1
|
Li L, Ding X, Shan S, Chen S, Zhang Y, Zhang C, Huang C, Duan M, Xu K, Zhang X, Wu T, Zhao Z, Liu Y, Xu Y. Reversible Fusion-Fission MXene Fiber-Based Microelectrodes for Target-Specific Gram-Positive and Gram-Negative Bacterium Discrimination. Anal Chem 2024; 96:9317-9324. [PMID: 38818541 DOI: 10.1021/acs.analchem.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.
Collapse
Affiliation(s)
- Limin Li
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Xiaoteng Ding
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Shuo Shan
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shengnan Chen
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Yifan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cai Zhang
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Chao Huang
- Institute of Biomedical Engineering College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Meilin Duan
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Kaikai Xu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Xue Zhang
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Tianming Wu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Zhen Zhao
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Yinhua Liu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Jia W, Guo A, Bian W, Zhang R, Wang X, Shi L. Integrative deep learning framework predicts lipidomics-based investigation of preservatives on meat nutritional biomarkers and metabolic pathways. Crit Rev Food Sci Nutr 2023; 65:1482-1496. [PMID: 38127336 DOI: 10.1080/10408398.2023.2295016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Preservatives are added as antimicrobial agents to extend the shelf life of meat. Adding preservatives to meat products can affect their flavor and nutrition. This review clarifies the effects of preservatives on metabolic pathways and network molecular transformations in meat products based on lipidomics, metabolomics and proteomics analyses. Preservatives change the nutrient content of meat products via altering ionic strength and pH to influence enzyme activity. Ionic strength in salt triggers muscle triglyceride hydrolysis by causing phosphorylation and lipid droplet splitting in adipose tissue hormone-sensitive lipase and triglyceride lipase. DisoLipPred exploiting deep recurrent networks and transfer learning can predict the lipid binding trend of each amino acid in the disordered region of input protein sequences, which could provide omics analyses of biomarkers metabolic pathways in meat products. While conventional meat quality assessment tools are unable to elucidate the intrinsic mechanisms and pathways of variables in the influences of preservatives on the quality of meat products, the promising application of omics techniques in food analysis and discovery through multimodal learning prediction algorithms of neural networks (e.g., deep neural network, convolutional neural network, artificial neural network) will drive the meat industry to develop new strategies for food spoilage prevention and control.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
- Agricultural Product Quality Research Center, Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Food Safety Testing Center, Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Aiai Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenwen Bian
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350 10.1002/mrc.5350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2024]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
4
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
5
|
Li P, Chen J, Chen Y, Song S, Huang X, Yang Y, Li Y, Tong Y, Xie Y, Li J, Li S, Wang J, Qian K, Wang C, Du L. Construction of Exosome SORL1 Detection Platform Based on 3D Porous Microfluidic Chip and its Application in Early Diagnosis of Colorectal Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207381. [PMID: 36799198 DOI: 10.1002/smll.202207381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Indexed: 05/18/2023]
Abstract
Exosomes are promising new biomarkers for colorectal cancer (CRC) diagnosis, due to their rich biological fingerprints and high level of stability. However, the accurate detection of exosomes with specific surface receptors is limited to clinical application. Herein, an exosome enrichment platform on a 3D porous sponge microfluidic chip is constructed and the exosome capture efficiency of this chip is ≈90%. Also, deep mass spectrometry analysis followed by multi-level expression screenings revealed a CRC-specific exosome membrane protein (SORL1). A method of SORL1 detection by specific quantum dot labeling is further designed and the ensemble classification system is established by extracting features from 64-patched fluorescence images. Importantly, the area under the curve (AUC) using this system is 0.99, which is significantly higher (p < 0.001) than that using a conventional biomarker (carcinoembryonic antigen (CEA), AUC of 0.71). The above system showed similar diagnostic performance, dealing with early-stage CRC, young CRC, and CEA-negative CRC patients.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jiaci Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Shangling Song
- Department of medical engineering equipment, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Yang Yang
- School of Information Science and Engineering, Shandong University, Jinan, 250000, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Shunxiang Li
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Obstetrics and Gynecology, Department of Cardiology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayi Wang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Obstetrics and Gynecology, Department of Cardiology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| |
Collapse
|