1
|
Limpikirati PK, Mongkoltipparat S, Denchaipradit T, Siwasophonpong N, Pornnopparat W, Ramanandana P, Pianpaktr P, Tongchusak S, Tian MT, Pisitkun T. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics. J Pharm Anal 2024; 14:100916. [PMID: 39035218 PMCID: PMC11259812 DOI: 10.1016/j.jpha.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 07/23/2024] Open
Abstract
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
Collapse
Affiliation(s)
- Patanachai K. Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sorrayut Mongkoltipparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Thinnaphat Denchaipradit
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nathathai Siwasophonpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Wudthipong Pornnopparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Parawan Ramanandana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Phumrapee Pianpaktr
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Songsak Tongchusak
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Maoxin Tim Tian
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Yu K, Niu M, Wang H, Li Y, Wu Z, Zhang B, Haroutunian V, Peng J. Global Profiling of Lysine Accessibility to Evaluate Protein Structure Changes in Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:936-945. [PMID: 33683887 PMCID: PMC8255072 DOI: 10.1021/jasms.0c00450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The linear sequence of amino acids in a protein folds into a 3D structure to execute protein activity and function, but it is still challenging to profile the 3D structure at the proteome scale. Here, we present a method of native protein tandem mass tag (TMT) profiling of Lys accessibility and its application to investigate structural alterations in human brain specimens of Alzheimer's disease (AD). In this method, proteins are extracted under a native condition, labeled by TMT reagents, followed by trypsin digestion and peptide analysis using two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). The method quantifies Lys labeling efficiency to evaluate its accessibility on the protein surface, which may be affected by protein conformations, protein modifications, and/or other molecular interactions. We systematically optimized the amount of TMT reagents, reaction time, and temperature and then analyzed protein samples under multiple conditions, including different labeling time (5 and 30 min), heat treatment, AD and normal human cases. The experiment profiled 15370 TMT-labeled peptides in 4475 proteins. As expected, the heat treatment led to extensive changes in protein conformations, with 17% of the detected proteome displaying differential labeling. Compared to the normal controls, AD brain showed different Lys accessibility of tau and RNA splicing complexes, which are the hallmarks of AD pathology, as well as proteins involved in transcription, mitochondrial, and synaptic functions. To eliminate the possibility that the observed differential Lys labeling was caused by protein level change, the whole proteome was quantified with standard TMT-LC/LC-MS/MS for normalization. Thus, this native protein TMT method enables the proteome-wide measurement of Lys accessibility, representing a straightforward strategy to explore protein structure in any biological system.
Collapse
Affiliation(s)
- Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multi-scale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY 10468, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
4
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
5
|
Madsen JA, Farutin V, Lin YY, Smith S, Capila I. Data-independent oxonium ion profiling of multi-glycosylated biotherapeutics. MAbs 2018; 10:968-978. [PMID: 30067433 PMCID: PMC6204843 DOI: 10.1080/19420862.2018.1494106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The characterization of glycosylation is required for many protein therapeutics. The emergence of antibody and antibody-like molecules with multiple glycan attachment sites has rendered glycan analysis increasingly more complicated. Reliance on site-specific glycopeptide analysis is therefore necessary to fully analyze multi-glycosylated biotherapeutics. Established glycopeptide methodologies have generally utilized a priori knowledge of the glycosylation states of the investigated protein(s), database searching of results generated from data-dependent liquid chromatography–tandem mass spectrometry workflows, and extracted ion quantitation of the individual identified species. However, the inherent complexity of glycosylation makes predicting all glycoforms on all glycosylation sites extremely challenging, if not impossible. That is, only the “knowns” are assessed. Here, we describe an agnostic methodology to qualitatively and quantitatively assess both “known” and “unknown” site-specific glycosylation for biotherapeutics that contain multiple glycosylation sites. The workflow uses data-independent, all ion fragmentation to generate glycan oxonium ions, which are then extracted across the entirety of the chromatographic timeline to produce a glycan-specific “fingerprint” of the glycoprotein sample. We utilized both HexNAc and sialic acid oxonium ion profiles to quickly assess the presence of Fab glycosylation in a therapeutic monoclonal antibody, as well as for high-throughput comparisons of multi-glycosylated protein drugs derived from different clones to a reference product. An automated method was created to rapidly assess oxonium profiles between samples, and to provide a quantitative assessment of similarity.
Collapse
Affiliation(s)
- James A Madsen
- a Pharmaceutical Sciences and Research , Momenta Pharmaceuticals , Cambridge , MA , USA
| | - Victor Farutin
- a Pharmaceutical Sciences and Research , Momenta Pharmaceuticals , Cambridge , MA , USA
| | - Yin Yin Lin
- a Pharmaceutical Sciences and Research , Momenta Pharmaceuticals , Cambridge , MA , USA
| | - Stephen Smith
- a Pharmaceutical Sciences and Research , Momenta Pharmaceuticals , Cambridge , MA , USA
| | - Ishan Capila
- a Pharmaceutical Sciences and Research , Momenta Pharmaceuticals , Cambridge , MA , USA
| |
Collapse
|
6
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Holden DD, Brodbelt JS. Ultraviolet Photodissociation of Native Proteins Following Proton Transfer Reactions in the Gas Phase. Anal Chem 2016; 88:12354-12362. [PMID: 28193062 DOI: 10.1021/acs.analchem.6b03565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
8
|
Lakhanpal A, Brahn E. Biosimilars in rheumatic diseases: structural and functional variability that may impact clinical and regulatory decisions. Clin Rheumatol 2016; 35:2869-2875. [PMID: 27714482 DOI: 10.1007/s10067-016-3430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Biologics as therapeutic interventions for human disease represent both a distinctly modern novelty and an echo of ancient, or at least old, medical practice. The similarity lies in the sense that in both the synthetic effort occurs in living organisms (an extract of a plant, animal tissue, or a cell culture) while the difference is apparent in the bioengineering required in modern methods and the corresponding flexibility to customize the therapeutic product. Although the concept of looking to living systems as a source of medically useful compounds either for research or for actual patient care has never vanished, the development of biochemistry and advances in medicinal chemistry made production by total synthesis the standard for a safe, reliable, and commercial drug production at sufficient scale. In this interval was where much of the modern apparatus for approving medical therapies came to be developed, and as such, the most proper extension of the regulatory regime to modern biologics is not entirely obvious. In particular, the notion of generics for off-patent conventional pharmaceuticals and their role in the marketplace with respect to increasing the accessibility of treatment is not congruent with the relationship between what are known as biosimilars and off-patent originating biologics. In this article, we review elements of the scientific basis for challenges in the production, use, and regulation of biosimilars. In light of these advances, we propose suggestions to modify constraints on biosimilar regulations in the interest of patient care and access to therapies.
Collapse
Affiliation(s)
- Amit Lakhanpal
- David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Ernest Brahn
- Division of Rheumatology, David Geffen UCLA School of Medicine, 1000 Veteran Ave., Room 32-59, Los Angeles, CA, 90095-1670, USA.
| |
Collapse
|