1
|
Zhang W, Liu W, Wang L, Yu P, Song X, Yao Y, Liu X, Meng X. Effects of water stress on secondary metabolism of Panax ginseng fresh roots. PLoS One 2024; 19:e0312023. [PMID: 39602405 PMCID: PMC11602063 DOI: 10.1371/journal.pone.0312023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
The roots and rhizomes of Panax ginseng C.A. Mey are commonly used herbal medicine in Asian countries. These components contain a large number of secondary metabolites known as ginsenosides, which serve as primary active ingredient. Environmental factors significantly influence the production of secondary metabolites, which are crucial for enhancing plant adaptability to ecological stress. P. ginseng is a shady plant that thrives in a constantly humid and temperate environment. However, it cannot withstand excessive moisture, making soil moisture a significant ecological stress affecting P. ginseng survival. In this study, we applied a water spray to maintain a water-saturated surface on 5-year-old fresh P. ginseng roots for a duration of 5 days, to establish a short-term water stress condition. The results revealed a notable increase in superoxide anion (O2·-), hydrogen peroxide (H2O2), and NADPH oxidase (NOX) activity (p < 0.01), as well as malondialdehyde (MDA) contents (p < 0.01) in both the main root and fibrous root of P. ginseng. Additionally, superoxide dismutase (SOD), catalase (CAT), peroxides (POD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities also elevated significantly under water stress (p < 0.01). Ascorbic acid (AsA), glutathione (GSH) and oxidized glutathione (GSSG) contents also showed a marked increase (p < 0.01). The main root treated with water showed the most positive impact on the 5th day. Water stress boosted the activities of key enzymes including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase (FPS), squalene synthase (SS), squalene epoxidase (SE), and dammarenediol-II synthase (DS) involved in the ginsenoside biosynthesis pathway (p <0.01). This resulted in a significant an increase in the level of ginsenosides Rg1, Rb1, Rf, Rg2+Rh1, Rc, and Rb3, by 42.4%, 21.0%, 15.7%, 157.9%, 18.3%, and 10.6% respectively, and an increase of 40.1% in total saponins content. Similarly, the fibrous root changes in the treated sample showed the most positive impact on the 4th day. Specifically, Rg1, Re, Rb1, Rf, Rg2+Rh1, Rc, Ro, and Rb2 increased by 41.8%, 20.5%, 17.3%, 84.3%, 30.7%, 35.6%, 8.6%, and 7.6%, respectively, and an increase of 4.2% in total saponins content. Furthermore, 1,3-disphosphoglycerate (1,3-DPG) contents and phosphoenolpyruvate carboxylase (PEPC) activities, which are key intermediate of primary metabolism, were significantly elevated under water stress (p < 0.01). This indicates that the primary source of the raw materials used in the biosynthesis of secondary metabolites is sugars. Pharmacodynamic analysis demonstrated that water stress could increase the contents of ginsenosides, improve the quality of ginseng, and enhance the efficacy of ginseng root to a certain extent.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenfei Liu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Liyang Wang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengcheng Yu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaowen Song
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yao Yao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiubo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Coukos JS, Lee CW, Pillai KS, Shah H, Moellering RE. PARK7 Catalyzes Stereospecific Detoxification of Methylglyoxal Consistent with Glyoxalase and Not Deglycase Function. Biochemistry 2023; 62:3126-3133. [PMID: 37884446 PMCID: PMC10634309 DOI: 10.1021/acs.biochem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.
Collapse
Affiliation(s)
- John S. Coukos
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Hardik Shah
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Stein BD, Ferrarone JR, Gardner EE, Chang JW, Wu D, Hollstein PE, Liang RJ, Yuan M, Chen Q, Coukos JS, Sindelar M, Ngo B, Gross SS, Shaw RJ, Zhang C, Asara JM, Moellering RE, Varmus H, Cantley LC. LKB1-Dependent Regulation of TPI1 Creates a Divergent Metabolic Liability between Human and Mouse Lung Adenocarcinoma. Cancer Discov 2023; 13:1002-1025. [PMID: 36715544 PMCID: PMC10068449 DOI: 10.1158/2159-8290.cd-22-0805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. SIGNIFICANCE Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Benjamin D. Stein
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - John R. Ferrarone
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Eric E. Gardner
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - David Wu
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Pablo E. Hollstein
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Roger J. Liang
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Min Yuan
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - John S. Coukos
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Miriam Sindelar
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - John M. Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Harold Varmus
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhang Y, Chen L, Wilson JA, Cui J, Roodhouse H, Kayrouz C, Pham TM, Ju KS. Valinophos Reveals a New Route in Microbial Phosphonate Biosynthesis That Is Broadly Conserved in Nature. J Am Chem Soc 2022; 144:9938-9948. [PMID: 35617676 PMCID: PMC9284248 DOI: 10.1021/jacs.2c02854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphonate natural products are potent inhibitors of cellular metabolism with an established record of commercialization in medicine and biotechnology. Although genome mining has emerged as an accelerated method for the discovery of new phosphonates, a robust framework of their metabolism is needed to identify the pathways most likely to yield compounds with desired activities. Here we expand our understanding of these natural products by reporting the complete biosynthetic pathway for valinophos, a phosphonopeptide natural product containing the unusual (R)-2,3-dihydroxypropylphosphonate (DHPPA) scaffold. The pathway was defined by several enzymatic transformations and intermediates previously unknown to phosphonate natural products. A dedicated dehydrogenase served as a new phosphoenolpyruvate mutase coupling enzyme. Notably, its reduction of phosphonopyruvate to phosphonolactate defined a new early branchpoint in phosphonate biosynthesis. Functionally interconnected kinase and reductase enzymes catalyzed reactions reminiscent of glycolysis and arginine biosynthesis to produce a transient, but essential, phosphonolactaldehyde intermediate. We demonstrate esterification of l-valine onto DHPPA as a new biochemical activity for ATP-Grasp ligase enzymes. Unexpectedly, a second amino acid ligase then adjoined additional amino acids at the valinyl moiety to produce a suite of DHPPA-dipeptides. The genes for DHPPA biosynthesis were discovered among genomes of bacteria from wide-ranging habitats, suggesting a wealth of unknown compounds that may originate from this core pathway. Our findings establish new biosynthetic principles for natural products and provide definition to unexplored avenues for bioactive phosphonate genome mining.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li Chen
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jake A Wilson
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jerry Cui
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah Roodhouse
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Coukos JS, Moellering RE. Methylglyoxal Forms Diverse Mercaptomethylimidazole Crosslinks with Thiol and Guanidine Pairs in Endogenous Metabolites and Proteins. ACS Chem Biol 2021; 16:2453-2461. [PMID: 34581579 PMCID: PMC8609522 DOI: 10.1021/acschembio.1c00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylglyoxal (MGO) is a reactive byproduct formed by several metabolic precursors, the most notable being triosephosphates in glycolysis. While many MGO-mediated adducts have been described, the reactivity and specific biomolecular targets of MGO remain incompletely mapped. Based on our recent discovery that MGO can form stable mercaptomethylimidazole crosslinks between cysteine and arginine (MICA) in proteins, we hypothesized that MGO may participate in myriad reactions with biologically relevant guanidines and thiols in proteins, metabolites, and perhaps other biomolecules. Herein, we performed steady-state and kinetic analyses of MGO reactivity with several model thiols, guanidines, and biguanide drugs to establish the plausible and prevalent adducts formed by MGO in proteins, peptides, and abundant cellular metabolites. We identified several novel, stable MICA metabolites that form in vitro and in cells, as well as a novel intermolecular post-translational MICA modification of surface cysteines in proteins. These data confirm that kinetic trapping of free MGO by thiols occurs rapidly and can decrease formation of more stable imidazolone (MG-H1) arginine adducts. However, reversible hemithioacetal adducts can go on to form stable MICA modifications in an inter- and intramolecular fashion with abundant or proximal guanidines, respectively. Finally, we discovered that intracellular MICA-glutathione metabolites are recognized and exported by the efflux pump MRP1, providing a parallel and perhaps complementary pathway for MGO detoxification working alongside the glyoxalase pathway. These data provide new insights into the plausible reactions involving MGO in cells and tissues, as well as several new molecular species in proteins and metabolites for further study.
Collapse
Affiliation(s)
- John S. Coukos
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Zhong ZJ, Yao ZP, Shi ZQ, Liu YD, Liu LF, Xin GZ. Measurement of Intracellular Nitric Oxide with a Quantitative Mass Spectrometry Probe Approach. Anal Chem 2021; 93:8536-8543. [PMID: 34107211 DOI: 10.1021/acs.analchem.1c01259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a molecule of physiological importance, and the function of NO depends on its concentration in biological systems, particularly in cells. Concentration-based analysis of intracellular NO can provide insight into its precise role in health and disease. However, current methods for detecting intracellular NO are still inadequate for quantitative analysis. In this study, we report a quantitative mass spectrometry probe approach to measure NO levels in cells. The probe, Amlodipine (AML), comprises a Hantzsch ester group that reacts with NO to form a pyridine, Dehydro Amlodipine (DAM). Quantification of DAM by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allows specific measurement of intracellular NO levels. Notably, the AML/NO reaction proceeds rapidly (within 1 s), which is favorable for NO detection considering its large diffusivity and short half-life. Meanwhile, studies under simulated physiological conditions revealed that the AML response to NO is proportional and selective. The presented UPLC-MS/MS method showed high sensitivity (LLOQ = 0.24 nM) and low matrix interference (less than 15%) in DAM quantification. Furthermore, the mass spectrometry probe approach was demonstrated by enabling the measurement of endogenous and exogenous NO in cells. Hence, the quantitative UPLC-MS/MS method developed using AML as a probe is expected to be a new method for intracellular NO analysis.
Collapse
Affiliation(s)
- Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Yang-Dan Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
8
|
Yu Y, Le HH, Curtis BJ, Wrobel CJJ, Zhang B, Maxwell DN, Pan JY, Schroeder FC. An Untargeted Approach for Revealing Electrophilic Metabolites. ACS Chem Biol 2020; 15:3030-3037. [PMID: 33074644 DOI: 10.1021/acschembio.0c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive electrophilic intermediates such as coenzyme A esters play central roles in metabolism but are difficult to detect with conventional strategies. Here, we introduce hydroxylamine-based stable isotope labeling to convert reactive electrophilic intermediates into stable derivatives that are easily detectable via LC-MS. In the model system Caenorhabditis elegans, parallel treatment with 14NH2OH and 15NH2OH revealed >1000 labeled metabolites, e.g., derived from peptide, fatty acid, and ascaroside pheromone biosyntheses. Results from NH2OH treatment of a pheromone biosynthesis mutant, acox-1.1, suggested upregulation of thioesterase activity, which was confirmed by gene expression analysis. The upregulated thioesterase contributes to the biosynthesis of a specific subset of ascarosides, determining the balance of dispersal and attractive signals. These results demonstrate the utility of NH2OH labeling for investigating complex biosynthetic networks. Initial results with Aspergillus and human cell lines indicate applicability toward uncovering reactive metabolomes in diverse living systems.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H. Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian J. Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J. J. Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bingsen Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Danielle N. Maxwell
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Judy Y. Pan
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Absolute Quantification of the Central Carbon Metabolome in Eight Commonly Applied Prokaryotic and Eukaryotic Model Systems. Metabolites 2020; 10:metabo10020074. [PMID: 32093075 PMCID: PMC7073941 DOI: 10.3390/metabo10020074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Absolute quantification of intracellular metabolite pools is a prerequisite for modeling and in-depth biological interpretation of metabolomics data. It is the final step of an elaborate metabolomics workflow, with challenges associated with all steps—from sampling to quantifying the physicochemically diverse metabolite pool. Chromatographic separation combined with mass spectrometric (MS) detection is the superior platform for high coverage, selective, and sensitive detection of metabolites. Herein, we apply our quantitative MS-metabolomics workflow to measure and present the central carbon metabolome of a panel of commonly applied biological model systems. The workflow includes three chromatographic methods combined with isotope dilution tandem mass spectrometry to allow for absolute quantification of 68 metabolites of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and the amino acid and (deoxy) nucleoside pools. The biological model systems; Bacillus subtilis, Saccharomyces cerevisiae, two microalgal species, and four human cell lines were all cultured in commonly applied culture media and sampled in exponential growth phase. Both literature and databases are scarce with comprehensive metabolite datasets, and existing entries range over several orders of magnitude. The workflow and metabolite panel presented herein can be employed to expand the list of reference metabolomes, as encouraged by the metabolomics community, in a continued effort to develop and refine high-quality quantitative metabolomics workflows.
Collapse
|
10
|
Huang JX, Lee G, Cavanaugh KE, Chang JW, Gardel ML, Moellering RE. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat Methods 2019; 16:894-901. [PMID: 31384043 PMCID: PMC7238970 DOI: 10.1038/s41592-019-0499-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Mass spectrometry has revolutionized the ability to study posttranslationally modified proteoforms from biologic samples, yet we still lack methods to systematically predict, or even prioritize, which modification sites may perturb protein function. Here we describe a proteomic method to detect the effects of site-specific protein phosphorylation on the thermal stability of thousands of native proteins in live cells. This massively parallel biophysical assay unveiled shifts in overall protein stability in response to site-specific phosphorylation sites, as well as trends related to protein function and structure. This method can detect both intrinsic changes to protein structure as well as extrinsic changes to protein-protein, and protein-metabolite interactions resulting from the diminutive introduction of a phosphate onto large proteins. Finally, we show that functional “hotspot” protein modification sites can be discovered and prioritized for study in a high-throughput and unbiased fashion. This approach is applicable to diverse organisms, cell types and posttranslational modifications.
Collapse
Affiliation(s)
- Jun X Huang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Gihoon Lee
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kate E Cavanaugh
- Department of Physics, The University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Jae W Chang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Margaret L Gardel
- Department of Physics, The University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Blaženović I, Lastra RR, Curtis M, Yamada SD, Perets R, McGregor SM, Andrade J, Fiehn O, Moellering RE, Mann M, Lengyel E. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 2019; 569:723-728. [PMID: 31043742 PMCID: PMC6690743 DOI: 10.1038/s41586-019-1173-8] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
High-grade serous carcinoma has a poor prognosis, owing primarily to its early dissemination throughout the abdominal cavity. Genomic and proteomic approaches have provided snapshots of the proteogenomics of ovarian cancer1,2, but a systematic examination of both the tumour and stromal compartments is critical in understanding ovarian cancer metastasis. Here we develop a label-free proteomic workflow to analyse as few as 5,000 formalin-fixed, paraffin-embedded cells microdissected from each compartment. The tumour proteome was stable during progression from in situ lesions to metastatic disease; however, the metastasis-associated stroma was characterized by a highly conserved proteomic signature, prominently including the methyltransferase nicotinamide N-methyltransferase (NNMT) and several of the proteins that it regulates. Stromal NNMT expression was necessary and sufficient for functional aspects of the cancer-associated fibroblast (CAF) phenotype, including the expression of CAF markers and the secretion of cytokines and oncogenic extracellular matrix. Stromal NNMT expression supported ovarian cancer migration, proliferation and in vivo growth and metastasis. Expression of NNMT in CAFs led to depletion of S-adenosyl methionine and reduction in histone methylation associated with widespread gene expression changes in the tumour stroma. This work supports the use of ultra-low-input proteomics to identify candidate drivers of disease phenotypes. NNMT is a central, metabolic regulator of CAF differentiation and cancer progression in the stroma that may be therapeutically targeted.
Collapse
Affiliation(s)
- Mark A Eckert
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Agnieszka Chryplewicz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
| | - Shawn Pan
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Samantha M Tienda
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Dominik A Nahotko
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Gang Li
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Ivana Blaženović
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA, USA
| | - Ricardo R Lastra
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Marion Curtis
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ruth Perets
- Division of Oncology, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa, Israel
| | | | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA, USA
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Chang JW, Montgomery JE, Lee G, Moellering RE. Chemoproteomic Profiling of Phosphoaspartate Modifications in Prokaryotes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Jeffrey E. Montgomery
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Gihoon Lee
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| | - Raymond E. Moellering
- Department of Chemistry, Institute for Genomics and Systems Biology; The University of Chicago; 929 E. 57th Street Chicago IL 60637 USA
| |
Collapse
|
13
|
Chang JW, Montgomery JE, Lee G, Moellering RE. Chemoproteomic Profiling of Phosphoaspartate Modifications in Prokaryotes. Angew Chem Int Ed Engl 2018; 57:15712-15716. [PMID: 30231186 DOI: 10.1002/anie.201809059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Phosphorylation at aspartic acid residues represents an abundant and critical post-translational modification (PTM) in prokaryotes. In contrast to most characterized PTMs, such as phosphorylation at serine or threonine, the phosphoaspartate moiety is intrinsically labile, and therefore incompatible with common proteomic profiling methods. Herein, we report a nucleophilic, desthiobiotin-containing hydroxylamine (DBHA) chemical probe that covalently labels modified aspartic acid residues in native proteomes. DBHA treatment coupled with LC-MS/MS analysis enabled detection of known phosphoaspartate modifications, as well as novel aspartic acid sites in the E. coli proteome. Coupled with isotopic labelling, DBHA-dependent proteomic profiling also permitted global quantification of changes in endogenous protein modification status, as demonstrated with the detection of increased E. coli OmpR phosphorylation, but not abundance, in response to changes in osmolarity.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Jeffrey E Montgomery
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Gihoon Lee
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, Institute for Genomics and Systems Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C, Chang JW, Chin EN, Ahmad I, Chatterjee AK, Lairson LL, Schultz PG, Moellering RE. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 2018; 562:600-604. [PMID: 30323285 PMCID: PMC6444936 DOI: 10.1038/s41586-018-0622-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/21/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Gihoon Lee
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - John S Coukos
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Hwayoung Yun
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.,College of Pharmacy, Pusan National University, Busan, South Korea
| | - Claudio Zambaldo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Insha Ahmad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,California Institute for Biomedical Research (Calibr), La Jolla, CA, USA.
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,California Institute for Biomedical Research (Calibr), La Jolla, CA, USA.
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Revisiting the Metabolism and Bioactivation of Ketoconazole in Human and Mouse Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Int J Mol Sci 2017; 18:ijms18030621. [PMID: 28335386 PMCID: PMC5372636 DOI: 10.3390/ijms18030621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
Although ketoconazole (KCZ) has been used worldwide for 30 years, its metabolic characteristics are poorly described. Moreover, the hepatotoxicity of KCZ limits its therapeutic use. In this study, we used liquid chromatography–mass spectrometry-based metabolomics to evaluate the metabolic profile of KCZ in mouse and human and identify the mechanisms underlying its hepatotoxicity. A total of 28 metabolites of KCZ, 11 of which were novel, were identified in this study. Newly identified metabolites were classified into three categories according to the metabolic positions of a piperazine ring, imidazole ring, and N-acetyl moiety. The metabolic characteristics of KCZ in human were comparable to those in mouse. Moreover, three cyanide adducts of KCZ were identified in mouse and human liver microsomal incubates as “flags” to trigger additional toxicity study. The oxidation of piperazine into iminium ion is suggested as a biotransformation responsible for bioactivation. In summary, the metabolic characteristics of KCZ, including reactive metabolites, were comprehensively understood using a metabolomics approach.
Collapse
|
16
|
Zengeya TT, Garlick JM, Kulkarni RA, Miley M, Roberts AM, Yang Y, Crooks DR, Sourbier C, Linehan WM, Meier JL. Co-opting a Bioorthogonal Reaction for Oncometabolite Detection. J Am Chem Soc 2016; 138:15813-15816. [PMID: 27960310 DOI: 10.1021/jacs.6b09706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulated metabolism is a hallmark of many diseases, including cancer. Methods to fluorescently detect metabolites have the potential to enable new approaches to cancer detection and imaging. However, fluorescent sensing methods for naturally occurring cellular metabolites are relatively unexplored. Here we report the development of a chemical approach to detect the oncometabolite fumarate. Our strategy exploits a known bioorthogonal reaction, the 1,3-dipolar cycloaddition of nitrileimines and electron-poor olefins, to detect fumarate via fluorescent pyrazoline cycloadduct formation. We demonstrate hydrazonyl chlorides serve as readily accessible nitrileimine precursors, whose reactivity and spectral properties can be tuned to enable detection of fumarate and other dipolarophile metabolites. Finally, we show this reaction can be used to detect enzyme activity changes caused by mutations in fumarate hydratase, which underlie the familial cancer predisposition syndrome hereditary leiomyomatosis and renal cell cancer. Our studies define a novel intersection of bioorthogonal chemistry and metabolite reactivity that may be harnessed to enable biological profiling, imaging, and diagnostic applications.
Collapse
Affiliation(s)
- Thomas T Zengeya
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Julie M Garlick
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Rhushikesh A Kulkarni
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Mikayla Miley
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Allison M Roberts
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Youfeng Yang
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Carole Sourbier
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute , Bethesda, Maryland 20817, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| |
Collapse
|