1
|
Wang X, Stihl A, Höppener C, Vitz J, Schacher FH, Deckert V. Nanoscale Investigation of Elasticity Changes and Augmented Rigidity of Block Copolymer Micelles Induced by Reversible Core-Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40266783 DOI: 10.1021/acsami.5c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Drug-delivery systems have attracted considerable attention due to their potential to increase the bioavailability of certain drugs and mitigate side effects by enabling targeted drug release. Reversibly core-cross-linked block copolymer micelles providing a hydrophilic and potentially nonimmunogenic shell and a hydrophobic core suitable for the uptake of hydrophobic drugs are frequently considered because of their high stability against environmental changes and dilution. Ultimately, triggering core-de-cross-linking enables the implementation of strategies for targeted drug release, which requests insights into the impact of varying nanomechanical properties on the stability of individual micelles. Here, atomic force microscopy nanoindentation in aqueous media is applied to intact α-allyl-PEG80-b-P(tBGE52-co-FGE12) micelles to quantify changes in their nanomechanical properties induced by dithiobismaleimidoethane (DTME)-mediated Diels-Alder cross-linking of furfuryl moieties and sequential de-cross-linking by reduction of its disulfide bond by tris(2-carboxyethyl)phosphine. As a result of crosslinking by DTME, the apparent Young's modulus of the micelles roughly doubles to 1.18 GPa. Changes to the Young's modulus can be largely reversed by de-cross-linking. Cross-linked and de-cross-linked micelles maintain their structural integrity even in diluted aqueous media below the critical micelle concentration, in contrast to the micelles prior to crosslinking. Understanding the structure-property relationships associated with the observed augmented mechanical stability in native environments is crucial for improving the efficiency of drug encapsulation and introducing refined temporal and spatially controlled drug-release mechanisms.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| | - Christiane Höppener
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Jürgen Vitz
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
2
|
Riesterer J, Warchock A, Krawczyk E, Ni L, Kim W, Moroi SE, Xu G, Argento A. Effects of Genipin Crosslinking of Porcine Perilimbal Sclera on Mechanical Properties and Intraocular Pressure. Bioengineering (Basel) 2024; 11:996. [PMID: 39451372 PMCID: PMC11504492 DOI: 10.3390/bioengineering11100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
The mechanical properties of sclera play an important role in ocular functions, protection, and disease. Modulating the sclera's properties by exogenous crosslinking offers a way to expand the tissue's range of properties for study of the possible influences on the eye's behavior and diseases such as glaucoma and myopia. The focus of this work was to evaluate the effects of genipin crosslinking targeting the porcine perilimbal sclera (PLS) since the stiffness of this tissue was previously found in a number of studies to influence the eye's intraocular pressure (IOP). The work includes experiments on tensile test specimens and whole globes. The specimen tests showed decreased strain-rate dependence and increased relaxation stress due to the cross-linker. Whole globe perfusion experiments demonstrated that eyes treated with genipin in the perilimbal region had increased IOPs compared to the control globes. Migration of the cross-linker from the target tissue to other tissues is a confounding factor in whole globe, biomechanical measurements, with crosslinking. A novel quantitative genipin assay of the trabecular meshwork (TM) was developed to exclude globes where the TM was inadvertently crosslinked. The perfusion study, therefore, suggests that elevated stiffness of the PLS can significantly increase IOP apart from effects of the TM in the porcine eye. These results demonstrate the importance of PLS biomechanics in aqueous outflow regulation and support additional investigations into the distal outflow pathways as a key source of outflow resistance.
Collapse
Affiliation(s)
- John Riesterer
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Alexus Warchock
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Erik Krawczyk
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Linyu Ni
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (L.N.); (G.X.)
| | - Wonsuk Kim
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (L.N.); (G.X.)
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Abor, MI 48105, USA
| | - Alan Argento
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| |
Collapse
|
3
|
Cicchi R, Baria E, Mari M, Filippidis G, Chorvat D. Extraction of collagen morphological features from second-harmonic generation microscopy images via GLCM and CT analyses: A cross-laboratory study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400090. [PMID: 38937995 DOI: 10.1002/jbio.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Second-harmonic generation (SHG) microscopy provides a high-resolution label-free approach for noninvasively detecting collagen organization and its pathological alterations. Up to date, several imaging analysis algorithms for extracting collagen morphological features from SHG images-such as fiber size and length, order and anisotropy-have been developed. However, the dependence of extracted features on experimental setting represents a significant obstacle for translating the methodology in the clinical practice. We tackled this problem by acquiring SHG images of the same kind of collagenous sample in various laboratories using different experimental setups and imaging conditions. The acquired images were analyzed by commonly used algorithms, such as gray-level co-occurrence matrix or curvelet transform; the extracted morphological features were compared, finding that they strongly depend on some experimental parameters, whereas they are almost independent from others. We conclude with useful suggestions for comparing results obtained in different labs using different experimental setups and conditions.
Collapse
Affiliation(s)
- R Cicchi
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - E Baria
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - M Mari
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - G Filippidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - D Chorvat
- Department of Biophotonics, International Laser Centre (ILC), Slovak Centre of Scientific and Technical Information (SCSTI), Bratislava, Slovakia
| |
Collapse
|
4
|
Matthies L, Amir-Kabirian H, Gebrekidan MT, Braeuer AS, Speth US, Smeets R, Hagel C, Gosau M, Knipfer C, Friedrich RE. Raman difference spectroscopy and U-Net convolutional neural network for molecular analysis of cutaneous neurofibroma. PLoS One 2024; 19:e0302017. [PMID: 38603731 PMCID: PMC11008861 DOI: 10.1371/journal.pone.0302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins-complete tumor removal while attempting to preserve viable tissue-remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.
Collapse
Affiliation(s)
- Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Amir-Kabirian
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Medhanie T. Gebrekidan
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Andreas S. Braeuer
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Ulrike S. Speth
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of “Regenerative Orofacial Medicine”, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Quansah E, Shaik TA, Çevik E, Wang X, Höppener C, Meyer-Zedler T, Deckert V, Schmitt M, Popp J, Krafft C. Investigating biochemical and structural changes of glycated collagen using multimodal multiphoton imaging, Raman spectroscopy, and atomic force microscopy. Anal Bioanal Chem 2023; 415:6257-6267. [PMID: 37640827 PMCID: PMC10558391 DOI: 10.1007/s00216-023-04902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Advanced glycation end products (AGEs) form extracellular crosslinking with collagenous proteins, which contributes to the development of diabetic complications. In this study, AGEs-related pentosidine (PENT) crosslinks-induced structural and biochemical changes are studied using multimodal multiphoton imaging, Raman spectroscopy and atomic force microscopy (AFM). Decellularized equine pericardium (EP) was glycated with four ribose concentrations ranging between 5 and 200 mM and monitored for up to 30 days. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopic imaging probed elastin and collagen fibers, respectively. The glycated EP showed a decrease in the SHG intensities associated with loss of non-centrosymmetry of collagen and an increase of TPEF intensities associated with PENT crosslinks upon glycation. TPEF signals from elastin fibers were unaffected. A three-dimensional reconstruction with SHG + TPEF z-stack images visualized the distribution of collagen and elastin within the EP volume matrix. In addition, Raman spectroscopy (RS) detected changes in collagen-related bands and discriminated glycated from untreated EP. Furthermore, AFM scans showed that the roughness increases and the D-unit structure of fibers remained unchanged during glycation. The PENT crosslinked-induced changes are discussed in the context of previous studies of glutaraldehyde- and genipin-induced crosslinking and collagenase-induced digestion of collagen. We conclude that TPEF, SHG, RS, and AFM are effective, label-free, and non-destructive methods to investigate glycated tissues, differentiate crosslinking processes, and characterize general collagen-associated and disease-related changes, in particular by their RS fingerprints.
Collapse
Affiliation(s)
- Elsie Quansah
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Ecehan Çevik
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Xinyue Wang
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Christiane Höppener
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany.
| |
Collapse
|