1
|
Wang HC, Tang H, Wu SM, Liu JM, Yu H, Ning S, Li Y, Liu YF, Zhu JX, Xu LS, Wang YJ, Ye YX. A novel fluorescent sensor for evaluating pH changes in organophosphorus pesticides-treated cells and C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125251. [PMID: 39395278 DOI: 10.1016/j.saa.2024.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
pH plays an important role in the evaluation of the healthy status in versatile circumstances. The fluctuation of pH could be affected by complex internal and external stimuli. Especially, the abnormal pH changes is a common characteristic of organophosphorus pesticides (OPs)-caused damage owing to the irreversible inhibition of acetylcholinesterase (AChE) activity. Therefore, the rapid and efficient detection of pH changes is of great significance for predicting the OPs poisoning in living system. However, quick and convenient detecting pH levels in living cells is still limited by the lack of effective chemical tools. Here, a novel fluorescent probe TH-1 based on ESIPT mechanism was synthesized, showing specific fluorescent effects in different pH solutions. Importantly, the AChE catalyzed the hydrolysis product of acetylthiocholine iodide (ATCh) and changed the pH of solution, which influence its fluorescent intensity. Moreover, the probe TH-1 was applied to detecting the pH levels in living cells and C. elegans, providing an efficient chemical sensor for revealing the potential mechanisms of OPs in physiological and pathological processes.
Collapse
Affiliation(s)
- Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Hao Tang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Shi-Mao Wu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Jia-Mei Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Hui Yu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Shuai Ning
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ying Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Yi-Fan Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Jia-Xuan Zhu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Li-Sheng Xu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China.
| | - Yu-Jie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Tianfang Tea Industry Co., Ltd, 22 Qiupu East Road, Shitai County 245100, Anhui, China.
| |
Collapse
|
2
|
Usui K, Amano A, Murayama K, Sasaya M, Kusumoto R, Umeno T, Murase S, Iizuka N, Matsumoto S, Fuchi Y, Takahashi K, Kawahata M, Kobori Y, Karasawa S. Photoisomerization of "Partially Embedded Dihydropyridazine" with a Helical Structure. Chemistry 2023; 29:e202302413. [PMID: 37612241 DOI: 10.1002/chem.202302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of two "partially embedded fused-dihydropyridazine N-aryl aza[5]helicene derivatives" (PDHs) and the demonstration of their intrinsic photo-triggered multi-functional properties based on a Kekulé biradical structure. Introducing bulky electron-withdrawing trifluoromethyl or pentafluoroethyl groups into the aza[5]helicene framework (PDH-CF3 and -C2 F5 ) gives PDH axial chirality based on the helicity of the P and M forms, even at room temperature. Upon photo-irradiation of PDH-CF3 in a frozen solution, an ESR signal from the triplet biradical with zero-field splitting values, generated by N-N bond dissociation, was observed. However, when the irradiation was turned off, the ESR signal became silent, thus indicating the existence of two equilibria: between the biradical and quinoidal forms based on the Kekulé structure, and between N-N bond cleavage and recombination. The observed photo- and thermally induced behaviors indicate that T-type photochromic molecules are involved in the photoisomerization mechanism involving the two equilibria. Inspired by the photoisomerization, chirality control of PDH by photoracemization was achieved. Multiple functionalities, such as T-type photochromism, photo-excitation-mediated triplet biradical formation, and photoracemization, which are attributed to the "partially embedded dihydropyridazine" structure, are demonstrated.
Collapse
Affiliation(s)
- Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ami Amano
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kasumi Murayama
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miho Sasaya
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ryota Kusumoto
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Satsuki Murase
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Naoko Iizuka
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
- Molecular Photoscience Research Center, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
3
|
Umeno T, Fujihara M, Matsumoto S, Iizuka N, Usui K, Karasawa S. Quantitative and Nondestructive Colorimetric Amine Detection Method for the Solid-Phase Peptide Synthesis as an Alternative to the Kaiser Test. Anal Chem 2023; 95:15803-15809. [PMID: 37830867 DOI: 10.1021/acs.analchem.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Solid-phase peptide synthesis (SPPS) is an essential technique for the synthesis of peptide. For half a century, many amine detection methods have been developed to monitor coupling reactions during SPPS. Despite such efforts, to the best of our knowledge, a nondestructive and quantitative colorimetric method has not been developed. Here, we developed the first quantitative and nondestructive colorimetric amine detection method based on an acid-base reaction between HCl salt of electron donor-acceptor type dyes and amino groups on the resin. In this method, a noncolored solution of HCl salt consisting of dyes, whose pKBH+ value was carefully tuned, was deprotonated by amines, allowing the appearance of a yellow color. A good linear relationship (R2 = 0.999) between the absorption of the colored solution and the amine group quantities was confirmed. For all tested proteinogenic and nonproteinogenic amino acids, we achieved quantitative colorimetric analysis with a small relative standard deviation (RSD < 3.6%). Furthermore, during the practical synthesis of an octapeptide containing undetectable amino acids with the Kaiser test, our amine detection allowed for detailed monitoring of the coupling reaction, resulting in a significantly purer peptide in the crude form than that obtained using the Kaiser test.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Moeka Fujihara
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Naoko Iizuka
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
4
|
Jose KP, Ravi S, Sivadas DK, Anthony SP, Madhu V. Fluorometric Detection of Methanol by Using Triphenylamine Fluorophore Tethered Terpyridine Probe. ChemistrySelect 2023. [DOI: 10.1002/slct.202204978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Karolin P. Jose
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641 114 Tamil Nadu India
| | - Sasikala Ravi
- School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Deepanjaly K. Sivadas
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641 114 Tamil Nadu India
| | | | - Vedichi Madhu
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641 114 Tamil Nadu India
| |
Collapse
|
5
|
Matsumoto S, Umeno T, Suzuki N, Usui K, Kawahata M, Karasawa S. Chelate-free “turn-on”-type fluorescence detection of trivalent metal ions. Chem Commun (Camb) 2022; 58:12435-12438. [DOI: 10.1039/d2cc04815a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the detection of trivalent ions, the chelate-free pH-responsive “Turn-ON”-type fluorescence probes based on INAs were constructed. Based on the X-ray analysis, cationic INAs formed unique outer-sphere complexes for AlIII ions.
Collapse
Affiliation(s)
- Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Noriko Suzuki
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|