1
|
Agrawal HG, Giri PS, Sahoo T, Rath SN, Mishra AK. Flavin-based probe for real-time monitoring of hypochlorous acid dynamics in live cells. J Mater Chem B 2025; 13:5109-5116. [PMID: 40183154 DOI: 10.1039/d4tb02727b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The present study introduces TPA-vinylene-flavin (TVF) as a flavin-based turn-on fluorescent probe. TVF effectively detects HOCl, as evaluated by the solution phase studies with a detection limit of 0.36 μM. This probe shows excellent biocompatibility and rapid cellular internalization, making it suitable for real-time monitoring of HOCl fluctuations in both physiological and pathological conditions. Furthermore, the TVF probe exhibits specific mitochondrial localization and selectively detects HOCl in both endogenous and exogenous contexts within live cells. It demonstrates excellent sensitivity to HOCl concentrations over time, enabling precise tracking of dynamic fluctuations, which is critical for understanding its role in cellular processes and oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Harsha Gopal Agrawal
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| | - Pravin Shankar Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India
| | - Tanima Sahoo
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| |
Collapse
|
2
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
3
|
Shi SS, Li XJ, Ma RN, Shang L, Zhang W, Zhao HQ, Jia LP, Wang HS. A novel dual-signal output strategy for POCT of CEA based on a smartphone electrochemical aptasensing platform. Mikrochim Acta 2024; 191:407. [PMID: 38898338 DOI: 10.1007/s00604-024-06493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
A smartphone-based electrochemical aptasensing platform was developed for the point-of-care testing (POCT) of carcinoembryonic antigen (CEA) based on the ferrocene (Fc) and PdPt@PCN-224 dual-signal labeled strategy. The prepared PdPt@PCN-224 nanocomposite showed a strong catalytic property for the reduction of H2O2. Phosphate group-labeled aptamer could capture PdPt@PCN-224 by Zr-O-P bonds to form PdPt@PCN-224-P-Apt. Therefore, a dual signal labeled probe was formed by the hybridization between Fc-DNA and PdPt@PCN-224-P-Apt. The presence of CEA forced PdPt@PCN-224-P-Apt to leave the electrode surface due to the specific affinity, leading to the decrease of the reduction current of H2O2. At the same time, the Fc-DNA strand changed to hairpin structure, which made Fc closer to the electrode and resulted in the increase of the oxidation current of Fc. Thus, CEA can be accurately determined through both signals: the decrease of H2O2 reduction current and the increase of Fc oxidation current, which could avoid the false positive signal. Under the optimal conditions, the prepared aptasensor exhibited a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 and low detection limits of 0.98 pg·mL-1 and 0.27 pg·mL-1 with Fc and PdPt@PCN-224 as signal labels, respectively. The aptasensor developed in this study has successfully demonstrated its capability to detect CEA in real human serum samples. These findings suggest that the proposed sensing platform will hold great potential for clinical tumor diagnosis and monitoring.
Collapse
Affiliation(s)
- Shan-Shan Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China.
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China.
| |
Collapse
|
4
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
5
|
Ghosh S, Lai JY. Recent advances in the design of intracellular pH sensing nanoprobes based on organic and inorganic materials. ENVIRONMENTAL RESEARCH 2023; 237:117089. [PMID: 37683789 DOI: 10.1016/j.envres.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In the biological system, the intracellular pH (pHi) plays an important role in regulating diverse physiological activities, including enzymatic action, ion transport, cell proliferation, metabolism, and programmed cell death. The monitoring of pH inside living cells is also crucial for studying cellular events such as phagocytosis, endocytosis, and receptor-ligand internalization. Furthermore, some organelles, viz., endosomes and lysosomes, have intracompartmental pH, which is critical for maintaining the stability of protein structure and function. The dysfunction and abnormal pH regulation can result in terminal diseases such as cancer, Alzheimer, and so forth. Therefore, the accuracy of intracellular pH measurement is always the top priority and demands cutting-edge research and analysis. Such techniques, such as Raman spectroscopy and fluorescence imaging, preferably use nanotechnology due to their remarkable advantages, such as a non-invasive approach and providing accuracy, repeatability, and reproducibility. In the past decades, there have been numerous attempts to design and construct non-invasive organic and inorganic materials-based nanoprobes for pHi sensing. For Raman-based techniques, metal nanostructures such as Au/Ag/Cu nanoparticles are utilized to enhance the signal intensity. As for the fluorescence-based studies, the organic-based small molecules, such as dyes, show higher sensitivity toward pH. However, they possess several drawbacks, including high photobleaching rate, and autofluorescence background signals. To this end, there are alternative nanomaterials proposed, including semiconductor quantum dots (QDs), carbon QDs, upconversion nanoparticles, and so forth. Moreover, the fluorescence technique allows for ratiometric measurement of pHi, which as a result, offers a reliable calibration curve. This timely review will critically examine the current progression in the existing nanoprobes. In addition, based on our knowledge and available research findings, we provide a brief future outlook that may advance the state-of-the-art methodologies for pHi sensing.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
6
|
Wang F, Lan Y, Zuo Y. Polysiloxane-Based Molecular Logic Gate for Dual-Channel Visualizing Mitochondrial pH and Sulphite Changes during Cuproptosis. Anal Chem 2023; 95:14484-14493. [PMID: 37713336 DOI: 10.1021/acs.analchem.3c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Intracellular Cu-induced regulated cell death, characterized by the aggregation of lipidizing mitochondrial enzymes, is called cuproptosis. Mitochondria play a vital role in the metabolic regulation of cell injury and stressful immune responses. The pH levels and sulfur dioxide (SO2) content in mitochondria have important indicative roles in the regulation of cuproptosis. However, fluorescent probes that simultaneously detect changes in pH and SO2 in mitochondria during cuprotosis have not been reported. To fill this blank, in this study, we dexterously used functional polysiloxane as a fluorescent platform to propose a molecular logic gate probe P0-pH-SO2 for detecting changes in intramitochondrial pH and SO2 content through a dual-channel mode. In addition, we defined a new function to reflect the cellular state of the elesclomol-induced cuproptosis process based on the input and output of the relevant logic relationship. This new fluorescent molecular logic gate probe P0-pH-SO2 can be rapidly activated by mitochondrial sulfites to induce green fluorescence, while the red fluorescence is quenched with the proton in the mitochondria. Overall, this study developed a novel logic-gated molecular probe that provided a versatile strategy for monitoring the role played by intramitochondrial sulfites and H+ in cuproptosis. This work will open the way to broaden the applications of molecular logic gates and fluorescent polysiloxanes.
Collapse
Affiliation(s)
- Fanfan Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Ying Lan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
7
|
Luo F, Zhu M, Liu Y, Sun J, Gao F. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122574. [PMID: 36905737 DOI: 10.1016/j.saa.2023.122574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Developing nanohybrid composition based fluorescent carbon dots (CDs) for ratiometric detection of copper ions is highly appealing. Herein, a ratiometric sensing platform (GCDs@RSPN) for copper ions detection has been developed by loaded green fluorescence carbon dots (GCDs) on the surface of red emission semiconducting polymer nanoparticles (RSPN) through electrostatic adsorption. The GCDs, featuring abundant amino groups, can selectively bind copper ions to induce the photoinduced electron transfer, leading to fluorescence quenching. A good linearity within the range of 0-100 μM is obtained, and the limit of detection (LOD) is 0.577 μM by using obtained GCDs@RSPN as ratiometric probe to detect copper ion. Moreover, the paper-based sensor derived from GCDs@RSPN was successfully applied for the visual detection of Cu2+.
Collapse
Affiliation(s)
- Fabao Luo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Mengjun Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yizhang Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; Department of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239001, China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
8
|
Dong H, Wang M, Zhao L, Yan M, Zhang H, Qiu S, Shan M, Song Y, Dong X, Zhou Y, Zhang Y, Xu M. Red-emitting carbon dots aggregates-based fluorescent probe for monitoring Cu 2. Mikrochim Acta 2022; 190:12. [PMID: 36478524 DOI: 10.1007/s00604-022-05543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
R-CDAs have been synthesized in a one-pot solvothermal procedure starting from 3,4-diaminobenzoic acid in an acidic medium. Transmission electron microscopy (TEM) revealed that R-CDAs nanoparticles exhibited a much larger diameter of 7.2-28.8 nm than traditional monodisperse carbon dots. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) revealed the presence of polar functional groups (hydroxyl, amino, carboxyl) on the surface of R-CDAs. Upon excitation with visible light (550 nm), R-CDAs emit stable, red fluorescence with a maximum at 610 nm. Under the optimum conditions, Cu2+ ions quench the fluorescence of this probe, and the signal is linear in a concentration range of copper ions between 5 and 600 nM with the detection limit of only 0.4 nM. Recoveries from 98.0 to 105.0% and relative standard deviations (RSD) from 2.8 to 4.5% have been obtained for detection of Cu2+ in real water samples. Furthermore, the R-CDAs fluorescent probe showed negligible cytotoxicity toward HeLa cells and good bioimaging ability, suggesting its potential applicability as a diagnostic tool in biomedicine.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Meng Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Minmin Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hanbing Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shiyi Qiu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Mengxin Shan
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yiwen Song
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xintong Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China. .,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Leng X, Wang D, Mi Z, Zhang Y, Yang B, Chen F. Novel Fluorescence Probe toward Cu2+ Based on Fluorescein Derivatives and Its Bioimaging in Cells. BIOSENSORS 2022; 12:bios12090732. [PMID: 36140117 PMCID: PMC9496130 DOI: 10.3390/bios12090732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Copper is an important trace element that plays a crucial role in various physiological and biochemical processes in the body. The level of copper content is significantly related to many diseases, so it is very important to establish effective and sensitive methods for copper detection in vitro and vivo. Copper-selective probes have attracted considerable interest in environmental testing and life-process research, but fewer investigations have focused on the luminescence mechanism and bioimaging for Cu2+ detection. In the current study, a novel fluorescein-based A5 fluorescence probe is synthesized and characterized, and the bioimaging performance of the probe is also tested. We observed that the A5 displayed extraordinary selectivity and sensitivity properties to Cu2+ in contrast to other cations in solution. The reaction between A5 and Cu2+ could accelerate the ring-opening process, resulting in a new band at 525 nm during a larger pH range. A good linearity between the fluorescence intensity and concentrations of Cu2+, ranging from 0.1 to 1.5 equivalent, was observed, and the limit detection of A5 to Cu2+ was 0.11 μM. In addition, the Job’s plot and mass spectrum showed that A5 complexed Cu2+ in a 1:1 manner. The apparent color change in the A5–Cu2+ complex under ultraviolet light at low molar concentrations revealed that A5 is a suitable probe for the detection of Cu2+. The biological test results show that the A5 probe has good biocompatibility and can be used for the cell imaging of Cu2+.
Collapse
Affiliation(s)
- Xin Leng
- College of Life Sciences, Northwest University, Xi’an 710069, China
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Du Wang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Zhaoxiang Mi
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
| | - Yuchen Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Bingqin Yang
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| |
Collapse
|
10
|
Hu X, Wu H, Zhang Q, Gao F. Dual-emission carbonized polymer dots for ratiometric sensing and imaging of L-lysine and pH in live cell and zebrafish. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Deb Roy JS, Chowdhury D, Sanfui MH, Hassan N, Mahapatra M, Ghosh NN, Majumdar S, Chattopadhyay PK, Roy S, Singha NR. Ratiometric pH Sensing, Photophysics, and Cell Imaging of Nonaromatic Light-Emitting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:2990-3005. [PMID: 35579235 DOI: 10.1021/acsabm.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, four nontraditional fluorescent polymers (NTFPs) of varying N,N-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (NTFP1), 4:1 (NTFP2), 8:1 (NTFP3), and 16:1 (NTFP4), are prepared via random polymerization in water. The maximum fluorescence enhancement of NTFP3 makes it suitable for ratiometric pH sensing, Cu(II) sensing, and pH-dependent cell imaging of Madin-Darby canine kidney (MDCK) cells. The oxygen donor functionalities of NTFP3 involved in binding and sensing with Cu(II) ions are studied by absorption, emission, electron paramagnetic resonance, Fourier transform infrared (FTIR), and O1s/Cu2p X-ray photoelectron spectroscopies (XPS). The spectral responses of the ratiometric pH sensor within 1.5-11.5 confirm 22 and 44 nm red shifts in absorption and ratiometric emission, respectively. The striking color changes from blue (436 nm) to green (480 nm) via an increase in pH are thought to be the stabilization of the charged canonical form of tertiary amide, i.e., -C(O-)═N+(CH3)2, realized from the changes in the absorption/fluorescence spectra and XPS/FTIR analyses. The through-space n-π* interactions in the NTFP3 aggregate, N-branching-associated rigidity, and nonconventional intramolecular hydrogen bondings of adjacent NTFP3 moieties in the NTFP3 aggregate contribute to aggregation-enhanced emissions (AEEs). Here, structures of NTFP3, NTFP3 aggregate, and Cu(II)-NTFP3; absorption; n-π* interactions; hydrogen bondings; AEEs; and binding with Cu(II) are ascertained by density functional theory, time-dependent density functional theory, and reduced density gradient calculations. The excellent limits of detection and Stern-Volmer constants of NTFP3 are 2.24 nM/0.14234 ppb and 4.26 × 103 M-1 at pH = 6.5 and 0.95 nM/0.06037 ppb and 4.90 × 103 M-1 at pH = 8.0, respectively. Additionally, the Stokes shift and binding energy of NTFP3 are 13,636 cm-1/1.69 eV and -4.64 eV, respectively. The pH-dependent MDCK cell imaging ability of noncytotoxic NTFP3 is supported via fluorescence imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| |
Collapse
|
12
|
Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Anal Bioanal Chem 2022; 414:5087-5103. [DOI: 10.1007/s00216-021-03792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/17/2023]
|
13
|
Cao J, Xie M, Gao X, Zhang Z, Wang J, Zhou W, Guan W, Lu C. Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Anal Chem 2021; 93:15159-15166. [PMID: 34736318 DOI: 10.1021/acs.analchem.1c03629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular pH homeostasis is essential for the survival and function of biological cells. Negatively charged molecular probes, such as pyranine (HPTS), tend to exhibit poor salt tolerance and unsatisfactory cell permeability, limiting their widespread use in intracellular assays. Herein, we explored a charge neutralization strategy using multicharged cationic nanocarriers for an efficient and stable assembly with the pH-sensitive HPTS. Through immobilization and neutralization with poly(allylamine hydrochloride)-stabilized red-emitting gold nanoclusters (PAH-AuNCs), the resulting nanoprobes (HPTS-PAH-AuNCs) offered improved salt tolerance, satisfactory cell permeability, and dual-emission properties. The fluorescence ratio exhibited a linear response over the pH range of 3.0-9.0. Moreover, the proposed HPTS-PAH-AuNCs were successfully applied to determine and visualize lysosomal pH variations in living cells, which indicated great potential for biosensing and bioimaging applications in living systems. Benefiting from the charge neutralization strategy, various types of probes can be expected to achieve broader analytical applications.
Collapse
Affiliation(s)
- Jiating Cao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Meiting Xie
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhuoyong Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Dong H, Zhao L, Zhou Y, Wei X, Xu C, Zhang Y, Xu M. Novel Self-Calibrating Amperometric and Ratiometric Electrochemical Nanotip Microsensor for pH Measurement in Rat Brain. Anal Chem 2021; 93:13815-13822. [PMID: 34609844 DOI: 10.1021/acs.analchem.1c02436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain pH has been proven to be a key factor in maintaining normal brain function. The relationship between local pH fluctuation and brain disease has not been extensively studied due to lack of the accurate in situ analysis technology. Herein, we have for the first time proposed a voltammetric pH sensor by measuring the ratio of current signals instead of the previously reported potential based on the Nernst equation. Single-walled carbon nanotubes (CNT) were first self-assembled on the electrode surface of a carbon-fiber nanotip electrode (CFNE). Then, poly-o-phenylenediamine (PoPD) molecules were deposited as pH-responsive molecules through in situ electrochemical polymerization. The compact CFNE/CNT/PoPD exhibited a good redox process with the on-off-on ratiometric electrochemical response to pH ranging from 4.5 to 8.2, providing self-correction for in situ pH detection. Thus, the proposed sensor enabled the accurate measurement of pH with excellent selectivity even in the presence of proteins or electroactive species. In addition, the sensor showed high repeatability, reproducibility, and reversibility in measuring pH and even demonstrated good stability when it was exposed to air for 5 months. Finally, we successfully detected the fluctuation of pH in rat brains with cerebral ischemia and rat whole blood. Overall, this research not only provides a good tool for the detection of rat brain pH but also provides a new strategy for further designing nanosensors for intracellular or subcellular pH.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Cuicui Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
15
|
Xu M, Harmon J, Yuan D, Yan S, Lei C, Hiramatsu K, Zhou Y, Loo MH, Hasunuma T, Isozaki A, Goda K. Morphological Indicator for Directed Evolution of Euglena gracilis with a High Heavy Metal Removal Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7880-7889. [PMID: 33913704 DOI: 10.1021/acs.est.0c05278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past few decades, microalgae-based bioremediation methods for treating heavy metal (HM)-polluted wastewater have attracted much attention by virtue of their environment friendliness, cost efficiency, and sustainability. However, their HM removal efficiency is far from practical use. Directed evolution is expected to be effective for developing microalgae with a much higher HM removal efficiency, but there is no non-invasive or label-free indicator to identify them. Here, we present an intelligent cellular morphological indicator for identifying the HM removal efficiency of Euglena gracilis in a non-invasive and label-free manner. Specifically, we show a strong monotonic correlation (Spearman's ρ = -0.82, P = 2.1 × 10-5) between a morphological meta-feature recognized via our machine learning algorithms and the Cu2+ removal efficiency of 19 E. gracilis clones. Our findings firmly suggest that the morphology of E. gracilis cells can serve as an effective HM removal efficiency indicator and hence have great potential, when combined with a high-throughput image-activated cell sorter, for directed-evolution-based development of E. gracilis with an extremely high HM removal efficiency for practical wastewater treatment worldwide.
Collapse
Affiliation(s)
- Muzhen Xu
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dan Yuan
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sheng Yan
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cheng Lei
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa 243-0435, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yuqi Zhou
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mun Hong Loo
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Hyogo, Kobe 657-8501, Japan
| | - Akihiro Isozaki
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa 243-0435, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Lian Y, Lin Z, Zhang Z, Wang XD. Active-Targeting Polymeric Dual Nanosensor for Ratiometrically Measuring Proton and Oxygen Concentrations in Mitochondria. Anal Chem 2021; 93:8291-8299. [PMID: 34082526 DOI: 10.1021/acs.analchem.1c01156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysfunction of mitochondria is closely related to neurodegenerative diseases, heart diseases, cancers, and so on. Because both proton and oxygen participate in vital biochemical reactions occurring in mitochondria such as adenosine triphosphate (ATP) generation, measuring proton and oxygen concentrations in mitochondria is therefore crucial for monitoring mitochondria activities and understanding cellular behavior. For this purpose, we developed a ratiometric fluorescent nanosensor for simultaneously sensing and imaging O2 and pH in mitochondria. The steps are as follows: (1) Styrene was copolymerized with 2-aminoethyl methacrylate hydrochloride to produce amino-functionalized polymer nanoparticles. (2) The reference dye rhodamine B isothiocyanate (RBITC) and oxygen-sensitive dye platinum(II) octaethylporphyrin (PtOEP) were encapsulated into a polymer sphere during polymerization, while the pH indicator fluorescein isothiocyanate (FITC) and mitochondrial-targeting molecule (3-carboxypropyl)triphenylphosphonium bromide (TPP) were further modified on the surface of the nanoparticles. The developed nanosensor shows a narrow distribution of particle size, high sensitivity toward O2 and pH, excellent stability, and low cytotoxicity. These remarkable features of the dual nanosensor render them capable of real-time sensing and imaging of O2 and pH in mitochondria with high spatial resolution. Applying the mitochondrial-targeted dual nanosensor in HeLa cells, we quantitatively measured and imaged mitochondrial proton and oxygen concentration variations after carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment.
Collapse
Affiliation(s)
- Ying Lian
- Department of Chemistry, Fudan University, 200438 Shanghai, P. R. China
| | - Zhenzhen Lin
- Department of Chemistry, Fudan University, 200438 Shanghai, P. R. China
| | - Zeyu Zhang
- Department of Chemistry, Fudan University, 200438 Shanghai, P. R. China
| | - Xu-Dong Wang
- Human Phenome Institute, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
17
|
Recent advances in development of devices and probes for sensing and imaging in the brain. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Soleymani J, Shafiei-Irannejad V, Hamblin MR, Hasanzadeh M, Somi MH, Jouyban A. Applications of advanced materials in bio-sensing in live cells: Methods and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111691. [PMID: 33579435 DOI: 10.1016/j.msec.2020.111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022]
Abstract
A wide variety of species, such as different ions, reactive oxygen species, and biomolecules play critical roles in many cell functions. These species are responsible for a range of cellular functions such as signaling, and disturbed levels could be involved in many diseases, such as diabetes, cancer, neurodegeneration etc. Thus, sensitive and specific detection methods for these biomarkers could be helpful for early disease detection and mechanistic investigations. New ultrasensitive sensors for detection of markers within living cells are a growing field of research. The present review provides updates in live cell-based biosensing, which have been published within the last decade. These sensors are mainly based on carbon, gold and other metals, and their physicochemical advantages and limitations are discussed. Advanced materials can be incorporated into probes for the detection of various analytes in living cells. The sensitivity is strongly influenced by the intrinsic properties of the nanomaterials as well their shape and size. The mechanisms of action and future challenges in the developments of new methods for live cell based biosensing are discussed.
Collapse
Affiliation(s)
- Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad H Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Intrinsic dual-emissive carbon dots for efficient ratiometric detection of Cu 2+ and aspartic acid. Anal Chim Acta 2021; 1144:26-33. [PMID: 33453794 DOI: 10.1016/j.aca.2020.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
Herein, novel intrinsic dual-emitting carbon dots (CDs) are prepared through a one-step hydrothermal treatment of glucose and 3-nitroaniline in sulfuric acid solution and utilized for ratiometric determination of Cu2+ and aspartic acid (Asp). The CDs exhibited an interesting pH-switchable emission behavior displaying an intrinsic dual-emitting peak with emission maxima at 400 and 610 nm at pH 4.0-5.0. The presence of Cu2+ intensively quenched the first emission peak at 400 nm, but it had a negligible effect on the second emission peak. The ratiometric signal displayed a high selectively for Cu2+ over other metal ions and provided a linear response over the concentration range of 0.01-1.00 μM with a detection limit of 7.0 nM. Moreover, at pH 4.0, Asp was able to restore the quenched fluorescence of the CDs-Cu2+ system with a much more successful performance than other amino acids. This on-off-on fluorescence behavior provided a selective ratiometric fluorescence method for the determination of Asp in the concentration range of 0.2-15 μM. The acceptable detection results for Cu2+ in a river water sample (compared to Inductively Coupled Plasma (ICP) method) and for Asp in human serum samples confirmed the potential application of this ratiometric nanoprobe for sensing in real samples.
Collapse
|
20
|
Le Guern F, Mussard V, Gaucher A, Rottman M, Prim D. Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications. Int J Mol Sci 2020; 21:E9217. [PMID: 33287208 PMCID: PMC7729466 DOI: 10.3390/ijms21239217] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Potential of hydrogen (pH) is one of the most relevant parameters characterizing aqueous solutions. In biology, pH is intrinsically linked to cellular life since all metabolic pathways are implicated into ionic flows. In that way, determination of local pH offers a unique and major opportunity to increase our understanding of biological systems. Whereas the most common technique to obtain these data in analytical chemistry is to directly measure potential between two electrodes, in biological systems, this information has to be recovered in-situ without any physical interaction. Based on their non-invasive optical properties, fluorescent pH-sensitive probe are pertinent tools to develop. One of the most notorious pH-sensitive probes is fluorescein. In addition to excellent photophysical properties, this fluorophore presents a pH-sensitivity around neutral and physiologic domains. This review intends to shed new light on the recent use of fluorescein as pH-sensitive probes for biological applications, including targeted probes for specific imaging, flexible monitoring of bacterial growth, and biomedical applications.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Vanessa Mussard
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Anne Gaucher
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Martin Rottman
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France;
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
| | - Damien Prim
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| |
Collapse
|
21
|
Zhu C, Liu D, Li Y, Ma S, Wang M, You T. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosens Bioelectron 2020; 174:112654. [PMID: 33262061 DOI: 10.1016/j.bios.2020.112654] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
The simultaneous detection of multiple mycotoxins in grains is significant due to the enhanced toxicity induced by their synergistic effects. In this work, a dual-ratiometric electrochemical aptasensing strategy for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. Here, an anthraquinone-2-carboxylic acid (AQ)-labelled complementary DNA (cDNA) was used to provide separate and specific binding sites to assemble the ferrocene-labelled AFB1 aptamer (Fc-Apt1) and methylene blue-labelled OTA aptamer (MB-Apt2). The target-induced current ratios of IFc/IAQ and IMB/IAQ were then used to quantitatively relate to AFB1 and OTA, respectively. Following this principle, two types of aptasensors involving the hairpin DNA (hDNA) and linear single-stranded DNA (ssDNA) as the cDNA were fabricated for performance comparisons. The results revealed that hairpin DNA with a rigid 2D structure can greatly improve the assembly and recognition efficiency of the sensing interface, which makes the hDNA-based aptasensor possess high sensitivity, reliability and anti-interference ability. The hDNA-based aptasensor exhibited a detection range of 10-3000 pg mL-1 for AFB1 and 30-10000 pg mL-1 for OTA, respectively, with no observable cross-reactivity. Furthermore, the aptasensor was applied to analyze corn and wheat samples, and the reliability was validated by HPLC-MS/MS. Our work has presented a novel way for fabricating a high-performance aptasensor for simultaneous detection of multiple mycotoxins.
Collapse
Affiliation(s)
- Chengxi Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuai Ma
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China; Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing, 100097, China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing, 100097, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
22
|
Lei L, Li M, Wu S, Xu Z, Geng P, Tian Y, Fu Y, Zhang W. Noninvasive In Situ Ratiometric Imaging of Biometals Based on Self-Assembled Peptide Nanoribbon. Anal Chem 2020; 92:5838-5845. [PMID: 32237737 DOI: 10.1021/acs.analchem.9b05490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of probes for accurate sensing and imaging of biometals in situ is still a growing interest owing to their crucial roles in cellular metabolism, neurotransmission, and apoptosis. Among them, Zn2+ and Cu2+ are two important cooperative biometals closely related to Alzheimer's disease (AD). Herein, we developed a multifunctional probe based on self-assembling peptide nanoribbon for ratiometric sensing of Zn2+, Cu2+, or Zn2+ and Cu2+ simultaneously. Uniform peptide nanoribbon (AQZ@NR) was rationally designed by coassembling a Zn2+-specific ligand AQZ-modified peptide (AQZKL-7) with peptide KL-7. The nanoribbon further combined with Cu2+-sensitive near-infrared quantum dots (NIR QDs) and Alexa Fluor 633 as an inner reference molecule, which was endowed with the capability for ratiometric Zn2+ and Cu2+ imaging at the same time. The peptide-based probe exhibited good specificity to Zn2+ and Cu2+ without interference from other ions. Importantly, the nanoprobe was successfully applied for noninvasive Zn2+ and Cu2+ monitoring in both living cells and zebrafish via multicolor fluorescence imaging. This gives insights into the dynamic Zn2+ and Cu2+ distribution in an intracellular and in vivo mode, as well as understanding the neurotoxicity of high concentration of Zn2+ and Cu2+. Therefore, the self-assembled nanoprobe shows great promise in multiplexed detection of many other biometals and biomolecules, which will benefit the diagnosis and treatment of AD in clinical applications.
Collapse
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Sufen Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Shu T, Sun Y, Bai Y, Lin X, Zhou Z, Su L, Zhang X. Rational Design of "Three-in-One" Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. ACS OMEGA 2020; 5:8943-8951. [PMID: 32337458 PMCID: PMC7178766 DOI: 10.1021/acsomega.0c00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Recently, multiplexed ratiometric fluorescence sensors for detecting several analytes have received much interest because of their multifunctionality. Here, we fabricate a novel trinity fluorescent nanoprobe in which one small-molecule fluorophore, blue-emissive dityrosine (diTyr) residues, and two nanomaterial fluorophores, green-emissive CdS quantum dots (CdSQDs) and red-emissive gold nanoclusters (AuNCs), are cocaged in a bovine serum albumin (BSA) molecule. The large differences of Stokes shifts among diTyr residues, CdSQDs, and AuNCs ensure their emission at a single excitation wavelength. The nanoprobes can be facilely integrated using two-step synthetic reactions. DiTyr residues and AuNCs are formed and bound to the protein cage through the redox reaction between Au3+ and tyrosine residues of BSA, and the CdSQDs are followed to be conjugated to the modified BSA cage-templated CdS combination reaction. With established benign biocompatibility, the nanoprobes can ratiometrically detect intracellular glutathione by significantly enhancing the green emission of the conjugated CdSQDs. Likewise, the ratiometric sensing of solution alkalinity and tris(2-carboxyethyl)phosphine can be achieved using blue-emitted diTyr residues and red-emitted AuNCs as the responsive units, respectively, and the corresponding other two fluorophores as the reference signals. This study addresses a concept of trinity fluorescence ratiometric sensing system with multiple targets and optional references, which should be a promising pathway to meet the challenges from complexing biochemical environments and multivariate analysis.
Collapse
Affiliation(s)
- Tong Shu
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yunlong Bai
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiangfang Lin
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ziping Zhou
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
- School
of Biomedical Engineering, Shenzhen University
Health Science Center, Shenzhen, Guangdong 518060, China
| |
Collapse
|
24
|
Lin Q, Li Z, Ji C, Yuan Q. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. NANOSCALE ADVANCES 2020; 2:1380-1394. [PMID: 36132298 PMCID: PMC9417836 DOI: 10.1039/c9na00817a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/13/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.
Collapse
Affiliation(s)
- Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
25
|
Zhang Y, Wang W, Li R, Zhang E, Li Z, Tang L, Han B, Hou X, Wang JJ. A novel rhodamine-based colorimetric and fluorometric probe for simultaneous detection of multi-metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118050. [PMID: 31955119 DOI: 10.1016/j.saa.2020.118050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Effective and simultaneous detection of multi-metal ions has been achieved by a colorimetric and fluorometric probe (REHBA) synthesized from rhodamine hydrazide and polyhydroxyl aromatic aldehyde. REHBA can serve as a colorimetric detector for Cu2+ and Co2+, and a fluorometric probe for Pb2+. The colorless solution of REHBA changes to pink for Cu2+/Co2+ and shows a remarkable fluorescence for Pb2+. The further differentiation of Cu2+ and Co2+ depends on whether the colorimetric response of REHBA is reversible upon addition of ethylene diamine tetraacetic acid. The response is reversible for Cu2+, while it is not for Co2+. The spirolactam ring-opening in REHBA and the formation of REHBA-metal complexes with binding stoichiometric ratio of 1:1 are responsible for the UV-visible and fluorescence behaviors. REHBA shows excellent selectivity, anti-interference and good sensitivity. The limit of detection of Cu2+, Co2+ and Pb2+ is 0.11 μM, 0.88 μM and 0.73 μM, respectively. In addition, REHBA has been applied to recognize Pb2+ in living cells by fluorescence image and Cu2+, Co2+ and Pb2+ in real water samples, indicating that REHBA is a potential candidate for multi-metal-ions detection.
Collapse
Affiliation(s)
- Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Wang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Ensheng Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Zhonghua Li
- Yan'an Water Environmental Protection Group Water Supply Co. LTD, Yan'an, Shaanxi 716000, PR China
| | - Long Tang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiufang Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| |
Collapse
|
26
|
Wu X, Wu P, Gu M, Xue J. Ratiometric fluorescent probe based on AuNCs induced AIE for quantification and visual sensing of glucose. Anal Chim Acta 2020; 1104:140-146. [DOI: 10.1016/j.aca.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 01/23/2023]
|
27
|
Zhang Q, Sun J, Zhang R, Chen X, Chen N, Gao F. Trichromatic-emission and dual-ratio semiconducting polymer dots as fluorescent probe for simultaneous quantification of Cu2+ and pH in vitro and in vivo. Chem Commun (Camb) 2020; 56:8647-8650. [DOI: 10.1039/d0cc01811b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymer dots emitting in the red, green and blue color regions, have been successfully applied as lysosome-targeting nanoprobes for the simultaneous detection and multicolor imaging of pH and Cu2+ in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Rongchao Zhang
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Xueli Chen
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Ningning Chen
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| |
Collapse
|
28
|
Bagheri S, TermehYousefi A, Mehrmashhadi J. Carbon dot-based fluorometric optical sensors: an overview. REV INORG CHEM 2019. [DOI: 10.1515/revic-2019-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractFluorescent carbon dots (CDs) are a new class of carbon nanomaterials and have demonstrated excellent optical properties, good biocompatibility, great aqueous solubility, low cost, and simple synthesis. Since their discovery, various synthesis methods using different precursors were developed, which were mainly classified as top-down and bottom-up approaches. CDs have presented many applications, and this review article mainly focuses on the development of CD-based fluorescent sensors. The sensing mechanisms, sensor design, and sensing properties to various targets are summarized. Broad ranges of detection, including temperature, pH, DNA, antibiotics, cations, cancer cells, and antibiotics, have been discussed. In addition, the challenges and future directions for CDs as sensing materials are also presented.
Collapse
Affiliation(s)
- Samira Bagheri
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Amin TermehYousefi
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Javad Mehrmashhadi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
29
|
Yang YZ, Xiao N, Cen YY, Chen JR, Liu SG, Shi Y, Fan YZ, Li NB, Luo HQ. Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117300. [PMID: 31284240 DOI: 10.1016/j.saa.2019.117300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Copper is an essential mineral nutrient for the human body. However, excessive levels of copper accumulated in the body can cause some diseases. Therefore, it is great significant to establish a sensitive bioprobe to recognize copper ions (Cu2+) in vivo. In our work, nitrogen-doped carbon dots (N-CDs) and gold nanoclusters (Au NCs) are selected as luminescent nanomaterials and the Au NCs/N- CDs nanohybrids is successfully synthesized by coupling method. The Au NCs/N-CDs exhibited characteristic dual-emission peaks at 450 and 620 nm when excited by a single-wavelength of 380 nm. When different amounts of Cu2+ are introduced, the fluorescence intensity of the Au NCs is gradually weakened and fluorescence intensity of the N-CDs is almost unchanged, which can facilitate the visual detection of Cu2+. The Au NCs/N-CDs nanohybrid possesses good selectivity to Cu2+ with a limit of detection (LOD) is 3.5 μM and linear detection range of 10-150 μM. Visualization detection of Cu2+ is implemented by using nanoprobe in water samples. Furthermore, the ratiometric nanoprobe is utilized to the toxicity test of liver cancer cells, indicating excellent biocompatibility and low toxicity. This nanoprobe has been used to the intracellular fluorescence imaging. Moreover, this method is expected to be used to monitor the changes of Cu2+ concentration in hepatocytes.
Collapse
Affiliation(s)
- Yu Zhu Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Na Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Yan Cen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563000, PR China
| | - Jing Rong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shi Gang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan Shi
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Zhu Fan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
31
|
Lin Q, Li Z, Yuan Q. Recent advances in autofluorescence-free biosensing and bioimaging based on persistent luminescence nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Farahmand Nejad MA, Hormozi-Nezhad MR. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal Chim Acta 2019; 1079:30-58. [PMID: 31387719 DOI: 10.1016/j.aca.2019.06.035] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective internal referencing which improves the sensitivity of the detection. The self-calibration, together with the unique optophysical properties of nanoparticles (NPs) have made the ratiometric fluorescent nanoprobes more sensitive and reliable, which in turn, can result in more precise visual detection of the analytes. Over the past few years, a vast number of ratiometric sensing probes using nanostructured fluorophores have been designed and reported for a wide variety of sensing, imaging, and biomedical applications. In this work, a review on the NP-based ratiometric fluorescent sensors has been presented to meticulously elucidate their development, advances and challenges. With a special emphasis on visual detection, the most important steps in the design of fluorescent ratiometric nanoprobes have been given and based on different classes of analytes, recent applications of fluorescent ratiometric nanoprobes have been summarized. The challenges for the future use of the technique investigated in this review have been also discussed.
Collapse
Affiliation(s)
- Arafeh Bigdeli
- Chemistry Department, Sharif University of Technology, Tehran, 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Forough Ghasemi
- Chemistry Department, Sharif University of Technology, Tehran, 11155-9516, Iran; Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran
| | | | - Maryam Shahrajabian
- Chemistry Department, Sharif University of Technology, Tehran, 11155-9516, Iran
| | | | - Somayeh Jafarinejad
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | | | - M Reza Hormozi-Nezhad
- Chemistry Department, Sharif University of Technology, Tehran, 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 11155-9516, Iran.
| |
Collapse
|
33
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
35
|
Wan X, Zhang X, Pan W, Liu B, Yu L, Wang H, Li N, Tang B. Ratiometric Fluorescent Quantification of the Size-Dependent Cellular Toxicity of Silica Nanoparticles. Anal Chem 2019; 91:6088-6096. [DOI: 10.1021/acs.analchem.9b00633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Xinhao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Longhai Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Honghong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
36
|
Deng W, Sun P, Fan Q, Zhang L, Minami T. Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1791-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Zhao C, Chen J, Cao D, Wang J, Ma W. Novel coumarin-based containing denrons selective fluorescent chemosesor for sequential recognition of Cu2+ and PPi. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Q-graphene-scaffolded covalent organic frameworks as fluorescent probes and sorbents for the fluorimetry and removal of copper ions. Anal Chim Acta 2019; 1057:88-97. [PMID: 30832922 DOI: 10.1016/j.aca.2018.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022]
Abstract
Metal-free fluorescent covalent organic frameworks (COFs) were synthesized initially with Q-Graphene (QG) scaffolds by the one-step covalent reactions of melamine-aldehyde and phenol-aldehyde poly-condensations using paraformaldehyde. It was discovered that onion-like hollow QG, which consists of multi-layer graphene and different carbon allotropes having a high proportion of folded edges and surface defects, could endow the scaffolded COFs with enhanced green fluorescence and environmental stability. Unexpectedly, they could exhibit the powerful absorption for Cu2+ ions resulting in the specific quenching of fluorescence. A fluorimetric strategy with QG-scaffolded COFs was thereby developed to probe Cu2+ ions separately in blood and wastewater with the linear concentration ranges of 0.0010-10.0 μM (limit of detection of 0.50 nM) and 0.0032-32.0 μM (limit of detection of 2.4 nM), respectively, promising the potential applications for the field-applicable monitoring of Cu2+ ions in the clinical and environmental analysis fields. In addition, the prepared COFs sorbents were employed to absorb Cu2+ ions in wastewater showing high removal efficiency. More importantly, such an one-pot fabrication route with hollow QG scaffolds may be tailorable extensively for the preparation of a variety of metal-free multifunctional COFs with enhanced fluorescence, water solubility, environmental stability, and metal removal capability.
Collapse
|
39
|
Liu Z, Jing X, Zhang S, Tian Y. A Copper Nanocluster-Based Fluorescent Probe for Real-Time Imaging and Ratiometric Biosensing of Calcium Ions in Neurons. Anal Chem 2019; 91:2488-2497. [DOI: 10.1021/acs.analchem.8b05360] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Xia Jing
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| |
Collapse
|
40
|
Zou WS, Deng MY, Wang YQ, Zhao X, Li WH, Huang XH. Alginate capped and manganese doped ZnS quantum dots as a phosphorescent probe for time-resolved detection of copper(II). Mikrochim Acta 2018; 186:41. [DOI: 10.1007/s00604-018-3165-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/09/2018] [Indexed: 01/03/2023]
|
41
|
A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular pH values and temperature. Mikrochim Acta 2018; 185:533. [DOI: 10.1007/s00604-018-3040-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
42
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
43
|
Wang Q, Wu S, Tan Y, Yan Y, Guo L, Tang X. A highly selective, fast-response and fluorescent turn on chemosensor for the detection of Cu 2+ ions and its potential applications. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Liu Z, Wang S, Li W, Tian Y. Bioimaging and Biosensing of Ferrous Ion in Neurons and HepG2 Cells upon Oxidative Stress. Anal Chem 2018; 90:2816-2825. [DOI: 10.1021/acs.analchem.7b04934] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shengnan Wang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Wanying Li
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
45
|
Li S, Tian Y. An Electrochemical Biosensor with Dual Signal Outputs for Ratiometric Monitoring the Levels of H2
O2
and pH in the Microdialysates from a Rat Brain. ELECTROANAL 2018. [DOI: 10.1002/elan.201700684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shuai Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 People's Republic of China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 People's Republic of China
| |
Collapse
|
46
|
Zhou JX, Ding F, Tang LN, Li T, Li YH, Zhang YJ, Gong HY, Li YT, Zhang GJ. Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst 2018; 143:4469-4475. [DOI: 10.1039/c8an01149d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monitoring the dynamic pH changes in vivo remains very essential to comprehend the function of pH in various physiological processes.
Collapse
Affiliation(s)
- Jin-Xiu Zhou
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Fan Ding
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Li-Na Tang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Teng Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yun-Hui Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yu-Jie Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Hao-Yue Gong
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yu-Tao Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Guo-Jun Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| |
Collapse
|
47
|
Finnerty NJ, Bolger FB. A platinum oxide-based microvoltammetric pH electrode suitable for physiological investigations. Analyst 2018; 143:3124-3133. [DOI: 10.1039/c8an00631h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the in vitro investigation of a physiologically relevant Pt oxide-based microvoltammetric pH electrode.
Collapse
|
48
|
|
49
|
Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X. Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Anal Chem 2017; 89:13626-13633. [DOI: 10.1021/acs.analchem.7b04211] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Song
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Wenxiu Duan
- School
of Life Sciences, University of Science and Technology of China, Hefei, 230027, People’s Republic of China
| | - Yinghua Liu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zhongju Ye
- College
of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Yonglei Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hongli Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shengda Qi
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jiang Wu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Dan Liu
- School
of Life Sciences, University of Science and Technology of China, Hefei, 230027, People’s Republic of China
| | - Lehui Xiao
- College
of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Cuiling Ren
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xingguo Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
50
|
Li S, Zhu A, Zhu T, Zhang JZH, Tian Y. Single Biosensor for Simultaneous Quantification of Glucose and pH in a Rat Brain of Diabetic Model Using Both Current and Potential Outputs. Anal Chem 2017; 89:6656-6662. [DOI: 10.1021/acs.analchem.7b00881] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuai Li
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Anwei Zhu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Tong Zhu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - John Z. H. Zhang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yang Tian
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|