1
|
Pravdivtsev AN, Tickner BJ, Glöggler S, Hövener JB, Buntkowsky G, Duckett SB, Bowers CR, Zhivonitko VV. Unconventional Parahydrogen-Induced Hyperpolarization Effects in Chemistry and Catalysis: From Photoreactions to Enzymes. ACS Catal 2025; 15:6386-6409. [PMID: 40270879 PMCID: PMC12013695 DOI: 10.1021/acscatal.4c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025]
Abstract
Nuclear spin hyperpolarization utilizing parahydrogen has the potential for broad applications in chemistry, catalysis, biochemistry, and medicine. This review examines recent chemical and biochemical insights gained using parahydrogen-induced polarization (PHIP). We begin with photoinduced PHIP, which allows the investigation of short-lived and photoactivated catalysis. Next, we review the partially negative line effect, in which distinctive line shape helps to reveal information about rapid exchange with parahydrogen and the role of short-lived catalytic species. The NMR signal enhancement of a single proton in oneH-PHIP is discussed, challenging the underpinning concept of the necessity of pairwise hydrogenation. Furthermore, we examine metal-free PHIP facilitated by frustrated Lewis pair molecular tweezers and radicaloids, demonstrating alternative routes to hydrogenation. Although symmetric molecules incorporating parahydrogen are NMR silent, we showcase methods that reveal hyperpolarized states through post-hydrogenation reactions. We discuss chemical exchange processes that mediate polarization transfer between parahydrogen and a molecular target, expanding the reach of PHIP without synthesizing specialized precursors. We conclude this review by highlighting the role of PHIP in uncovering the H2 activation mechanisms of hydrogenases. By providing a detailed review of these diverse phenomena, we aim to familiarize the reader with the versatility of PHIP and its potential applications for mechanistic studies and chemical analysis.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Ben J. Tickner
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Stefan Glöggler
- Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Center
for Biostructural Imaging of Neurodegeneration (BIN), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Advanced
Imaging Research Center, The University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jan-Bernd Hövener
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Clifford R. Bowers
- Department
of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
2
|
Vaneeckhaute E, Tyburn JM, Kempf JG, Martens JA, Breynaert E. Identifying routes for transferring spin polarization from parahydrogen to protic solvents. Chem Commun (Camb) 2024; 60:13923-13926. [PMID: 39503617 PMCID: PMC11563199 DOI: 10.1039/d4cc03468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Repeatable hyperpolarization of high concentrations of mobile protons (>6 M) using parahydrogen in protic methanol/water mixtures is reported here. Different ammonium buffers with increasing mobile proton concentrations were added to an IrCl(COD)(IMes) catalyst in the presence of pyridine. We reach a maximum molar polarization of 1.79 mM at 6 mT. Field-cycling experiments in an 18.8 T detection field distinguished two solvent polarization transfer pathways: chemical exchange with labile protons from ammonia and cross-relaxation with pyridine aromatic protons.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Leuven, Belgium.
- COK-KAT, Centre for Surface Chemistry and Catalysis - Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Leuven, Belgium
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Jean-Max Tyburn
- Bruker Biospin, 34 Rue de l'Industrie BP 10002, 67166 Wissembourg Cedex, France
| | - James G Kempf
- Bruker Biospin, 15 Fortune Dr, Billerica, 01821 Massachusetts, USA
| | - Johan A Martens
- COK-KAT, Centre for Surface Chemistry and Catalysis - Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Leuven, Belgium
| | - Eric Breynaert
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Leuven, Belgium.
- COK-KAT, Centre for Surface Chemistry and Catalysis - Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Trofimov IA, Salnikov OG, Pravdivtsev AN, de Maissin H, Yi AP, Chekmenev EY, Hövener JB, Schmidt AB, Koptyug IV. Through-bond and through-space radiofrequency amplification by stimulated emission of radiation. Commun Chem 2024; 7:235. [PMID: 39414912 PMCID: PMC11484792 DOI: 10.1038/s42004-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Radio Amplification by Stimulated Emission of Radiation (RASER) is a phenomenon observed during nuclear magnetic resonance (NMR) experiments with strongly negatively polarized systems. This phenomenon may be utilized for the production of very narrow NMR lines, background-free NMR spectroscopy, and excitation-free sensing of chemical transformations. Recently, novel methods of producing RASER by ParaHydrogen-Induced Polarization (PHIP) were introduced. Here, we show that pairwise addition of parahydrogen to various propargylic compounds induces RASER activity of other protons beyond those chemically introduced in the reaction. In high-field PHIP, negative polarization initiating RASER is transferred via intramolecular cross-relaxation. When parahydrogen is added in Earth's field followed by adiabatic transfer to a high field, RASER activity of other protons is induced via both J-couplings and cross-relaxation. This through-bond and through-space induction of RASER holds potential for the ongoing development and expansion of RASER applications and can potentially enhance spectral resolution in two-dimensional NMR spectroscopy techniques.
Collapse
Grants
- 122-09-053 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- R01 EB034197 NIBIB NIH HHS
- PR 1868/3-1, PR 1868/5-1, HO-4602/2-2, HO-4602/3, EXC2167, FOR5042, TRR287 Deutsche Forschungsgemeinschaft (German Research Foundation)
- #SCHM 3694/1, #SCHM 3694/2, #SFB1479, Project ID: 441891347SFB1160 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 01ZX1915C Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- #22-43-04426 Russian Science Foundation (RSF)
- Postdoctoral Fellow award Wayne State University
- CHE-1904780, NIBIB R01EB034197, NHLBI 1R21HL154032, DOD CDMRP W81XWH-20-10576 National Science Foundation (NSF)
- R21 HL154032 NHLBI NIH HHS
- 13N16448 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- German Cancer Consortium (DKTK), the DKTK Joint Funding project “HYPERBOLIC”
Collapse
Affiliation(s)
- Ivan A Trofimov
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
| | - Anna P Yi
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| |
Collapse
|
4
|
Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt AB, Lehmkuhl S, Rosen MS, Appelt S, Theis T, Qian C, Chekmenev EY. Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing. Angew Chem Int Ed Engl 2024; 63:e202406551. [PMID: 38822492 PMCID: PMC11463167 DOI: 10.1002/anie.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in a preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of the MR detector (up to 1 million) were also demonstrated.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Simon Fleischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Soeren Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
5
|
Nantogma S, de Maissin H, Adelabu I, Abdurraheem A, Nelson C, Chukanov NV, Salnikov OG, Koptyug IV, Lehmkuhl S, Schmidt AB, Appelt S, Theis T, Chekmenev EY. Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1- 13C]Pyruvate. ACS Sens 2024; 9:770-780. [PMID: 38198709 PMCID: PMC10922715 DOI: 10.1021/acssensors.3c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52056, Germany
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Thomas Theis
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Schmidt AB, Adelabu I, Nelson C, Nantogma S, Kiselev VG, Zaitsev M, Abdurraheem A, de Maissin H, Rosen MS, Lehmkuhl S, Appelt S, Theis T, Chekmenev EY. 13C Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions. J Am Chem Soc 2023; 145:11121-11129. [PMID: 37172079 PMCID: PMC10257364 DOI: 10.1021/jacs.3c00776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Valerij G. Kiselev
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Matthew S. Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, United States
- Department of Physics, Harvard University; Cambridge, MA 02138, United States
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology; 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University; 52056 Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics – Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
8
|
Nelson C, Schmidt AB, Adelabu I, Nantogma S, Kiselev VG, Abdurraheem A, de Maissin H, Lehmkuhl S, Appelt S, Theis T, Chekmenev EY. Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2023; 62:e202215678. [PMID: 36437237 PMCID: PMC9889133 DOI: 10.1002/anie.202215678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The feasibility of Carbon-13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C-13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1-13 C]acetate. Hyperpolarized ethyl [1-13 C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1-13 C]acetate and polarization transfer from nascent parahydrogen-derived protons to the carbon-13 nucleus via magnetic field cycling yielding C-13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non-cryogenic 1.4T NMR spectrometer equipped with a radio-frequency detection coil with a quality factor (Q) of 32 without any modifications. C-13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long-lasting C-13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C-13 magnetic resonance hyperpolarization.
Collapse
Affiliation(s)
- Christopher Nelson
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Valerij G Kiselev
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|