1
|
Yan R, Hu L, Mo S. A cyanine-based probe for sensitive and selective detection of mustard gas simulant CEES. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126318. [PMID: 40328056 DOI: 10.1016/j.saa.2025.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
A novel cyanine dye-based probe, Cy3CS, was developed and evaluated for the detection of 2-chloroethyl ethyl sulfide (CEES), a simulant for sulfur mustard which is a notorious chemical warfare agent. The probe demonstrated a substantial (as high as 106-fold) fluorescence enhancement upon reaction with CEES even at low concentrations (0.1-1 mM and 0-100 μM). The detection displayed excellent linear correlation between fluorescence intensity and CEES concentration with high R2 values (0.9954 and 0.9993 for 0.1-1 mM and 0-100 μM, respectively) and low detection limit (0.44 μM). Meanwhile, the detection does not involve base or other additives, which could simply the detection procedure. The selectivity experiments revealed that the probe responded exclusively to CEES among a range of potential interferents, proving the superior specificity. This selectivity is crucial for accurate detection in complex environments, such as soil samples, which were effectively analyzed using our probe. Thus, the Cy3CS probe offers a significant advancement in the detection of chemical warfare agent's simulant, with performance metrics that include excellent sensitivity, selectivity, and simplicity of use, establishing it as a promising tool for environmental monitoring and public health safety.
Collapse
Affiliation(s)
- Ruyu Yan
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Shanyan Mo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Gomez-Dopazo GB, Agosto Nieves RJ, Albarracín Rivera RL, Colon Morera SM, Nazario DR, Ramos I, Dmochowski IJ, Lee D, Bansal V. Cellulose acetate microwell plates for high-throughput colorimetric assays. RSC Adv 2024; 14:15319-15327. [PMID: 38741966 PMCID: PMC11089462 DOI: 10.1039/d4ra01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Single use plasticware (SUP) in scientific, diagnostic, and academic laboratories makes a significant contribution to plastic waste generation worldwide. Polystyrene (PS) microwell plates form a part of this waste. These plates are the backbone of high throughput colorimetric measurements in academic, research, and healthcare settings for detection/quantification of wide-ranging analytes including proteins, carbohydrates, nucleic acids, and enzyme activity. Polystyrene (PS) microwell plates serve as a platform for holding samples and reagents, where mixing initiates chemical reaction(s), and the ensuing color changes are quantified using a microplate reader. However, these plates are rarely reused or recycled, contributing to the staggering amounts of plastic waste generated in scientific laboratories. Here, we are reporting the fabrication of cellulose acetate (CA) microwell plates as a greener alternative to non-biodegradable PS plates and we demonstrate their application in colorimetric assays. These easy to fabricate, lighter weight, customizable, and environmentally friendly plates were fabricated in 96- and 384-well formats and made water impermeable through chemical treatment. The plates were tested in three different colorimetric analyses: (i) bicinchoninic acid assay (BCA) for protein quantification; (ii) chymotrypsin (CT) activity assay; and (iii) alkaline phosphatase (AP) activity assay. Color intensities were quantified using a freely available smartphone application, Spotxel® Reader (Sicasys Software GmbH). To benchmark the performance of this platform, the same assays were performed in commercial PS plates too and quantified using a UV/Vis microplate reader. The two systems yielded comparable linear correlation coefficients, LOD and LOQ values, thereby validating the CA plate-cell phone based analytical method. The CA microwell plates, coupled with smart phone optical data capture, provide greener, accessible, and scalable tools for all laboratory settings and are particularly well-suited for resource- and infrastructure-limited environments.
Collapse
Affiliation(s)
- Gabriela B Gomez-Dopazo
- Department of Chemistry, University of Puerto Rico at Cayey 205 Ave. Antonio R Barcelo Cayey PR-00736 USA
| | - Renis J Agosto Nieves
- Department of Chemistry, University of Puerto Rico at Cayey 205 Ave. Antonio R Barcelo Cayey PR-00736 USA
| | | | - Shaneily M Colon Morera
- Department of Chemistry, University of Puerto Rico at Cayey 205 Ave. Antonio R Barcelo Cayey PR-00736 USA
| | - Daniel Rivera Nazario
- Department of Physics and Electronics, University of Puerto Rico at Humacao CUH Station, 100 Road 908 Humacao PR-00791 USA
| | - Idalia Ramos
- Department of Physics and Electronics, University of Puerto Rico at Humacao CUH Station, 100 Road 908 Humacao PR-00791 USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania 231S, 34th Street Philadelphia PA 19104-6323 USA
| | - Daeyeon Lee
- Department of Chemical & Biomolecular Engineering 220S, 33rd Street Philadelphia PA 19104-6323 USA
| | - Vibha Bansal
- Department of Chemistry, University of Puerto Rico at Cayey 205 Ave. Antonio R Barcelo Cayey PR-00736 USA
| |
Collapse
|
3
|
Li SS, Zhou HT, Li HZ, Zhong LC, Zhang FH, Sun FB, Xue T, Qin ML, Zheng YC. Recent advances in the development of fluorescent sensors for sulfur mustard detection. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:9914-9928. [DOI: 10.1039/d4tc01159g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A comprehensive review of recent developments in the study of sulfur mustard fluorescent sensors, organized according to detection strategies, including direct detection, indicator displacement assay, and degradation product detection.
Collapse
Affiliation(s)
- Sheng-Song Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Hao-Tian Zhou
- Institute of NBC Defence PLA ARMY, Beijing 102205, P. R. China
| | - Hai-Zhen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Lun-Chao Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Fa-Heng Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Fu-Bing Sun
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Tian Xue
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Mo-Lin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China
| |
Collapse
|
4
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
5
|
Bauer M, Duerkop A, Baeumner AJ. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor's applicability in real samples. Anal Bioanal Chem 2023; 415:83-95. [PMID: 36280625 PMCID: PMC9816278 DOI: 10.1007/s00216-022-04363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor's lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor's performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor's likelihood of moving from an academic lab into a real-world product.
Collapse
Affiliation(s)
- Meike Bauer
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Axel Duerkop
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany ,grid.5386.8000000041936877XDepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
6
|
Zheng P, Cao W, Zhang Y, Li F, Zhang M. Ultrafast Sulfur Mustard Simulant Gas Fluorescent Chemosensors Based on Triazole AIEE Material with High Selectivity and Sensitivity at Room Temperature. ACS Sens 2022; 7:1946-1957. [PMID: 35819023 DOI: 10.1021/acssensors.2c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, a novel blue aggregation-induced enhanced emission (AIEE) material 4-N-(naphthalen-l-yl)-3,5-bis(4-N-phenyl-1-naphthylamine)phenyl-4H-1,2,4-triazole (NDTAZ) is developed and used as a fluorescent chemosensor for sulfur mustard (SM) simulant 2-chloroethyl ethyl sulfide (2-CEES) vapor. The NDTAZ chemosensor is designed by introducing an electron-donating N-phenyl-1-naphthylamine group at 3 and 5 position of 4H-1,2,4-triazole (TAZ) to enhance the nucleophilicity of the TAZ group, and a naphthalene ring is connected to 4 position of the TAZ group to construct an AIEE molecule. The NDTAZ films show extraordinary stability and then are further used as reliable and portable fluorescent chemosensors. Upon exposure to 2-CEES vapor, the NDTAZ chemosensor exhibits an instantaneous fluorescence response (not more than 1 s). What should be noted is that this fluorescent chemosensor realizes the visualized detection of fluorescent color change from blue to green at "room temperature", which is rarely reported. The limit of detection is estimated to be 0.55 ppm, which is below the AEGL-1 (0.6 ppm for 1 min) safety ceiling level to SM exposure. Moreover, the NDTAZ chemosensor shows high selectivity toward 2-CEES vapor over closely related substances, including alkylating agents, aryl halide compounds, sulphur-containing compounds, and nerve agent mimics. More impressively, the NDTAZ chemosensor demonstrates good recyclability by water treatment. Also, the sensing mechanism is adequately proved by using multiple experimental methods and theoretical calculation. In addition, the NDTAZ-based facile filter paper-constructed test strips are fabricated for real-time and on-spot detection of leaked 2-CEES gas specifically. Therefore, this fluorescent chemosensor with excellent sensing performance greatly advances the practical detection of SM species at room temperature.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenjuan Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yimeng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Ma X, Lv M, Du F, Wu C, Lou B, Zeid AM, Xu G. Dimeric G-Quadruplex: An Efficient Probe for Ultrasensitive Fluorescence Detection of Mustard Compounds. Anal Chem 2022; 94:4112-4118. [PMID: 35196002 DOI: 10.1021/acs.analchem.2c00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some mustard compounds (mustards) are highly toxic chemical warfare agents. Some are explored as new anticancer drugs. Therefore, the fast, selective, and sensitive detection of mustards is extremely important for public security and cancer therapy. Mustards mostly target the N7 position on the guanine bases of DNA. The guanine-rich G-quadruplex DNA (G4) has been widely studied in the sensing area, and it was found that dimeric G4 (D-G4) could dramatically light up the fluorescence intensity of thioflavin T (ThT). Based on this, we used for the first time the D-G4 DNA as a selective probe for ultrasensitive fluorescence detection of nitrogen mustard (NM). When NM occupies the N7 on guanine, it can block the formation of the D-G4 structure due to the steric hindrance, and hence, it inhibits the combination of D-G4 with ThT, leading to a sharp decrease of fluorescence intensity. The proposed reaction mechanism is proved using ultraviolet-visible (UV-Vis) spectra, circular dichroism (CD) spectra, and polyacrylamide gel electrophoresis. Herein, the concentration of D-G4/ThT used is as low as 50 nM due to its highly fluorescent performance, enabling both high sensitivity and low cost. NM can be detected with a wide linear range from 10 to 2000 nM. The detection limit of NM reaches a surprisingly low concentration of 6 nM, which is 2 or 3 orders of magnitude lower than that of previously developed fluorescence methods for mustards and simulants.
Collapse
Affiliation(s)
- Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Mengmeng Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Cunqi Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
9
|
Sun J, Li C, Shan W, Wei Y, Liu R, Li H, Cao D, Guo Q, Zhao H, Liu R, Shao B. Construction of a Degradation-Free DNA Conjugated Nanoprobe and Its Application in Rapid Field Screening for Sulfur Mustard. Anal Chem 2021; 93:16735-16740. [PMID: 34874160 DOI: 10.1021/acs.analchem.1c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a notorious blistering chemical warfare agent. Rapid field screening for trace SM is of vital significance for the detection of antiterrorism and timely treatment. Here, a visual assay for SM was constructed on the basis of its inhibition for the G-quadruplexes/hemin DNAzyme. Specifically, multiple guanine (G)-rich single stranded oligonucleotides (ssODN) named S1 (80% of G in the total bases), i.e., the precursor for G-quadruplex, which could oxide tetramethylbenzidine (TMB) to its green product, were conjugated on the nonfouling polymer brush grafted magnetic beads (MB@P(C-H)). SM could specifically alkylate the N7 and O6 sites of G in the S1; thus, it failed to form the DNAzyme based signal reporter. It was demonstrated that the nonfouling P(C-H) interface on the magnetic bead (MB) could protect the conjugated ssODN from nuclease degradation, thus ensuring its well sensing performance in complex samples. Under the optimized conditions, this method achieved good sensitivity and selectivity with a limit of detection (LOD) as low as 0.26 μmol L-1, and the recoveries ranging from 86% to 117% were obtained for different SM spiked real samples. Above all, this method combining low cost and ready operation could be suited for rapid field SM screening in a wide range of environmental matrices.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Chunzheng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenchong Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaohua Wei
- Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede 7500AE, Netherlands
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runqing Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.,School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Feng W, Li H, Xue MJ, Zhang QL, Liu SL, Song QH. Quinoline-2-thione-based fluorescent probes for selective and sensitive detections of mustard gas and its analogues. Anal Chim Acta 2021; 1159:338440. [PMID: 33867036 DOI: 10.1016/j.aca.2021.338440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/07/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Sulfur mustard (SM, also called as mustard gas (HD)) is a persistent and highly toxic gas used as chemical weapon in wars and military conflicts. Moreover, owing to its simple structure and easy synthesis, it is the most likely chemical agent used by terrorists. For this reason, it is vital important to develop a facile, rapid and reliable detection system for SM. In this paper, we have developed four quinoline-2-thiones as fluorescent probes, 2a-2d, for the detection of SM and its analogues, half sulfur mustard (CEES) and a nitrogen mustard NH1. In the presence of KOH, these quinoline-2-thiones deprotonated to quinoline-2-thiophenol anions, which react with SM and its analogues rapidly to form quinoline-2-thiethers with highly efficient fluorescence, giving turn-on fluorescence response. The sensing products with CEES were isolated and fully characterized, thereby, the sensing mechanism was firmly established. The fluorescent probes with 4-trifluoromethyl group, 2b and 2d, exhibit rapid response to SM, CEES and NH1 (within 1 min at 60 °C for CEES and NH1), high sensitivity (limit of detection, 50 nM for SM and 20 nM for NH1) and high selectivity. Furthermore, polymer film test strips were fabricated with probe-embedded poly(ethylene oxide) for the detection of CEES vapor. These test strips displayed a rapid response (<4 min) to gaseous CEES with high sensitivity (0.2 ppm) and high selectivity. These results show that fluorescent probes 2b and 2d have a good application prospect in the field detection of mustard gas.
Collapse
Affiliation(s)
- Wei Feng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Hao Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Min-Jie Xue
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qiao-Li Zhang
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, PR China
| | - Shi-Lei Liu
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, PR China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
11
|
Li D, Xi H, Han S, Zhao S. A turn-on fluorescent probe based on N-(rhodamine-B)-thiolactam-2- n-butane with ionic liquids for selective and sensitive detection of mustard gas stimulant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:484-490. [PMID: 33427830 DOI: 10.1039/d0ay02248a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfur mustard (SM) is recognized as one of the most lethal warfare agents. It has the potential to seriously affect public health and safety. To employ appropriate medical countermeasures and treat victims as quickly as possible, the development of a rapid and simple SM detection technique is crucial. The aim of the present study was to explore novel detection systems exhibiting excellent selectivity and high sensitivity. An SM probe, namely N-(rhodamine-B)-thiolactam-2-n-butane (SRB-NB), which was based on a thiolactam structure, was effectively designed and synthesized. The rhodamine and thiourea moieties played the roles of the chromogenic and reacting groups, respectively. Subsequently, using ionic liquids (ILs) as the solvents, a turn-on fluorescence detection system was constructed. Notably, it was found that imidazole-based ILs displayed good solubility for an SM simulant, specifically 2-chloroethyl ethyl sulfide (2-CEES). Moreover, 1-butyl-3-methylimidazolium dicyandiamide ([BMIm]DCA) IL held the maximum amount of 2-CEES (132.5 g/100 g). The SRB-NB probe exhibited better ultraviolet (UV) absorption and fluorescence properties in ILs than in other organic solvents. SRB-NB/IL was able to detect 2-CEES in liquid form with remarkable selectivity and sensitivity. The limit of detection (LOD) was established at 3.0 × 10-6 M. Importantly, SRB-NB/ILs also showed good optical response to gaseous 2-CEES and SM.
Collapse
Affiliation(s)
- Daxue Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
12
|
Singh VV, Kumar V, Biswas U, Boopathi M, Ganesan K, Gupta AK. Luminol-Based Turn-On Fluorescent Sensor for Selective and Sensitive Detection of Sulfur Mustard at Ambient Temperature. Anal Chem 2021; 93:1193-1199. [PMID: 33289388 DOI: 10.1021/acs.analchem.0c04464] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have explored a novel turn-on fluorescence detection of sulfur mustard (SM) at "room temperature". The innovative protocol that uses the combination of luminol and an ionic liquid in water exhibits fluorescence detection of SM within seconds. In this simple, fast, and low-cost chemosensing method, luminol acts as the receptor as well as a signaling element, and the ionic liquid (1-ethyl-3-methylimidazolium dicyanamide) provides the requisite and polarizing medium to realize the detection at "room temperature". Interestingly, with a higher concentration of a probe (0.56 mM), SM sensing can be visualized with the naked eye, leading to the formation of a fluorescent green color within a minute, thus expanding the application of the developed sensing technique for chromo-fluorogenic detection of SM. Excellent selectivity, sensitivity (LOD: 6 ppm), and chemosensing at ambient temperature make this methodology completely field-deployable.
Collapse
Affiliation(s)
- Virendra V Singh
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Vinod Kumar
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Utpal Biswas
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Mannan Boopathi
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Kumaran Ganesan
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Arvind K Gupta
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
13
|
Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Ma B, Zuo G, Dong B, Gao S, You L, Wang X. Optical detection of sulfur mustard contaminated surfaces based on a sprayable fluorescent probe. NEW J CHEM 2021. [DOI: 10.1039/d1nj03921k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A water-based sprayable functional polymer was immobilized with the fluorescent probe DPXT and was used as a chemo-sensor for rapid localization of surface contamination by sulfur mustard.
Collapse
Affiliation(s)
- Bin Ma
- Institute of NBC defense, P.O. Box 1048, Beijing, 102205, China
| | - Guomin Zuo
- Institute of NBC defense, P.O. Box 1048, Beijing, 102205, China
| | - Bin Dong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shi Gao
- Institute of NBC defense, P.O. Box 1048, Beijing, 102205, China
| | - Lijuan You
- Institute of NBC defense, P.O. Box 1048, Beijing, 102205, China
| | - Xuefeng Wang
- Institute of NBC defense, P.O. Box 1048, Beijing, 102205, China
| |
Collapse
|
15
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
16
|
Zheng H, Zheng YC, Cui Y, Zhu JJ, Zhong JY. Study on effects of co-solvents on the structure of DhaA by molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:5999-6007. [PMID: 32696722 DOI: 10.1080/07391102.2020.1796801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the increasing application of enzymes in various research fields, the choices of co-solvents in enzymatic preparations which directly related to the catalytic activity have been attracted attention. Thus, researching on the stabilization or destabilization behaviors of enzymes in different solvents is extremely essential. In this study, the structural changes of DhaA in two typical aprotic co-solvents (acetonitrile and tetrahydrofuran) were firstly investigated by molecular dynamics (MD) simulation. The simulation results revealed the strong van der Waals force between co-solvents and DhaA which could induce the structural change of enzyme. Interestingly, the differences of molecular size and the electrostatic force with enzyme of two co-solvents led to quite different influences on DhaA. As for acetonitrile, solvent molecules could penetrate into the catalytic site of DhaA which promoted by the electrostatic interaction. On the contrary, tetrahydrofuran molecules were mainly distributed around the catalytic site due to the relative weak electrostatic interaction and steric resistance effect. It can be concluded that different co-solvent can affect the key domains, substrate pathway and catalytic pocket of DhaA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jian-Jun Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
17
|
Gul I, Bogale TF, Deng J, Chen Y, Fang R, Feng J, Tang L. Enzyme‐based detection of epoxides using colorimetric assay integrated with smartphone imaging. Biotechnol Appl Biochem 2020; 67:685-692. [DOI: 10.1002/bab.1898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ijaz Gul
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Tadesse Fantaye Bogale
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Jiao Deng
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Yong Chen
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Ruiqin Fang
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Juan Feng
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Lixia Tang
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| |
Collapse
|
18
|
Qiu C, Liu X, Cheng C, Gong Y, Xiong W, Guo Y, Wang C, Zhao J, Che Y. Ultrasensitive Detection of Sulfur Mustard via Differential Noncovalent Interactions. Anal Chem 2019; 91:6408-6412. [PMID: 31035744 DOI: 10.1021/acs.analchem.9b00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we fabricate two types of hierarchical microspheres, i.e., one coassembled from two fluorene-based oligomers (1 and 2) and one self-assembled from a fluorene-based oligomer (1), for ultrasensitive and selective detection of trace sulfur mustard (SM) vapor. On the basis of distinct fluorescence responses of 1-2 coassembled and individual 1 hierarchical microspheres that originate from differential noncovalent interactions between analytes and these sensors, SM vapor can be ultrasensitively detected (30 ppb) and easily discriminated from various sulfides and other potential interferents. Our work that utilizes differential noncovalent interactions to give sensitive and selective fluorescence response patterns represents a new detection approach for SM and other hazardous chemicals.
Collapse
Affiliation(s)
- Changkun Qiu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoling Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chuanqin Cheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Xiong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongxian Guo
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Wang
- HT-NOVA Company, Ltd. , Zhuyuan Road , Shunyi District, Beijing 101312 , China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Alev-Tuzuner B, Beyler-Cigil A, Vezir Kahraman M, Yarat A. PEG-based hydrogel-coated test strip for on-site urea determination. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1482460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Burcin Alev-Tuzuner
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Turkey, Istanbul
| | - Asli Beyler-Cigil
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Goztepe, Turkey Istanbul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Memet Vezir Kahraman
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Goztepe, Turkey Istanbul
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Turkey, Istanbul
| |
Collapse
|
20
|
Nevolova S, Manaskova E, Mazurenko S, Damborsky J, Prokop Z. Development of Fluorescent Assay for Monitoring of Dehalogenase Activity. Biotechnol J 2018; 14:e1800144. [DOI: 10.1002/biot.201800144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Sarka Nevolova
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Elisabet Manaskova
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Stanislav Mazurenko
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
| | - Jiri Damborsky
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 Brno 656 91 Czech Republic
- Enantis Ltd.; Kamenice 34 Brno 625 00 Czech Republic
| | - Zbynek Prokop
- Faculty of Science; Loschmidt Laboratories; Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology; Masaryk University; Brno 625 00 Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 Brno 656 91 Czech Republic
- Enantis Ltd.; Kamenice 34 Brno 625 00 Czech Republic
| |
Collapse
|
21
|
Mazurenko S, Bidmanova S, Kotlanova M, Damborsky J, Prokop Z. Sensitive operation of enzyme-based biodevices by advanced signal processing. PLoS One 2018; 13:e0198913. [PMID: 29912920 PMCID: PMC6005535 DOI: 10.1371/journal.pone.0198913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01–0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01–0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
Collapse
Affiliation(s)
- Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
| | - Sarka Bidmanova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Marketa Kotlanova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
- Enantis, s r.o., Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
22
|
Zhang Y, Lv Y, Wang X, Peng A, Zhang K, Jie X, Huang J, Tian Z. A Turn-On Fluorescent Probe for Detection of Sub-ppm Levels of a Sulfur Mustard Simulant with High Selectivity. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b01057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Vanacek P, Sebestova E, Babkova P, Bidmanova S, Daniel L, Dvorak P, Stepankova V, Chaloupkova R, Brezovsky J, Prokop Z, Damborsky J. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03523] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pavel Vanacek
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sarka Bidmanova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Pavel Dvorak
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Stepankova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
24
|
Liu J, Wang J, Li Z, Meng H, Zhang L, Wang H, Li J, Qu L. A lateral flow assay for the determination of human tetanus antibody in whole blood by using gold nanoparticle labeled tetanus antigen. Mikrochim Acta 2018; 185:110. [DOI: 10.1007/s00604-017-2657-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
|
25
|
Kumar V, Rana H, Raviraju G, Gupta AK. Chemodosimeter for Selective and Sensitive Chromogenic and Fluorogenic Detection of Mustard Gas for Real Time Analysis. Anal Chem 2018; 90:1417-1422. [DOI: 10.1021/acs.analchem.7b04882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vinod Kumar
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Hemlata Rana
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - G. Raviraju
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Arvind K. Gupta
- Process and Technology Development
Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
26
|
Bhattacharya S, Agarwal AK, Chanda N, Pandey A, Sen AK. Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [PMCID: PMC7123150 DOI: 10.1007/978-981-10-7751-7_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the fabrication of analytical devices utilizing microfluidic structures and lab-on-a-chip platforms has shown breakthrough advancements, both for environmental and biological applications. The ASSURED criteria (affordable, sensitive, specific, user-friendly, robust, equipment-free, delivered), developed by the WHO for diagnostics devices, point towards the need of paper-based analytical devices (PAD) for diagnostics. On the other hand, cost-effective PADs owing the great advantage of affordable applicability in both resource-rich and -limited settings are recently employed for on-site environmental monitoring. In this book chapter, we will discuss about the brief history of paper analytical devices, fabrications, need, and its environmental and biomedical applications.
Collapse
Affiliation(s)
- Shantanu Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Kanp Mechanical Engineering, Kanpur, Uttar Pradesh India
| | - Avinash Kumar Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India
| | - Nripen Chanda
- Microsystem Technology Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal India
| | - Ashok Pandey
- Department of Biotechnology, CSIR-Indian Institute of Toxicology Research, Mohali, Punjab India
| | - Ashis Kumar Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras Department of Mechanical Engineering, Chennai, Tamil Nadu India
| |
Collapse
|
27
|
Yurova NS, Danchuk A, Mobarez SN, Wongkaew N, Rusanova T, Baeumner AJ, Duerkop A. Functional electrospun nanofibers for multimodal sensitive detection of biogenic amines in food via a simple dipstick assay. Anal Bioanal Chem 2017; 410:1111-1121. [PMID: 29116354 DOI: 10.1007/s00216-017-0696-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 01/28/2023]
Abstract
Electrospun nanofibers (ENFs) are promising materials for rapid diagnostic tests like lateral flow assays and dipsticks because they offer an immense surface area while excluding minimal volume, a variety of functional surface groups, and can entrap functional additives within their interior. Here, we show that ENFs on sample pads are superior in comparison to standard polymer membranes for the optical detection of biogenic amines (BAs) in food using a dipstick format. Specifically, cellulose acetate (CA) fibers doped with 2 mg/mL of the chromogenic and fluorogenic amine-reactive chameleon dye Py-1 were electrospun into uniform anionic mats. Those extract cationic BAs from real samples and Py-1 transduces BA concentrations into a change of color, reflectance, and fluorescence. Dropping a BA sample onto the nanofiber mat converts the weakly fluorescent pyrylium dye Py-1 into a strongly red emitting pyridinium dye. For the first time, a simple UV lamp excites fluorescence and a digital camera acts as detector. The intensity ratio of the red to the blue channel of the digital image is dependent on the concentration of most relevant BAs indicating food spoilage from 10 to 250 μM. This matches the permitted limits for BAs in foods and no false positive signals arise from secondary and tertiary amines. BA detection in seafood samples was also demonstrated successfully. The nanofiber mat dipsticks were up to sixfold more sensitive than those using a polymer membrane with the same dye embedded. Hence, nanofiber-based tests are not only superior to polymer-based dipstick assays, but will also improve the performance of established tests related to food safety, medical diagnostics, and environmental testing. Graphical Absract ᅟ.
Collapse
Affiliation(s)
- Nadezhda S Yurova
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, National Research Saratov State University, Saratov, Russian Federation
| | - Alexandra Danchuk
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, National Research Saratov State University, Saratov, Russian Federation
| | - Sarah N Mobarez
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Tatiana Rusanova
- Institute of Chemistry, National Research Saratov State University, Saratov, Russian Federation
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
28
|
Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-Based Microfluidic Devices: Emerging Themes and Applications. Anal Chem 2016; 89:71-91. [DOI: 10.1021/acs.analchem.6b04581] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Yang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eka Noviana
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael P. Nguyen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian J. Geiss
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David S. Dandy
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
29
|
Dziuba D, Pospíšil P, Matyašovský J, Brynda J, Nachtigallová D, Rulíšek L, Pohl R, Hof M, Hocek M. Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chem Sci 2016; 7:5775-5785. [PMID: 30034716 PMCID: PMC6021979 DOI: 10.1039/c6sc02548j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Petr Pospíšil
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Martin Hof
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
- Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|