1
|
Cai JY, Xu JM, Shen H, Wang JH, Yu YL. Electrothermal desolvation-enhanced microplasma optical emission spectrometry for sensitive determination of Cd, Zn Pb and Mn in environmental water samples. Talanta 2025; 285:127373. [PMID: 39689642 DOI: 10.1016/j.talanta.2024.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Herein, a novel electrothermal desolvation (ED) introduction approach is developed to enhance the analytical sensitivity of the point discharge (PD)-based microplasma-optical emission spectrometric (PD-MIP-OES) system for detecting trace Cd, Zn, Pb and Mn in environmental water samples. Liquid samples are converted into aerosols through a miniature ultrasonic nebulizer, and subsequently desolvated by electric heating at 350 °C. The analytes obtained after condensation (referring to the smaller apertures aerosols and volatile analytes after ED and condensation) are excited and detected by PD-MIP-OES. For a 160 μL liquid sample, analysis is completed within 10 s, achieving a desolvation efficiency of 93 %. Under the optimized conditions, the detection limits for Cd, Zn, Pb and Mn are 1.3, 1.2, 2.4 and 2.1 μg L-1, respectively. Compared to traditional direct ultrasonic nebulization introduction, sensitivity increases by 17, 12, 10 and 14 times, respectively. The accuracy and practicality of the proposed method are verified by measuring certified reference material and several real water samples. The ED-enhanced PD-MIP-OES device presented is compact, easy to operate, and capable of rapid analysis, which provides a convenient and reliable tool for the field analysis of Cd, Zn, Pb and Mn in environmental water samples.
Collapse
Affiliation(s)
- Ji-Ying Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jia-Min Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Hao Shen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
2
|
Yang Z, Farrell A, Pradhan S, Zhang KH, Guo W, Wu Y, Shao X, Roy A, Garcia E, Lu Y. On-Site Portable Lithium Detection in Mining and Recycling Industries Based on a DNAzyme Fluorescent Sensor. Angew Chem Int Ed Engl 2025; 64:e202413118. [PMID: 39581875 PMCID: PMC11954131 DOI: 10.1002/anie.202413118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The global demand for lithium has soared in recent years due to the wide use of lithium batteries. To meet this demand, we herein report developing novel on-site sample preparation methods for the extraction of Li+ from relevant materials, including brine water, spodumene rock, as well as lithium-ion battery electrodes, and a DNAzyme-based fluorescent sensor for sensitive and robust detection of Li+ in these samples down to 1.4 mM (10 ppm) using a portable fluorometer. The system can distinguish key threshold lithium levels that indicate economic value across several industries, including 200 ppm Li+ for brine mining, 6 % Li2O or SC6 for rock mining, and Li+-specific aging in LIBs. The methods developed and demonstrated in this work will allow highly selective, on-site, portable detection of lithium in both environmental samples to identify new lithium resources and in battery electrodes to guide recycling strategies in order to meet the global demand for lithium.
Collapse
Affiliation(s)
- Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Farrell
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Shreestika Pradhan
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karen Huilin Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiangli Shao
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aritra Roy
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Elijah Garcia
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Dong J, Yu Y, Dai Z, Li S, Chen L, Xing P, Wang G, Liu X, Zheng H, Zhu Z. Low-Consumption and High-Efficiency Isotope Analysis by Microultrasonic Single-Droplet Nebulization Sampling Multicollector Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2024; 96:19955-19964. [PMID: 39613481 DOI: 10.1021/acs.analchem.4c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Metal stable isotopes are increasingly applied in various fields, including planetary science and medical research, highlighting the need for isotope analysis methods capable of handling precious and microvolume samples. This study introduces a novel, low-consumption, high-efficiency isotope analysis method using MC-ICP-MS based on microultrasonic single-droplet nebulization (MUSDN). The proposed MUSDN enables the complete nebulization of microliter-sized droplets, delivering high-sensitivity transient analytical signals with a duration of several seconds. Under optimized conditions, MUSDN exhibited significantly enhanced sensitivity compared to conventional pneumatic nebulization, achieving 17-fold and 12-fold improvements for 7Li and 63Cu, respectively. The achieved external precisions (2SD) for δ7Li and δ65Cu were 0.3 and 0.08‰, with single analysis consuming only 1 ng of Li and 2 ng of Cu, respectively. This represents a reduction in sample consumption by 1-2 orders of magnitude compared to conventional PN-MC-ICP-MS while also improving the analysis speed by at least 10-fold due to rapid residual washout. Furthermore, our method demonstrated superior δ65Cu analytical precision compared to other high-sensitivity transient analysis methods (0.19‰ with a laser ablation system) with similar sample consumption. Finally, the accuracy of the proposed method was validated through the analysis of geological CRMs, serum CRMs, in-house standard samples, and a series of real serum samples. This novel isotope analysis method provides a promising approach for isotope applications involving precious and microvolume samples.
Collapse
Affiliation(s)
- Junhang Dong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yang Yu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Dai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuyang Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Linjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Pengju Xing
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guan Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xing Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Hongtao Zheng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430078, China
| |
Collapse
|
4
|
Zhai Y, Fu X, Xu W. Miniature mass spectrometers and their potential for clinical point-of-care analysis. MASS SPECTROMETRY REVIEWS 2024; 43:1172-1191. [PMID: 37610153 DOI: 10.1002/mas.21867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.
Collapse
Affiliation(s)
- Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xinyan Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Li Y, Tang J, Xiao Y, Ren T, Yang J, Lin Y, Zheng C. Dried Blood Spots and Miniaturized Ultrasonic Nebulization Microplasma Optical Emission Spectrometry for Point-of-Care Testing of Blood Lithium. Anal Chem 2024; 96:7187-7193. [PMID: 38671557 DOI: 10.1021/acs.analchem.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Despite the significant importance of blood lithium (Li) detection in the treatment of bipolar disorder (BD), its point-of-care testing (POCT) remains a great challenge due to tedious sample preparation and the use of large-footprint atomic spectrometers. Herein, a system coupling dried blood spots (DBS) with a point discharge optical emission spectrometer equipped with a miniaturized ultrasonic nebulizer (MUN-μPD-OES) was developed for POCT of blood Li. Three microliters of whole blood were used to prepare a dried blood spot on a piece of filter paper to which 10 μL of eluent (1% (v/v) formic acid and 0.05% (v/v) Triton-X) was added. Subsequently, the paper was placed onto the vibrating steel membrane of the ultrasonic nebulizer and powered on to generate aerosol. The aerosol was directly introduced to the μPD-OES for quantification of Li by monitoring its atomic emission line at 670.8 nm. The proposed method minimized matrix interference caused by high levels of salts and protein. It is worth noting that the MUN suitably matches the needs of DBS sampling and can provide aerosolized introduction of Li into the assembled μPD-OES, thus eliminating all tedious sample preparation and the need for a commercial atomic spectrometer. Calibration response is linear in the therapeutic range and a limit of detection (LOD) of 1.3 μg L-1 is well below the Li minimum therapeutic concentration (2800 μg L-1). Li in mouse blood was successfully detected in real-time using MUN-μPD-OES after intraperitoneal injection of lithium carbonate, confirming that the system holds great potential for POCT of blood Li for patients with BD.
Collapse
Affiliation(s)
| | - Jie Tang
- China Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunhan Xiao
- No.3 Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (West District), Chengdu, Sichuan 611730, China
| | | | | | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | | |
Collapse
|
6
|
Pedraza-Sanabria S, Dodd S, Giraldo-Cadavid LF, Whittingham K, Bustos RH. Existing and Emerging Technologies for Therapeutic Monitoring of Lithium: A Scoping Review. J Clin Psychopharmacol 2024; 44:291-296. [PMID: 38489598 DOI: 10.1097/jcp.0000000000001835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND/PURPOSE Lithium is an effective psychoactive drug. It has a narrow therapeutic margin, with subtherapeutic levels or intoxication commonly occurring. Therapeutic drug monitoring (TDM) of lithium has several barriers. This scoping review aims to describe and analyze existing and emerging technologies for lithium TDM and to describe the lithium quantification parameters (precision, accuracy, detection limit) attributed to each technology. METHOD PubMed, Scopus, Web of Science, and Google Scholar were searched. Studies that described lithium quantification and complied with PRISMA-ScR guidelines were included. Articles selection was conducted by 2 researchers. Good precision was defined if its relative standard deviation <3%; acceptable, from 3% to 5%; and low, >5%. Accuracy was considered good if the error <5%; acceptable, 5%1 to 0%; and low if it was >10%. RESULTS Of the 2008 articles found, 22 met the inclusion criteria. Of these, 14 studies concerned laboratory devices, in which precision was found to be low in one third of cases, and half had good precision. Accuracy of one third was good, another third was low, and the remaining third did not report accuracy. The other 8 studies concerned portable devices, in which precision was low in more than 60% of the cases and good in 25% of the studies. Accuracy was low in 50% of the cases, and good in just over a third. Limits of detection included the therapeutic range of lithium in all studies. CONCLUSIONS Among emerging technologies for lithium TDM, precision and accuracy remain a challenge, particularly for portable devices.
Collapse
Affiliation(s)
| | | | | | - Karen Whittingham
- From the Department of Psychiatry, Universidad El Bosque, Bogotá, Colombia
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Campus del Puente del Común, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
7
|
Kim H, Koo B. Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized via Buchwald-Hartwig amination. RSC Adv 2022; 12:31976-31984. [PMID: 36380950 PMCID: PMC9641676 DOI: 10.1039/d2ra05746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Lithium detection is of great significance in many applications. Lithium-sensing compounds with high selectivity are scarce and, if any, complicated to synthesize. We herein report a novel yet simple compound that can detect lithium ions in an organic solvent through changes in absorbance and fluorescence. Naphthalene functionalized with 1-aza-12-crown-4 (1) was synthesized via one step from commercially available 1-bromonaphthalene through Buchwald-Hartwig amination. In order to obtain a structure-property relationship, we also synthesized two other compounds that are structurally similar to 1, wherein the compounds 2 and 3 include an imide moiety (an electron acceptor) and do not include a 1-aza-12-crown-4 unit, respectively. Upon the addition of lithium ions, compound 1 displayed a clear isosbestic point in the absorption spectra and a new peak in the fluorescence spectra, whereas the compounds 2 and 3 indicated miniscule and no spectroscopic changes, respectively. 1H NMR titration studies and the calculated optimized geometry from density functional theory (DFT) indicated the lithium binding on the aza-crown. The calculated limit of detection (LOD) was 21 μM. The lithium detection with 1 is selective among other alkali metals (Na+, K+, and Cs+). DFT calculation indicated that the lone pair electrons in the nitrogen atom of 1 is delocalized yet available to bind lithium, whereas the nitrogen lone pair electrons of 2 showed significant intramolecular charge transfer to the imide acceptor, resulting in a high dipole moment, and thus were unavailable to bind lithium. This work elucidates the key design parameters for future lithium sensors.
Collapse
Affiliation(s)
- Haneul Kim
- Department of Polymer Science and Engineering, Dankook University Yongin Gyeonggi 16890 Republic of Korea
| | - Byungjin Koo
- Department of Polymer Science and Engineering, Dankook University Yongin Gyeonggi 16890 Republic of Korea
| |
Collapse
|
8
|
He L, Lin Y, Chen P, Su Y, Li Y, Zheng C. A microplasma optical emission spectrometry pen for point-of-care diagnosis of child blood lead. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129607. [PMID: 35907282 DOI: 10.1016/j.jhazmat.2022.129607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
Blood lead levels (BLL) of children have attracted considerable attention due to their putative impact on intelligence decline. However, most methods used for the determination of blood lead typically require expensive, bulky, high power and gas consuming instrumentation, limiting their application for a point-of-care diagnosis. Herein we report the development and testing of a portable ballpoint discharge microplasma optical emission spectrometer (BD-OES pen) device having the potential to fill this needed measurement capability. The BD-OES pen utilizes a compact ballpoint-pen format integrating point-discharge microplasma, which permits the determination of child BLL requiring no more than 100 μL blood while providing high specificity, sensitivity and satisfactory limit of detection (0.73 μg L-1). The handheld BD-OES pen is successfully used to diagnose BLL of 16 asymptomatic children on-site, two of whom had excessive the normal BLL. The pen may aid the on-site and rapid diagnosis of childhood BLL, particularly in low-income areas.
Collapse
Affiliation(s)
- Liangbo He
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yubin Su
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuanyuan Li
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|