1
|
Xu M, Wang Z, Shen Y, Zhao M, Hu X, Li H, Liu W, Xu Q. Dual-mode sensor innovation based on light-harvesting and nanozyme integrated Cu-MOF loaded Cu 2O label. Talanta 2025; 292:128012. [PMID: 40157195 DOI: 10.1016/j.talanta.2025.128012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Integrating photoelectrochemical (PEC) and colorimetric dual-mode shed light on "all-in-one" sensing platform for high sensitivity, in situ visualization and self-validating measurement. Its attainment depends on the capabilities of light harvesting and colorimetric signal generation from bi-functional tags, which remains challenging. Herein, Cu-MOF loaded Cu2O (Cu2O@Cu-MOF) was deliberately prepared and employed as the PEC- colorimetric signal reporter with tail-made stable photo-current and peroxidase mimic activity. A thin layer of Zr-MOF was deliberately encapsulated onto Cu2O@Cu-MOF for the immobilization of aptamer (Apt) which can be captured by the magnetic AuNPs/Fe3O4 nanoparticles through duplex-specific hybrid. In the presence of target analyte, PEC- colorimetric signal reporter was quantitatively released from the magnetic AuNPs/Fe3O4 after one-step convenient magnetic separation, facilitating photocurrent response by the photo-induced excitation and colorimetric response by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In a proof-of-concept experiment, a customized PEC- colorimetric dual-mode sensor platform based on Cu2O@Cu-MOF reporter has achieved an ultrasensitive response for bisphenol A (BPA), exhibiting sub-picomole (PEC signal) and sub-nanomole (colorimetric signal) detection limits, respectively. Our dual-mode sensor platform strategy aims to extend to high-sensitivity and visual analysis in fields of in vitro diagnosis, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Man Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zheng Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yingzhuo Shen
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Meijuan Zhao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaoya Hu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Liu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
2
|
Zeng Q, Deng T, Yang J, Yin K, Wu W, Li X, Deng C. Starch-KI test strip and solution colorimetry for dual-mode point-of-care testing (POCT) of live Staphylococcus aureus based on the activity of lysed catalase. Talanta 2025; 289:127785. [PMID: 39993367 DOI: 10.1016/j.talanta.2025.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Staphylococcus aureus (S. aureus), a ubiquitous foodborne pathogenic bacterium, is prevalent in a wide array of food products and frequently implicated in food poisoning incidents, necessitating effective means for its real-time monitoring and rapid detection. In response to this need, this study introduces an innovative dual-mode point-of-care testing (POCT) approach for detecting live S. aureus, leveraging the catalase (CAT)-induced H2O2-mediated reaction. This method integrates a starch-KI paper test with solution colorimetry, offering a dual-modal detection system. The use of commercial starch-KI test strips stands out for its simplicity, cost-effectiveness, rapidness, and enhanced stability and repeatability in large-scale applications, as it requires no modifications or treatments. Furthermore, combining with the solution colorimetry, the dual signal outputs enable mutual correction, significantly boosting detection accuracy and minimizing both false positives and negatives. The starch-KI test strips provide swift visual results, allowing for immediate identification, while the enzyme cascade-based solution colorimetry offers quantitative analysis with impressive lower limits of detection (72 CFU mL-1 for solution colorimetry). These low detection thresholds demonstrate the system's high sensitivity and precision. This dual-modal platform enables real-time monitoring and early intervention in food systems, preventing food poisoning. Its practicality, low cost, and user-friendliness make it an appealing diagnostic tool for both industrial food processors and public health authorities, particularly in regions with limited resources. By addressing the critical need for accurate, rapid, and cost-effective S. aureus detection, this dual-modal platform could significantly contribute to enhancing food safety globally.
Collapse
Affiliation(s)
- Qin Zeng
- School of Engineering Science, Shandong Xiehe University, Jinan, 250107, China; Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingliu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Junhong Yang
- School of Engineering Science, Shandong Xiehe University, Jinan, 250107, China
| | - Ke Yin
- School of Engineering Science, Shandong Xiehe University, Jinan, 250107, China
| | - Wuming Wu
- School of Engineering Science, Shandong Xiehe University, Jinan, 250107, China.
| | - Xin Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Zeng Q, Deng T, Yang Y, Wu W, Jiang Z, Wu H, Yang M, Deng C. pH-Adaptable CuO 2 photo-responsive oxidase with phage-lysed β-galactosidase based cascade reaction for colorimetric detection of Escherichia coli in drinking water with high specificity and sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138295. [PMID: 40250269 DOI: 10.1016/j.jhazmat.2025.138295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Escherichia coli (E. coli) is a primary cause of various waterborne diseases. However, detecting E. coli faces challenges in terms of speed, cost, sensitivity, and selectivity, especially in resource-limited regions. In this study, a smartphone-assisted CuO2 and β-galactosidase (β-gal)-mediated cascade colorimetric method for E. coli detection was developed. A pH-adaptable CuO2 acting as a photo-responsive oxidase was synthesized simply and combined with β-gal released from E. coli lysed by bacteriophages, enabling an enzyme-nanozyme cascade reaction. In this reaction, β-gal catalyzes the conversion of p-aminophenyl β-D-galactopyranoside (PAPG) to p-aminophenol (PAP), which subsequently inhibits the photo-responsive oxidase activity of CuO2. The photo-responsive oxidase CuO2, with its unique mechanism to generate holes for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation, overcomes the typical pH dependency of nanozymes, maintaining the optimal activity of both CuO2 oxidase and β-gal, enhancing sensitivity in the enzyme cascades. Bacteriophages, serving as specific bacterial identifiers, selectively recognize E. coli and promote the β-gal rapid release, further enhancing the detection sensitivity. This method achieves a detection limit of 15 CFU mL-1, accurately measured E. coli concentrations as low as 102 CFU mL-1, exhibited excellent recovery rates, ranging from 95.0 % to 104.1 %, with RSD between 1.3 % and 2.8 %, distinguishes the live and dead E. coli, reducing false positive and negative. Moreover, coupled with a smartphone, the sensor provides swift and accessible colorimetric data analysis, making it ideal for resource-constrained areas. In summary, this method is specific, sensitive, rapid, and cost-effective, requiring no pretreatment and offering broad potentials for bacterial detection in resource-limited areas.
Collapse
Affiliation(s)
- Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tingliu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuan Yang
- Create Fertility Center, Toronto, ON, Canada
| | - Wuming Wu
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha, Hunan 410151, China
| | - Zhizhong Jiang
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha, Hunan 410151, China.
| | - Huiyun Wu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Wang H, Yang B, Du C, Zheng H, Zhang X, Chen J. In Situ Cascade Catalytic Polymerization of Dopamine Based on Pt NPs/CoSAs@NC Nanoenzyme for Constructing Highly Sensitive Photocurrent-Polarity-Switching PEC Biosensing Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409990. [PMID: 39760264 DOI: 10.1002/smll.202409990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides. Upon dephosphorylation of PTP1B, Pt NPs/CoSAs@NC nanoenzymes with multiple enzyme-like activities, including peroxidase (POD)-like, catalase (CAT)-like, and oxidase (OXD)-like activities, are released and collected to induce the in situ cascade catalytic polymerization of dopamine on ZnCdS photoelectrode in the presence of H2O2. The generated polymer-molecule of polydopamine served as efficient signal reporter for simultaneously amplifying signal and switching photocurrent polarity, which not only improved the sensitivity but also enhanced the reliability. This biosensing platform is capable of sensitively quantifying PTP1B with ultralow detection limit (0.04 fM), wide linear range (0.1 fm-0.1 µm), and good applicability in complex biological samples. This work pioneers the utilization of nanozyme-based cascade catalytic polymerization strategy for improving sensitivity and reliability in biosensing technologies.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Bo Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Hejie Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
5
|
Gu C, Liu J, Hou T, Zheng W, Gai P, Li F. Portable Self-Powered/Colorimetric Dual-Mode Sensing Platform Based on Multifunctional Bioconjugates for Precise On-Site Detection of Acetamiprid. Anal Chem 2025; 97:928-935. [PMID: 39752581 DOI: 10.1021/acs.analchem.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design. Using an Eppendorf (EP) tube as a miniaturized laboratory, the bioconjugates and the colorimetric test strip were integrated into the EP tube, and combined with a nanozyme-based self-powered sensing platform (with an area of 1.5 × 1.5 cm2), accurate on-site detection of ATM was achieved, with detection limits as low as 2.9 fg·mL-1 (self-powered method) and 31.5 fg·mL-1 (colorimetry), respectively. Notably, we simulated the actual insecticidal situation based on the field application concentration and quantified the pesticide residues in vegetables. The relative errors of our method and the standard high-performance liquid chromatography method were 0.15% (the self-powered method) and 1.8% (colorimetry), respectively. The portable dual-mode sensing platform with high sensitivity and accuracy opened up a new avenue for the development of on-site pesticide residue analysis in the next generation of agricultural products.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jianlin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Wenchao Zheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
6
|
Zhao Y, Tan Y, Zeng C, Pan W. Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds. J Nanobiotechnology 2025; 23:9. [PMID: 39780182 PMCID: PMC11716278 DOI: 10.1186/s12951-024-03078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections. The HDG hydrogel detects SA by exploiting its secreted catalase to catalyze H₂O₂, producing oxygen, which in turn accelerates the polymerization of colorless dopamine into deep brown polydopamine (PDA). The bacterial detection process takes only 10 min with high sensitivity, and the results can be readily recognized by the naked eye or quantified using a cell phone-based digital analysis. Moreover, the HDG hydrogel provides a dual antibacterial mechanism through chemical and photothermal therapies via the generated PDA, significantly improving bacterial clearance. In animal experiments, the HDG hydrogel demonstrated promising capabilities in monitoring and eliminating bacteria, enhancing collagen deposition, reducing inflammation, and promoting the healing of infected wounds. This multifunctional design offers an enzyme-responsive strategy for the rapid assessment and management of infections, simplifying infection evaluation and facilitating the development of advanced wound dressings.
Collapse
Affiliation(s)
- Yitao Zhao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yong Tan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Chun Zeng
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
| | - Weilun Pan
- Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
7
|
Yang Y, Niu X, Duan B, Lu J, Zhang X. Dual-modal biosensor for mercuric ion detection based on Cu 2O@Cu 2S/D-TA COF heterojunction with excellent catalase-like, electrochemical and photoelectrochemical properties. Biosens Bioelectron 2024; 262:116568. [PMID: 39003919 DOI: 10.1016/j.bios.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
In this study, a dual-mode biosensor based on the heterojunction of Cu2O@Cu2S/D-TA COF was constructed for ultra-sensitive detection of Hg2+ using both photoelectrochemical and electrochemical approaches. Briefly, a 2D ultra-thin covalent organic framework film (D-TA COF film) with excellent photoelectrochemical signals was prepared on ITO surfaces through an in situ growth method. Subsequently, the probe H1 was immobilized onto the biosensor via Au-S bonds. In the presence of Hg2+, the formation of T-Hg2+-T complexes triggered hybridization chain reactions (HCR), leading to the attachment of abundant Cu2O@Cu2S probes onto the biosensor. As a p-type semiconductor, Cu2O@Cu2S could form a heterojunction with the underlying D-TA COF films. Meanwhile, it exhibited catalase-like activity, and the O2 produced by its catalytic decomposition of H2O2 can interact with the D-TA COF films, thus achieving double amplification of the photocurrent signal. Benefiting from the excellent and inherent Cu2+/Cu+ redox pairs of Cu2O@Cu2S, satisfactory differential pulse voltammetry (DPV) signals were obtained. As expected, the dual-mode biosensor was realized with wider linear ranges and low detection limits. Additionally, the analytical performance for Hg2+ in real water samples was excellent. Briefly, this suggested approach offers a facile and highly efficient modality for monitoring heavy metal ions in aquatic environments.
Collapse
Affiliation(s)
- Yudie Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiankang Niu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Binqiu Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jitao Lu
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
8
|
Zeng Q, Zou H, Deng T, Wu W, Wang H, Deng C. Photoelectrochemical/Colorimetric Dual-Mode Specific Detection of Staphylococcus aureus Based on the Enzymatic Reaction Triggered by Catalase from Lysed Bacteria. Anal Chem 2024; 96:13207-13216. [PMID: 39078709 DOI: 10.1021/acs.analchem.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is abundant in nature and frequently leads to various health issues. Bacteriophages as obligate intracellular parasites of bacteria have the ability to specifically identify and infect S. aureus, causing bacterial lysis and the release of endogenous catalase (CAT). The released CAT triggers the conversion of H2O2 into O2 and H2O, resulting in a notable decrease in UV absorption at 570 nm and a concurrent surge in photocurrent. On the basis of this, a photoelectrochemical/colorimetric dual-mode biosensor for the detection of S. aureus was developed. In the photoelectric detection mode, the reactions involving endogenous enzymes occur directly in the solution, requiring only the simple drop-coating of TiO2@CdS onto the indium tin oxide (ITO) electrode surface. There was no need for immobilizing additional biomolecules, thereby significantly minimizing nonspecific adsorption and improving the biosensor's stability and reproducibility. For colorimetry, we utilized a cost-effective and operationally simple approach based on KI and starch. Remarkably, this photoelectrochemical/colorimetry exhibited a linear range of 102-109 CFU/mL for S. aureus, achieving detection limits of 7 and 10 CFU/mL, respectively. Herein, phage identification ensures the specific detection of live S. aureus, thereby effectively mitigating the potential for false signals. The dual-signal readout mode improves the detection accuracy and reliability. In conclusion, this present method offers numerous advantages, including simplicity, time-efficiency, cost-effectiveness, high specificity, and therefore excellent accuracy.
Collapse
Affiliation(s)
- Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - HuiYu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - TingLiu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wuming Wu
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha 410151, China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - ChunYan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Feng X, Ding L, Hao N, Wang K. A Piezoelectric Nanogenerator-Driven Dual-Mode Platform for Visualization and Impedance Sensing. Anal Chem 2024. [PMID: 39014979 DOI: 10.1021/acs.analchem.4c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Traditional visual biosensing platforms rely on color to display detection results, which can be influenced by individual visual abilities, equipment, parameters, and lighting conditions during photo capture. This limitation significantly impedes the advancement of next-generation portable electrochemical biosensors. Therefore, we propose a visual biosensing device that utilizes distance as an indicator, enabling the facile determination of the length of discoloration, which is inversely proportional to the concentration of the target analyte. The separation of the Signal Generation (SG) and Signal Output (SO) regions effectively mitigates potential interference from the sample color. Additionally, the SG region can be disassembled to facilitate electrochemical impedance spectroscopy (EIS) detection in laboratory settings, enabling dual-mode detection. Meanwhile, the utilization of piezoelectric nanogenerators (PENG) empowers the entire point-of-care testing (POCT) sensing device, effectively addressing the issue of a limited battery life. The biosensing device exhibited a satisfactory linear range (EIS mode, 5 pg/L to 5 mg/L; visual mode, 0.5 ng/L to 5 mg/L) and a low limit of detection (EIS mode, 2.3 pg/L; visual mode, 0.14 ng/L) with S/N = 3 for ochratoxin A (OTA) under optimized conditions. The self-powered and cost-effective dual-mode biosensing platform developed for OTA detection offers clear and easily interpretable results, demonstrating a high accuracy in laboratory settings.
Collapse
Affiliation(s)
- Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information, Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
11
|
Zhao J, Chen L, Liu F, Liu Y, Ji J, Chen G, Yang G, Dong X, Qu LL. Porous organic polymers assisted aptamer signal amplification for enhanced photoeletrochemical detection of MUC1. Anal Chim Acta 2024; 1312:342762. [PMID: 38834277 DOI: 10.1016/j.aca.2024.342762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Mucin1 (MUC1) is an extensively glycosylated transmembrane protein that is widely distributed and overexpressed on the surface of cancer cells, playing an important role in tumor occurrence and metastasis. Therefore, highly sensitive detection of MUC1 is of great significance for early diagnosis, treatment monitoring, and prognosis of cancer. Here, an ultra-sensitive photoelectrochemical (PEC) sensing platform was developed based on an aptamer amplification strategy for highly selective and sensitive detection of MUC1 overexpressed in serum and on cancer cell surfaces. The sensing platform utilized copper phthalocyanine to fabricate porous organic polymers (CuPc POPs), and was effectively integrated with g-C3N4/MXene to form a ternary heterojunction material (g-C3N4/MXene/CuPc POPs). This material effectively improved electron transfer capability, significantly enhanced light utilization, and greatly enhanced photoelectric conversion efficiency, resulting in a dramatic increase in photocurrent response. MUC1 aptamer 1 was immobilized on a chitosan-modified photoelectrode for the selective capture of MUC1 or MCF-7 cancer cells. When the target substance was present, MUC1 aptamer 2 labeled with methylene blue (MB) was specifically adsorbed on the electrode surface, leading to enhanced photocurrent. The concentration of MUC1 directly correlated with the number of MB molecules attracted to the electrode surface, establishing a linear relationship between photocurrent intensity and MUC1 concentration. The PEC biosensor exhibited excellent sensitivity for MUC1 detection with a wide detection range from 1 × 10-7 to 10 ng/mL and a detection limit of 8.1 ag/mL. The detection range for MCF-7 cells was from 2 × 101 to 2 × 106 cells/mL, with the capability for detecting single MCF-7 cells. The aptamer amplification strategy significantly enhanced PEC performance, and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.
Collapse
Affiliation(s)
- Jiayi Zhao
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Luqing Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Fanglei Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yan Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Jianing Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Guojian Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| |
Collapse
|
12
|
Ullah N, Bruce-Tagoe TA, Asamoah GA, Danquah MK. Multimodal Biosensing of Foodborne Pathogens. Int J Mol Sci 2024; 25:5959. [PMID: 38892147 PMCID: PMC11172999 DOI: 10.3390/ijms25115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Microbial foodborne pathogens present significant challenges to public health and the food industry, requiring rapid and accurate detection methods to prevent infections and ensure food safety. Conventional single biosensing techniques often exhibit limitations in terms of sensitivity, specificity, and rapidity. In response, there has been a growing interest in multimodal biosensing approaches that combine multiple sensing techniques to enhance the efficacy, accuracy, and precision in detecting these pathogens. This review investigates the current state of multimodal biosensing technologies and their potential applications within the food industry. Various multimodal biosensing platforms, such as opto-electrochemical, optical nanomaterial, multiple nanomaterial-based systems, hybrid biosensing microfluidics, and microfabrication techniques are discussed. The review provides an in-depth analysis of the advantages, challenges, and future prospects of multimodal biosensing for foodborne pathogens, emphasizing its transformative potential for food safety and public health. This comprehensive analysis aims to contribute to the development of innovative strategies for combating foodborne infections and ensuring the reliability of the global food supply chain.
Collapse
Affiliation(s)
| | | | | | - Michael K. Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (N.U.); (T.A.B.-T.); (G.A.A.)
| |
Collapse
|
13
|
Li XG, Li J, Chen J, Rao L, Zheng L, Yu F, Tang Y, Zheng J, Ma J. Porphyrin-based covalent organic frameworks from design, synthesis to biological applications. Biomater Sci 2024; 12:2766-2785. [PMID: 38717456 DOI: 10.1039/d4bm00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Covalent organic frameworks (COFs) constitute a class of highly functional porous materials composed of lightweight elements interconnected by covalent bonds, characterized by structural order, high crystallinity, and large specific surface area. The integration of naturally occurring porphyrin molecules, renowned for their inherent rigidity and conjugate planarity, as building blocks in COFs has garnered significant attention. This strategic incorporation addresses the limitations associated with free-standing porphyrins, resulting in the creation of well-organized porous crystal structures with molecular-level directional arrangements. The unique optical, electrical, and biochemical properties inherent to porphyrin molecules endow these COFs with diversified applications, particularly in the realm of biology. This review comprehensively explores the synthesis and modulation strategies employed in the development of porphyrin-based COFs and delves into their multifaceted applications in biological contexts. A chronological depiction of the evolution from design to application is presented, accompanied by an analysis of the existing challenges. Furthermore, this review offers directional guidance for the structural design of porphyrin-based COFs and underscores their promising prospects in the field of biology.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Junjian Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - JinFeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Libin Zheng
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- School of Civil Engineering, Kashi University, Kashi 844000, China
| |
Collapse
|
14
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
15
|
Li T, Zhang J, Bu P, Wu H, Guo J, Guo J. Multi-modal nanoprobe-enabled biosensing platforms: a critical review. NANOSCALE 2024; 16:3784-3816. [PMID: 38323860 DOI: 10.1039/d3nr03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nanomaterials show great potential for applications in biosensing due to their unique physical, chemical, and biological properties. However, the single-modal signal sensing mechanism greatly limits the development of single-modal nanoprobes and their related sensors. Multi-modal nanoprobes can realize the output of fluorescence, colorimetric, electrochemical, and magnetic signals through composite nanomaterials, which can effectively compensate for the defects of single-modal nanoprobes. Following the multi-modal nanoprobes, multi-modal biosensors break through the performance limitation of the current single-modal signal and realize multi-modal signal reading. Herein, the current status and classification of multi-modal nanoprobes are provided. Moreover, the multi-modal signal sensing mechanisms and the working principle of multi-modal biosensing platforms are discussed in detail. We also focus on the applications in pharmaceutical detection, food and environmental fields. Finally, we highlight this field's challenges and development prospects to create potential enlightenment.
Collapse
Affiliation(s)
- Tong Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiani Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengzhi Bu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoping Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong, University, Shanghai, China.
| |
Collapse
|