1
|
Li S, Pei XY, Liu XY, Wang SL, Xu W, Wang JJ, Feng Z, Ding H, Zhang YF, Zhang R. Sensitive fluorescence detection of miRNA-124 in cardiomyocytes under oxidative stress using a nucleic acid probe. Heliyon 2024; 10:e33588. [PMID: 39040278 PMCID: PMC11260977 DOI: 10.1016/j.heliyon.2024.e33588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of 18-25 bases. miRNAs are also important new biomarkers that can be used for disease diagnosis in the future. Studies have shown that miR-124 levels are significantly elevated during acute myocardial infarction (AMI) and play a key role in the cardiovascular system. A variety of methods have been established to detect myocardial infarction-related miRNAs. However, most require complex miRNA extraction and isolation, and these methods are virtually undetectable when RNA levels are low in the sample. It may lead to biased results. Thus, it is necessary to develop a technique that can detect miRNA without extracting it, which means that intracellular detection is of great significance. Here, we improved the traditional silicon spheres and obtained a biosensor that could effectively capture and detect specific noncoding nucleic acids through the layer-by-layer assembly method. The sensor is protected by hyaluronic acid so it can successfully escape the lysosome into the cell and achieve detection. With the help of a full-featured microplate reader, we determined that the detection limit of the biosensor could reach 1 fM, meeting the needs of intracellular detection. At the same time, we prepared an oxidative stress cardiomyocyte infarction model and successfully captured the overexpressed miR-124 in the infarcted cells to achieve in situ detection. This study could provide a new potential tool to develop miRNAs for sensitive diagnosis in AMI, and the proposed strategy implies its potential for biomedical research.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiang-Yu Pei
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Xin-Yi Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Shu-Liang Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Wen Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing-Jing Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Zhen Feng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Han Ding
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
2
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
3
|
Novara C, Montesi D, Bertone S, Paccotti N, Geobaldo F, Channab M, Angelini A, Rivolo P, Giorgis F, Chiadò A. Role of probe design and bioassay configuration in surface enhanced Raman scattering based biosensors for miRNA detection. J Colloid Interface Sci 2023; 649:750-760. [PMID: 37385040 DOI: 10.1016/j.jcis.2023.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
The accurate design of labelled oligo probes for the detection of miRNA biomarkers by Surface Enhanced Raman Scattering (SERS) may improve the exploitation of the plasmonic enhancement. This work, thus, critically investigates the role of probe labelling configuration on the performance of SERS-based bioassays for miRNA quantitation. To this aim, highly efficient SERS substrates based on Ag-decorated porous silicon/PDMS membranes are functionalized according to bioassays relying on a one-step or two-step hybridization of the target miRNA with DNA probes. Then, the detection configuration is varied to evaluate the impact of different Raman reporters and their labelling position along the oligo sequence on bioassay sensitivity. At high miRNA concentration (100-10 nM), a significantly increased SERS intensity is detected when the reporters are located closer to the plasmonic surface compared to farther probe labelling positions. Counterintuitively, a levelling-off of the SERS intensity from the different configurations is recorded at low miRNA concentration. Such effect is attributed to the increased relative contribution of Raman hot-spots to the whole SERS signal, in line with the electric near field distribution simulated for a simplified model of the Ag nanostructures. However, the beneficial effect of reducing the reporter-to-surface distance is partially retained for a two-step hybridization assay thanks to the less sterically hindered environment in which the second hybridization occurs. The study thus demonstrates an improvement of the detection limit of the two-step assay by tuning the probe labelling position, but sheds at the same time light on the multiple factors affecting the sensitivity of SERS-based bioassays.
Collapse
Affiliation(s)
- Chiara Novara
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy.
| | - Daniel Montesi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Sofia Bertone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Niccolò Paccotti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Francesco Geobaldo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Marwan Channab
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; Advanced Materials and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Turin 10135, Italy
| | - Angelo Angelini
- Advanced Materials and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Turin 10135, Italy
| | - Paola Rivolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Fabrizio Giorgis
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy.
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| |
Collapse
|
4
|
Zhong Y, Huang LX, Lin MT, Zhang ZY, Liu AL, Lei Y. A Y-shape-structured electrochemiluminescence biosensor based on carbon quantum dots and locked nucleic acid probe for microRNA determination with single-base resolution. Biosens Bioelectron 2023; 238:115583. [PMID: 37573643 DOI: 10.1016/j.bios.2023.115583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Since microRNAs (miRNAs) are predictors of tumorigenesis, accurate identification and quantification of miRNAs with highly similar sequences are expected to reflect tumor diagnosis and treatment. In this study, a highly selective and sensitive electrochemiluminescence (ECL) biosensor was constructed for miRNAs determination based on Y-shaped junction structure equipped with locked nucleic acids (LNA), graphene oxide-based nanocomposite to enrich luminophores, and conductive matrix. Specifically, two LNA-modified probes were designed for specific miRNA recognition, that is, a dual-amine functionalized hairpin capture probe and a signal probe. A Y-shaped DNA junction structure was generated on the electrode surface upon miRNA hybridizing across the two branches, so as to enhance the selectivity. Carbon quantum dots-polyethylene imine-graphene oxide (CQDs-PEI-GO) nanocomposites were developed to enrich luminophores CQDs, and thus enhancing the ECL intensity. For indirect signal amplification, an electrochemically activated poly(2-aminoterephthalic acid) (ATA) film decorated with gold nanoparticles was prepared on electrode as an effective matrix to accelerate the electron transfer. The fabricated ECL biosensor achieved sensitive determination of miRNA-222 with a limit-of-detection (LOD) as low as 1.95 fM (S/N = 3). Notably, Y-shaped junction structures equipped with LNA probes endowed ECL biosensor with salient single-base discrimination ability and anti-interference capacity. Overall, the proposed Y-shaped ECL biosensor has considerable promise for clinical biomarker determination.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lin-Xiao Huang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Mu-Tu Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zi-Yang Zhang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Nie L, Zeng X, Hongbo L, Wang S, Lu Z, Yu R. Entropy-driven DNA circuit with two-stage strand displacement for elegant and robust detection of miRNA let-7a. Anal Chim Acta 2023; 1269:341392. [PMID: 37290851 DOI: 10.1016/j.aca.2023.341392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) research in cancer diagnosis is expanding, on account of miRNAs were demonstrated to be key indicator of gene expression and hopeful candidates for biomarkers. In this study, a stable miRNA-let-7a fluorescent biosensor was successfully designed based on an exonuclease Ⅲ-assisted two-stage strand displacement reaction (SDR). First, an entropy-driven SDR containing a three-chain structure of the substrate is used in our designed biosensor, leading to reduce the reversibility of the target recycling process in each step. The target acts on the first stage to start the entropy-driven SDR, which generates the trigger used to stimulate the exonuclease Ⅲ-assisted SDR in the second stage. At the same time, we design a SDR one-step amplification strategy as a comparison. Expectly, this developed two-stage strand displacement system has a low detection limit of 25.0 pM as well as a broad detection range of 4 orders of magnitude, making it more sensitive than the SDR one-step sensor, whose detection limit is 0.8 nM. In addition, this sensor has high specificity across members of the miRNA family. Therefore, we can take advantage of this biosensor to promote miRNA research in cancer diagnosis sensing systems.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Li Hongbo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Zhanghui Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
6
|
Zhao Y, Lv X, Peng Z, Zhao K, Zhou D, Deng Y. Microfluidic Chip Integrated with Hydrogel Microparticles and CdS Cation Interfacial Exchange for the Sensitive Determination of miRNA. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Yimeng Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Di Zhou
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
8
|
Paccotti N, Chiadò A, Novara C, Rivolo P, Montesi D, Geobaldo F, Giorgis F. Real-Time Monitoring of the In Situ Microfluidic Synthesis of Ag Nanoparticles on Solid Substrate for Reliable SERS Detection. BIOSENSORS 2021; 11:bios11120520. [PMID: 34940277 PMCID: PMC8699179 DOI: 10.3390/bios11120520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 05/12/2023]
Abstract
A sharpened control over the parameters affecting the synthesis of plasmonic nanostructures is often crucial for their application in biosensing, which, if based on surface-enhanced Raman spectroscopy (SERS), requires well-defined optical properties of the substrate. In this work, a method for the microfluidic synthesis of Ag nanoparticles (NPs) on porous silicon (pSi) was developed, focusing on achieving a fine control over the morphological characteristics and spatial distribution of the produced nanostructures to be used as SERS substrates. To this end, a pSi membrane was integrated in a microfluidic chamber in which the silver precursor solution was injected, allowing for the real-time monitoring of the reaction by UV-Vis spectroscopy. The synthesis parameters, such as the concentration of the silver precursor, the temperature, and the flow rate, were varied in order to study their effects on the final silver NPs' morphology. Variations in the flow rate affected the size distribution of the NPs, whereas both the temperature and the concentration of the silver precursor strongly influenced the rate of the reaction and the particle size. Consistently with the described trends, SERS tests using 4-MBA as a probe showed how the flow rate variation affected the SERS enhancement uniformity, and how the production of larger NPs, as a result of an increase in temperature or of the concentration of the Ag precursor, led to an increased SERS efficiency.
Collapse
Affiliation(s)
- Niccolò Paccotti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy
| | - Chiara Novara
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
- Correspondence:
| | - Paola Rivolo
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
| | - Daniel Montesi
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
| | - Francesco Geobaldo
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
| | - Fabrizio Giorgis
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (N.P.); (A.C.); (P.R.); (D.M.); (F.G.); (F.G.)
| |
Collapse
|
9
|
Zhou P, Liu B, Luan M, Li N, Tang B. A fluorescence nanoprobe for detecting the effect of different oxygen and nutrient conditions on breast cancer cells' migration and invasion. Biomater Sci 2021; 9:4428-4432. [PMID: 34075953 DOI: 10.1039/d1bm00619c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer cell migration and invasion are initial steps for tumor metastasis, which increases patient mortality. The tumor microenvironment is characterized as being hypoxic and nutrient deficient. Previous studies have suggested that hypoxia induces tumor metastasis, while the low nutrient content is not beneficial for tumor metastasis. Thus, it is necessary to develop a simple probe to study the changes in cancer migration and invasion. Herein, we designed a nanoprobe based on gold nanoparticles (Au NPs) to monitor the effect of different oxygen and nutrient conditions on the migration and invasion of breast cancer cells through detecting the changes in levels of RAB-22a and MMP-2 mRNA in living cells. After incubating MCF-7 and MDA-MB-231 cells with different concentrations of oxygen and nutrients, fluorescence imaging assays were used to evaluate migration and invasion. This work provides a new insight in the effect of different tumor microenvironments on cell migration and invasion.
Collapse
Affiliation(s)
- Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
10
|
Mohammadi S, Mohammadi S, Salimi A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2020; 224:121895. [PMID: 33379103 DOI: 10.1016/j.talanta.2020.121895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
Hydrogels are 3D polymeric networks with great swelling capability in water and appropriate chemical, mechanical and biological features which make it feasible to maintain bioactive substances. Herein, we fabricated carbon dots-chitosan nanocomposite hydrogels via reacting carbon dots synthesized from various aldehyde precursors with chitosan after that functionalized with ssDNA probe for detection of microRNA-21 in MCF-7 cancer cells. More importantly, three fluorescent hydrogels were produced using schiff base reaction (forming imine bonds) among the amine in chitosan and aldehyde groups on the CDs surface. Furthermore, the hydrogel films, CDs and CDs-chitosan nanocomposite hydrogels were characterized by UV-vis absorption and fluorescence spectra, FT-IR, scanning electron microscope (SEM) and transmission electron microscopy (TEM). The DNA hydrogel bioassay strategy revealed a great stability and a superb sensitivity for microRNA-21, with a suitable linear range (0.1-125 fM) and a detection limit (0.03 fM). For sample analysis, the biosensors exhibited good linearity with MCF-7 cancer cell concentrations from 1000 to 25000, 1000-25000 and 1000-6000 cells mL-1 and detection limit of 310, 364 and 552 cells mL-1, for glutaraldehyde, nitrobezaldehyde and benzaldehyde based nanocomposite hydrogels, respectively. In addition, cell viability consequences demonstrated low probe cytotoxicity, so nanocomposite hydrogels was utilized to multicolor imaging of MCF-7 cancer cells.
Collapse
Affiliation(s)
- Susan Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Somayeh Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
11
|
Wang D, Chai Y, Yuan Y, Yuan R. Simple and Regulable DNA Dimer Nanodevice to Arrange Cascade Enzymes for Sensitive Electrochemical Biosensing. Anal Chem 2020; 92:14197-14202. [DOI: 10.1021/acs.analchem.0c03396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ding Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Yang P, Peng X, Yang ZZ, Chai YQ, Yuan R, Liang WB. Aggregation-Induced Synergism by Hydrophobic-Driven Self-Assembly of Amphiphilic Oligonucleotides. Chemistry 2020; 26:8767-8773. [PMID: 32060953 DOI: 10.1002/chem.202000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Indexed: 12/31/2022]
Abstract
The evident contradiction between high local-concentration-based substrate reactivity and free-diffusion-based high reaction efficiency remains one of the important challenges in chemistry. Herein, we propose an efficient aggregation-induced synergism through the hydrophobic-driven self-assembly of amphiphilic oligonucleotides to generate high local concentration whereas retaining high reaction efficiency through hydrophobic-based aggregation, which is important for constructing efficient DNA nanomachines for ultrasensitive applications. MicroRNA-155, used as a model, triggered strand displacement amplification of the DNA monomers on the periphery of the 3D DNA nanomachine and generated an amplified fluorescent response for its sensitive assay. The local concentration of substrates was increased by a factor of at least 9.0×105 through hydrophobic-interaction-based self-assembly in comparison with the traditional homogeneous reaction system, achieving high local-concentration-based reactivity and free-diffusion-based enhanced reaction efficiency. As expected, the aggregation-induced synergism by hydrophobic-driven self-assembly of amphiphilic oligonucleotides created excellent properties to generate a 3D DNA nanomachine with potential as an assay for microRNA-155 in cells. Most importantly, this approach can be easily expanded for the bioassay of various biomarkers, such as nucleotides, proteins, and cells, offering a new avenue for simple and efficient applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Yang
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Xin Peng
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ze-Zhou Yang
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ya-Qin Chai
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ruo Yuan
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Wen-Bin Liang
- Chongqing Engineering Laboratory of Nanomaterials, & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
13
|
Wen HY, Huang CW, Li YL, Chen JL, Yeh YT, Chiang CC. A Lamping U-Shaped Fiber Biosensor Detector for MicroRNA. SENSORS 2020; 20:s20051509. [PMID: 32182926 PMCID: PMC7085725 DOI: 10.3390/s20051509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
This study presents a U-shaped optical fiber developed for a facile application of microRNA detection. It is fabricated by the lamping process and packaged in a quartz tube to eliminate human negligence. In addition, silanization and electrostatic self-assembly are employed to bind gold nanoparticles and miRNA-133a probe onto the silicon dioxide of the fiber surface. For Mahlavu of hepatocellular carcinoma (HCC), detection is determined by the wavelength shift and transmission loss of a U-shaped optical fiber biosensor. The spectral sensitivity of wavelength and their coefficient of determination are found at −218.319 nm/ ng/mL and 0.839, respectively. Concurrently, the sensitivity of transmission loss and their coefficient of determination are found at 162.394 dB/ ng/mL and 0.984, respectively. A method for estimating the limit of detection of Mahlavu is at 0.0133 ng/mL. The results show that the proposed U-shaped biosensor is highly specific to miRNA-133a and possesses good sensitivity to variations in specimen concentration. As such, it could be of substantial value in microRNA detection.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan; (H.-Y.W.); (C.-W.H.); (Y.-L.L.); (J.-L.C.)
| | - Chun-Wei Huang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan; (H.-Y.W.); (C.-W.H.); (Y.-L.L.); (J.-L.C.)
| | - Yu-Le Li
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan; (H.-Y.W.); (C.-W.H.); (Y.-L.L.); (J.-L.C.)
| | - Jing-Luen Chen
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan; (H.-Y.W.); (C.-W.H.); (Y.-L.L.); (J.-L.C.)
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Chia-Chin Chiang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan; (H.-Y.W.); (C.-W.H.); (Y.-L.L.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
14
|
Ge J, Qi Z, Zhang L, Shen X, Shen Y, Wang W, Li Z. Label-free and enzyme-free detection of microRNA based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS 2 quantum dots via the inner filter effect. NANOSCALE 2020; 12:808-814. [PMID: 31830179 DOI: 10.1039/c9nr08154b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new simple, sensitive and specific strategy for microRNA analysis has been described based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS2 quantum dots via the inner filter effect. The target microRNA triggers the hybridization chain reaction between two DNA probes to generate long dsDNA with many hemin/G-quadruplex DNAzymes in the presence of hemin. With the assistance of H2O2, the produced hemin/G-quadruplex DNAzyme could oxidize o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP) directly, resulting in the fluorescence quenching of MoS2 quantum dots via the inner filter effect. As an example, the fluorescence response of MoS2 quantum dots is linearly related with the logarithm of the microRNA let-7a concentration with a detection limit of 42 fM. The proposed label-free assay has promising potential to be applied in practical diagnosis.
Collapse
Affiliation(s)
- Jia Ge
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Fantino E, Chiadò A, Quaglio M, Vaghi V, Cocuzza M, Marasso SL, Potrich C, Lunelli L, Pederzolli C, Pirri CF, Bongiovanni R, Vitale A. Photofabrication of polymeric biomicrofluidics: New insights into material selection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110166. [PMID: 31753377 DOI: 10.1016/j.msec.2019.110166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
We propose a versatile method to evaluate the suitability of polymers for the fabrication of microfluidic devices for biomedical applications, based on the concept that the selection and the design of convenient materials should involve different properties depending on the final microfluidic application. Here polymerase chain reaction (PCR) is selected as biological model and target microfluidic reaction. A class of photocured siloxanes is introduced as device building polymers and copolymerization is adopted as strategy to finely tune and optimize the final material properties. All-polymeric flexible devices are easily fabricated exploiting the rapidity of the photopolymerization reaction: they resist to thermal cycles without leakage or de-bonding (i.e., without separation of different chip parts made of the same material bonded together), show very limited water swelling and permeability, are bioinert and prevent the inhibition of the biochemical reaction. PCR is thus successfully conducted in the photocured microfluidic devices made with a specifically designed siloxane copolymer.
Collapse
Affiliation(s)
- Erika Fantino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy
| | - Marzia Quaglio
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Valentina Vaghi
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy
| | - Matteo Cocuzza
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Simone L Marasso
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; INSTM - Politecnico di Torino Research Unit, Via Giusti 9, 50121 Firenze, Italy
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; INSTM - Politecnico di Torino Research Unit, Via Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
16
|
Kolosova AY, Sakharov IY. Triple Amplification Strategy for the Improved Efficiency of a Microplate-Based Assay for the Chemiluminescent Detection of DNA. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1539091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Y. Kolosova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Y. Sakharov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
18
|
Peng L, Yuan Y, Fu X, Fu A, Zhang P, Chai Y, Gan X, Yuan R. Reversible and Distance-Controllable DNA Scissor: A Regenerated Electrochemiluminescence Biosensing Platform for Ultrasensitive Detection of MicroRNA. Anal Chem 2019; 91:3239-3245. [DOI: 10.1021/acs.analchem.8b02757] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lichun Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaomin Fu
- College of Chemistry and Chemical Engineering, Yibin University, Yibin, Sichuan 644007, People’s Republic of China
| | - Ao Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xianxue Gan
- College of Chemistry and Chemical Engineering, Yibin University, Yibin, Sichuan 644007, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
19
|
Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. BIOSENSORS-BASEL 2018; 8:bios8040131. [PMID: 30558342 PMCID: PMC6315751 DOI: 10.3390/bios8040131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) has been proven suitable for identifying and characterizing different bacterial species, and to fully understand the chemically driven metabolic variations that occur during their evolution. In this study, SERS was exploited to identify the cellular composition of Gram-positive and Gram-negative bacteria by using mesoporous silicon-based substrates decorated with silver nanoparticles. The main differences between the investigated bacterial strains reside in the structure of the cell walls and plasmatic membranes, as well as their biofilm matrix, as clearly noticed in the corresponding SERS spectrum. A complete characterization of the spectra was provided in order to understand the contribution of each vibrational signal collected from the bacterial culture at different times, allowing the analysis of the bacterial populations after 12, 24, and 48 h. The results show clear features in terms of vibrational bands in line with the bacterial growth curve, including an increasing intensity of the signals during the first 24 h and their subsequent decrease in the late stationary phase after 48 h of culture. The evolution of the bacterial culture was also confirmed by fluorescence microscope images.
Collapse
|
20
|
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Anal Chem 2018; 91:441-467. [DOI: 10.1021/acs.analchem.8b05028] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstrasse 5, 30167 Hanover, Germany
| | - Naama Massad-Ivanir
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sharon Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Li X, Rout P, Xu R, Pan L, Tchounwou PB, Ma Y, Liu YM. Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 90:13663-13669. [PMID: 30359531 DOI: 10.1021/acs.analchem.8b04008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantitative assay of microRNAs (miRNAs) with mass spectrometric detection currently suffers from two major disadvantages, i.e., being insufficient in sensitivity and requiring an extraction or chromatographic separation prior to MS detection. In this work, we developed a facile and sensitive assay of targeted miRNAs based on the combination of cyclic enzymatic amplification (CEA) with microfluidic voltage-assisted liquid desorption electrospray ionization tandem mass spectrometry (VAL-DESI-MS/MS). The single-stranded DNA (ssDNA) probe was designed to have a sequence complementary to the miRNA target with an extension of a two-base nucleotide fragment (i.e., CpC) at the 3'-position as MS signal reporter, thus being easy to prepare and high in stability. In the proposed CEA-VAL-DESI-MS/MS assay, an ssDNA probe was added to a sample solution, forming a DNA-miRNA hybrid. Duplex-specific nuclease (DSN) was then added to cleave specifically the DNA probe in the heteroduplex strands. As the hybridization-cleavage cycle repeated itself for many rounds, a large quantity of CpC molecules was produced that was quantified by VAL-DESI-MS/MS with accuracy and specificity. miRNA-21 was tested as the model target. The assay had a linear calibration equation in the range from 2.5 pM to 1.0 nM with a limit of detection of 0.25 pM. Determination of miRNA-21 in cellular samples was demonstrated. miRNA-21 was found to be 95.3 ± 13.95 amol ( n = 3) in 100 mouse peritoneal macrophages with a recovery of 94.2 ± 2.6% ( n = 3). Interestingly, analysis of exosomes secreted from these cells revealed that exposure of the cells to chemical stimuli caused a 3-fold increase in exosomal level of miRNA-21. The results suggest that the proposed assay may provide an accurate and cost-effective means for quantification of targeted miRNAs in biomedical samples.
Collapse
Affiliation(s)
| | - Pratik Rout
- Department of Chemistry , Emory University , 201 Dowman Drive , Atlanta , Georgia 30322 , United States
| | | | | | | | - Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , Mississippi 39216 , United States
| | | |
Collapse
|
22
|
An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe. Mikrochim Acta 2018; 185:408. [DOI: 10.1007/s00604-018-2944-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
23
|
Bandarenka HV, Girel KV, Zavatski SA, Panarin A, Terekhov SN. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E852. [PMID: 29883382 PMCID: PMC5978229 DOI: 10.3390/ma11050852] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.
Collapse
Affiliation(s)
- Hanna V Bandarenka
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Kseniya V Girel
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Sergey A Zavatski
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Andrei Panarin
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| | - Sergei N Terekhov
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| |
Collapse
|
24
|
Powell JA, Venkatakrishnan K, Tan B. Toward Universal SERS Detection of Disease Signaling Bioanalytes Using 3D Self-Assembled Nonplasmonic near-Quantum-Scale Silicon Probe. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40127-40142. [PMID: 29083860 DOI: 10.1021/acsami.7b15393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, the quantum-scale surface-enhanced Raman scattering (SERS) properties of Si materials have yet to be discovered for universal biosensing applications. In this study, a potential universal biosensing probe is generated by activating the SERS functionality of Si nanostructures through near quantum-scale (nQS) engineering. We introduce herein 3D nonplasmonic Si nanomesh structure with nQS defects for SERS biosensing applications. Through ionization of a single-crystal defect-free Si wafer, highly defect-rich Si subnano-orbs (sNOs) are fabricated and self-assemble as connective 3D Si nanomesh structures with enhanced SERS biosensing activity. By amending the laser ionization and ion-ion interactions, we observe the controlled synthesis of engineered nQS defects in the form of nQS-grain boundary disorder or surface nQS voids within the interconnected Si sNOs. To our knowledge, it is shown here for the first time that defect-rich Si nanomesh structures exhibit enhanced Raman activity, with the nQS morphological and crystallographic defects acting as the prime SERS contributors without a plasmonic contribution. The SERS biosensing sensitivity with the synthesized defect-rich Si nanomesh structures without an additional plasmonic material was evaluated using of a tripeptide biomarker l-glutathione (GSH); we observe an enhancement factor value of ∼102 for the GSH biomolecules with 10-9 M sensitivity, a phenomena to our knowledge that has yet to be reported. Additionally, the SERS detection of multiple disease-signaling biomolecules (cysteine, tryptophan, and methionine) is achieved at very low analyte concentration (10-9 M). These results indicate a potential new dimension to universal SERS biosensing applications with these unique nonplasmonic defect-rich 3D nQS-Si nanostructures.
Collapse
Affiliation(s)
| | - Krishnan Venkatakrishnan
- Affiliate Scientist, Keenan Research Center for Biomedical Science, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | | |
Collapse
|
25
|
Yuan YH, Chi BZ, Wen SH, Liang RP, Li ZM, Qiu JD. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosens Bioelectron 2017; 102:211-216. [PMID: 29145074 DOI: 10.1016/j.bios.2017.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
We propose a ratiometric electrochemical assay for detecting microRNA (miRNA) on the basis of dual-amplification mechanism by using distinguishable electrochemical signals from thionine (Thi) and ferrocene (Fc). The thiol-modified and ferrocene-labeled hairpin capture probes (CP) are first immobilized on an Au electrode via Au-S reaction. The target miRNA hybridizes with CP and unfolding the hairpin structure of CP to form miRNA-DNA duplexes. Then, kamchatka crab duplex specific nuclease (DSN) specifically cleaves the DNA in miRNA-DNA duplexes, leading to the release of miRNA and another cleaves cycle, meanwhile, numerous Fc leaves away from the electrode surface and leads to the signal-off of Fc. The residual fragment on electrode surface acts as a HCR primer to form dsDNA polymers through in situ HCR with the presence of the primer and two probes (HDNA and HDNA'), resulting in the capture of numerous DNA/Au NPs/Thi and the signal-on of Thi. The dual-amplification mechanism significantly amplifies the decrease of Fc signal and the increase of Thi signal for ratiometric readout (IThi/IFc), thus providing a sensitive method for the selective detection of miR-141 with a detection limit down to 11aM. The dual-signal ratiometric outputs have an intrinsic self-calibration to the effects from system, which is promising to be applied in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Yan-Hong Yuan
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Bao-Zhu Chi
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Shao-Hua Wen
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| | - Zhi-Mei Li
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
26
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
27
|
Peng L, Zhang P, Chai Y, Yuan R. Bi-directional DNA Walking Machine and Its Application in an Enzyme-Free Electrochemiluminescence Biosensor for Sensitive Detection of MicroRNAs. Anal Chem 2017; 89:5036-5042. [DOI: 10.1021/acs.analchem.7b00418] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lichun Peng
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
28
|
Stassi S, Chiadò A, Cauda V, Palmara G, Canavese G, Laurenti M, Ricciardi C. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability. Anal Bioanal Chem 2017; 409:2615-2625. [DOI: 10.1007/s00216-017-0204-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 01/31/2023]
|
29
|
Novara C, Chiadò A, Paccotti N, Catuogno S, Esposito CL, Condorelli G, De Franciscis V, Geobaldo F, Rivolo P, Giorgis F. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discuss 2017; 205:271-289. [DOI: 10.1039/c7fd00140a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, SERS-based microfluidic PDMS chips integrating silver-coated porous silicon membranes were used for the detection and quantitation of microRNAs (miRNAs), which consist of short regulatory non-coding RNA sequences typically over- or under-expressed in connection with several diseases such as oncogenesis. In detail, metal–dielectric nanostructures which provide noticeable Raman enhancements were functionalized according to a biological protocol, adapted and optimized from an enzyme-linked immunosorbent assay (ELISA), for the detection of miR-222. Two sets of experiments based on different approaches were designed and performed, yielding a critical comparison. In the first one, the labelled target miRNA is revealed through hybridization to a complementary thiolated DNA probe, immobilized on the silver nanoparticles. In the second one, the probe is halved into shorter strands (half1 and half2) that interact with the complementary miRNA in two steps of hybridization. Such an approach, taking advantage of the Raman labelling of half2, provides a label-free analysis of the target. After suitable optimisation of the procedures, two calibration curves allowing quantitative measurements were obtained and compared on the basis of the SERS maps acquired on the samples loaded with several miRNA concentrations. The selectivity of the two-step assay was confirmed by the detection of target miR-222 mixed with different synthetic oligos, simulating the hybridization interference coming from similar sequences in real biological samples. Finally, that protocol was applied to the analysis of miR-222 in cellular extracts using an optofluidic multichamber biosensor, confirming the potentialities of SERS-based microfluidics for early-cancer diagnosis.
Collapse
Affiliation(s)
- Chiara Novara
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| | - Niccolò Paccotti
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| | - Silvia Catuogno
- Institute of Endocrinology and Experimental Oncology of Italian National Research Council
- Naples
- Italy
| | - Carla Lucia Esposito
- Institute of Endocrinology and Experimental Oncology of Italian National Research Council
- Naples
- Italy
| | - Gerolama Condorelli
- Institute of Endocrinology and Experimental Oncology of Italian National Research Council
- Naples
- Italy
- Department of Molecular Medicine and Medical Biotechnology
- “Federico II” University of Naples
| | - Vittorio De Franciscis
- Institute of Endocrinology and Experimental Oncology of Italian National Research Council
- Naples
- Italy
| | - Francesco Geobaldo
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| | - Paola Rivolo
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| | - Fabrizio Giorgis
- Department of Applied Science and Technology
- Politecnico di Torino
- Turin
- Italy
| |
Collapse
|