13C-incorporation into glycine and serine showing that decarboxylations from pyruvate dehydrogenase complex and TCA cycle enzymes were actively reassimilated and could represent up to 5% to net photosynthesis.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- *Correspondence: Younès Dellero,
| | - Solenne Berardocco
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
| | - Cécilia Berges
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute, Université de Toulouse, National center for Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), National Institute of Applied Sciences (INSA), Toulouse, France
| | - Olivier Filangi
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| |
Collapse
|
12
|
Vieira-Lara MA, Dommerholt MB, Zhang W, Blankestijn M, Wolters JC, Abegaz F, Gerding A, van der Veen YT, Thomas R, van Os RP, Reijngoud DJ, Jonker JW, Kruit JK, Bakker BM. Age-related susceptibility to insulin resistance arises from a combination of CPT1B decline and lipid overload. BMC Biol 2021; 19:154. [PMID: 34330275 PMCID: PMC8323306 DOI: 10.1186/s12915-021-01082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). RESULTS As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial β-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most β-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. CONCLUSION We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Marleen B Dommerholt
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Wenxuan Zhang
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Maaike Blankestijn
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Fentaw Abegaz
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ydwine T van der Veen
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ronald P van Os
- Central Animal Facility, Mouse Clinic for Cancer and Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Johan W Jonker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Janine K Kruit
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|