1
|
Snitka V, Batiuskaite D, Bruzaite I, Lafont U, Butenko Y, Semprimoschnig C. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS SPACE JOURNAL 2021; 13:509-520. [PMID: 34777619 PMCID: PMC7938280 DOI: 10.1007/s12567-021-00356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The detection of molecular traces in the environment is a technical problem that is critical in pollutant control procedures at all stages of spacecraft assembly, in space flight, as well as in other technological processes such as food production, medical diagnostics, environmental control, warfare. However, in the aerospace industry, it is necessary to detect molecular traces of contaminants with extreme sensitivity, as even concentrations as low as part-per-billion (ppb) can be critical during long missions. The high sensitivity of the Volatile Organic Compounds (VOCs) detection within the air can be a challenge because of the poor affinity of VOC's to the metal surface of the sensor substrate. In this work, we present a surface-enhanced Raman scattering (SERS) spectroscopy technique as a highly sensitive and selective molecular sensor for gas trace detection not sensitive to molecules adsorbtion on sensing element. The developed hybrid SERS platform for molecular trace detection is supported by the hybrid nanoplasmonic porous silicon membrane in conjunction with micropump to achieve the trace level detection of VOCs in the environment. The combination of silicon membrane, made by electrochemical etching of the microchannels in the silicon chip, with chemical deposition of the silver nanoparticles inside the channels, produce a porous Ag nanoparticles membrane with a high density of plasmonic nanostructures ("hot spots"). The micropump integrated with the SERS sensor, pump the air with VOC's molecules through the plasmonic membrane "hot spots" to increase the probability of interaction of VOC's molecules with SERS substrate and to increase the enhancement factor. The sensor chip structure was designed, gas flow in the sensor was simulated, and the sensor was fabricated using 3D printing. The limit of detection of hydrazine with concentration level 10-12 M from solution and the vapor phase 0.1 ppm was demonstrated. The anisole vapors with concentration 0.5 ppb spectra in the air were recorded. Our results demonstrate that plasmonic membrane can be used as a high enhancement factor SERS sensor for many pollutants molecules detection with the nanomolar sensitivity and can be applied in the design of sensors for space applications, environment control, biomedical diagnostic. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12567-021-00356-6.
Collapse
Affiliation(s)
- Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, Kaunas, Lithuania
| | - Danute Batiuskaite
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 58 K.Donelaicio str., 44248 Kaunas, Lithuania
| | - Ingrida Bruzaite
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, Kaunas, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Ugo Lafont
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Yuriy Butenko
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Christopher Semprimoschnig
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| |
Collapse
|
2
|
Microbial community composition of water samples stored inside the International Space Station. Res Microbiol 2019; 170:230-234. [DOI: 10.1016/j.resmic.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
|
3
|
Xia SA, Leng A, Lin Y, Wu L, Tian Y, Hou X, Zheng C. Integration of Flow Injection Capillary Liquid Electrode Discharge Optical Emission Spectrometry and Microplasma-Induced Vapor Generation: A System for Detection of Ultratrace Hg and Cd in a Single Drop of Human Whole Blood. Anal Chem 2019; 91:2701-2709. [DOI: 10.1021/acs.analchem.8b04222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shu-an Xia
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Anqin Leng
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Yao Lin
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Differential mobility spectrometers with tuneable separation voltage – Theoretical models and experimental findings. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Giakisikli G, Trikas E, Petala M, Karapantsios T, Zachariadis G, Anthemidis A. An integrated sequential injection analysis system for ammonium determination in recycled hygiene and potable water samples for future use in manned space missions. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:71-92. [PMID: 28301728 PMCID: PMC5627998 DOI: 10.1146/annurev-anchem-061516-045212] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.
Collapse
Affiliation(s)
- Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Roza Wojcik
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Denver, Colorado 80045
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Daniel J Orton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Matthew E Monroe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Ronald J Moore
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Erin S Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
7
|
Limero TF, Wallace WT. What Air and Water Quality Monitoring Is Needed to Protect Crew Health on Spacecraft? ACTA ACUST UNITED AC 2017. [DOI: 10.1089/space.2017.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Affiliation(s)
- Dalton T. Snyder
- Department of Chemistry and Center for Analytical Instrumentation
Development, Purdue University, W. Lafayette, IN 47907
| | - Christopher J. Pulliam
- Department of Chemistry and Center for Analytical Instrumentation
Development, Purdue University, W. Lafayette, IN 47907
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, Purdue University, W.
Lafayette, IN 47907
| | - R. Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation
Development, Purdue University, W. Lafayette, IN 47907
| |
Collapse
|