1
|
Barker S, Dagys L, Levitt MH, Utz M. Efficient Parahydrogen-Induced 13C Hyperpolarization on a Microfluidic Device. J Am Chem Soc 2024; 146:18379-18386. [PMID: 38916928 PMCID: PMC11240250 DOI: 10.1021/jacs.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
We show the direct production and detection of 13C-hyperpolarized fumarate by parahydrogen-induced polarization (PHIP) in a microfluidic lab-on-a-chip (LoC) device and achieve 8.5% 13C polarization. This is the first demonstration of 13C-hyperpolarization of a metabolite by PHIP in a microfluidic device. LoC technology allows the culture of mammalian cells in a highly controlled environment, providing an important tool for the life sciences. In-situ preparation of hyperpolarized metabolites greatly enhances the ability to quantify metabolic processes in such systems by microfluidic NMR. PHIP of 1H nuclei has been successfully implemented in microfluidic systems, with mass sensitivities in the range of pmol/s. However, metabolic NMR requires high-yield production of hyperpolarized metabolites with longer spin life times than is possible with 1H. This can be achieved by transfer of the polarization onto 13C nuclei, which exhibit much longer T1 relaxation times. We report an improved microfluidic PHIP device, optimized using a finite element model, that enables the direct and efficient production of 13C-hyperpolarized fumarate.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Chemical Physics, Vilnius University, Vilnius 01513, Lithuania
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
2
|
Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker SJ, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler MCD, Aime S, Reineri F, Budker D, Blanchard JW. Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance. Anal Chem 2023; 95:17997-18005. [PMID: 38047582 PMCID: PMC10720634 DOI: 10.1021/acs.analchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 12/05/2023]
Abstract
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
Collapse
Affiliation(s)
- James Eills
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Román Picazo-Frutos
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Oksana Bondar
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Eleonora Cavallari
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Carla Carrera
- Institute
of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Sylwia J. Barker
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Marcel Utz
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Alba Herrero-Gómez
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Irene Marco-Rius
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Michael C. D. Tayler
- The
Barcelona Institute of Science and Technology, ICFO—Institut de Ciéncies Fotóniques, Castelldefels, Barcelona 08860, Spain
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Francesca Reineri
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Dmitry Budker
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - John W. Blanchard
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Quantum
Technology Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Alam MS, Li X, Brittin DO, Islam S, Deria P, Chekmenev EY, Goodson BM. Anomalously Large Antiphase Signals from Hyperpolarized Orthohydrogen Using a MOF-Based SABRE Catalyst. Angew Chem Int Ed Engl 2023; 62:e202213581. [PMID: 36526582 DOI: 10.1002/anie.202213581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Hyperpolarized orthohydrogen (o-H2 ) is a frequent product of parahydrogen-based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarized o-H2 signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphase o-H2 signals are observed, with 1 H enhancements up to ≈500-fold (effective polarization PH ≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal-organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the "partial negative line" (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co-workers. The two-spin order of the o-H2 resonance is manifested by a two-fold higher Rabi frequency, and the lifetime of the antiphase HP o-H2 resonance is extended by several-fold.
Collapse
Affiliation(s)
- Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Xinlin Li
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Saiful Islam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Pravas Deria
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute, Integrative Biosciences, Wayne State University, Detroit, MI, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA.,Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Allert RD, Bruckmaier F, Neuling NR, Freire-Moschovitis FA, Liu KS, Schrepel C, Schätzle P, Knittel P, Hermans M, Bucher DB. Microfluidic quantum sensing platform for lab-on-a-chip applications. LAB ON A CHIP 2022; 22:4831-4840. [PMID: 36398977 DOI: 10.1039/d2lc00874b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lab-on-a-chip (LOC) applications have emerged as invaluable physical and life sciences tools. The advantages stem from advanced system miniaturization, thus, requiring far less sample volume while allowing for complex functionality, increased reproducibility, and high throughput. However, LOC applications necessitate extensive sensor miniaturization to leverage these inherent advantages fully. Atom-sized quantum sensors are highly promising to bridge this gap and have enabled measurements of temperature, electric and magnetic fields on the nano- to microscale. Nevertheless, the technical complexity of both disciplines has so far impeded an uncompromising combination of LOC systems and quantum sensors. Here, we present a fully integrated microfluidic platform for solid-state spin quantum sensors, like the nitrogen-vacancy (NV) center in diamond. Our platform fulfills all technical requirements, such as fast spin manipulation, enabling full quantum sensing capabilities, biocompatibility, and easy adaptability to arbitrary channel and chip geometries. To illustrate the vast potential of quantum sensors in LOC systems, we demonstrate various NV center-based sensing modalities for chemical analysis in our microfluidic platform, ranging from paramagnetic ion detection to high-resolution microscale NV-NMR. Consequently, our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high-throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
Collapse
Affiliation(s)
- R D Allert
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - F Bruckmaier
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - N R Neuling
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - F A Freire-Moschovitis
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - K S Liu
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - C Schrepel
- LightFab GmbH, Talbotstr. 25, 52068 Aachen, Germany
| | - P Schätzle
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany
| | - P Knittel
- Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg, Germany
| | - M Hermans
- LightFab GmbH, Talbotstr. 25, 52068 Aachen, Germany
| | - D B Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
7
|
Dagys L, Bengs C, Moustafa GAI, Levitt MH. Deuteron-Decoupled Singlet NMR in Low Magnetic Fields: Application to the Hyperpolarization of Succinic Acid. Chemphyschem 2022; 23:e202200274. [PMID: 35925559 PMCID: PMC9804268 DOI: 10.1002/cphc.202200274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Indexed: 01/05/2023]
Abstract
The reaction of unsaturated substrates with hydrogen gas enriched in the para spin isomer leads to products with a high degree of nuclear singlet spin order. This leads to greatly enhanced NMR signals, with important potential applications such as magnetic resonance imaging (MRI) of metabolic processes. Although parahydrogen-induced polarization has the advantage of being cheap, compact, and mobile, especially when performed in ultralow magnetic fields, efficiency is lost when more than a few protons are involved. This strongly restricts the range of compatible substances. We show that these difficulties may be overcome by a combination of deuteration with the application of a sinusoidally modulated longitudinal field as a well as a transverse rotating magnetic field. We demonstrate a six-fold enhancement in the 13 C hyperpolarization of [1-13 C, 2,3-d2 ]-succinic acid, as compared with standard hyperpolarization methods, applied in the same ultralow field regime.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| | - Christian Bengs
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| | | | - Malcolm H. Levitt
- School of ChemistryHighfield CampusSouthamptonSO17 1BJUnited Kingdom
| |
Collapse
|