1
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Zhang X, Cai X, Yin N, Che Y, Jiao Y, Zhang C, Yu J, Liu C. Hierarchical PVDF/ZnO/Ag/ZIF-8 nanofiber membrane used in trace-level Raman detection of H 2S. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134441. [PMID: 38678721 DOI: 10.1016/j.jhazmat.2024.134441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
surface enhanced Raman scattering (SERS) detection of gases has always been difficult due to the low affinity and poor Raman cross section of the moving molecules. To mitigate the impact of these problems on detection of gases, a structure of zinc oxide/silver nanowires coated with zeolitic imidazolate framework-8 (ZnO NWs/Ag/ZIF-8) was constructed on polyvinylidene fluoride (PVDF) nanofiber membrane (PVDF/ZnO NWs/Ag/ZIF-8) and in detail researched in this work. Benefitting from the quadruple synergistic effect of efficient Knudsen diffusion of gas molecules inside ZIF-8, enrichment of ZIF-8 microsponges for gaseous molecules, regulation of ZIF-8 dielectric layer for light and reverse light scattering of ZnO NW/Ag tip, the structure was proven to have precise co-confinement on both hot spots and gaseous molecules. As a result, this PVDF/ZnO NWs/Ag/ZIF-8 achieved excellent detection for hydrogen sulfide (H2S), with a limit of detection of 1 × 10-10 v/v and the minimum relative standard deviation value of ca. 7.13 %. Furthermore, as a proof of concept, in practical application, we designed and assembled our substrate (3.5 cm × 3.5 cm) into a SERS face mask and realized efficient monitoring of H2S in human's exhaled breath.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China; School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Xin Cai
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Naiqiang Yin
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Yahui Che
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China.
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China; Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, PR China.
| | - Chundong Liu
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China; School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
3
|
Miao Y, Wu L, Qiang J, Qi J, Li Y, Li R, Kong X, Zhang Q. The application of Raman spectroscopy for the diagnosis and monitoring of lung tumors. Front Bioeng Biotechnol 2024; 12:1385552. [PMID: 38699434 PMCID: PMC11063270 DOI: 10.3389/fbioe.2024.1385552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Raman spectroscopy is an optical technique that uses inelastic light scattering in response to vibrating molecules to produce chemical fingerprints of tissues, cells, and biofluids. Raman spectroscopy strategies produce high levels of chemical specificity without requiring extensive sample preparation, allowing for the use of advanced optical tools such as microscopes, fiber optics, and lasers that operate in the visible and near-infrared spectral range, making them increasingly suitable for a wide range of medical diagnostic applications. Metal nanoparticles and nonlinear optical effects can improve Raman signals, and optimized fiber optic Raman probes can make real-time, in vivo, single-point observations. Furthermore, diagnostic speed and spatial accuracy can be improved through the multimodal integration of Raman measurements and other technologies. Recent studies have significantly contributed to the improvement of diagnostic speed and accuracy, making them suitable for clinical application. Lung cancer is a prevalent type of respiratory malignancy. However, the use of computed tomography for detection and screening frequently reveals numerous smaller lung nodules, which makes the diagnostic process more challenging from a clinical perspective. While the majority of small nodules detected are benign, there are currently no direct methods for identifying which nodules represent very early-stage lung cancer. Positron emission tomography and other auxiliary diagnostic methods for non-surgical biopsy samples from these small nodules yield low detection rates, which might result in significant expenses and the possibility of complications for patients. While certain subsets of patients can undergo curative treatment, other individuals have a less favorable prognosis and need alternative therapeutic interventions. With the emergence of new methods for treating cancer, such as immunotherapies, which can potentially extend patient survival and even lead to a complete cure in certain instances, it is crucial to determine the most suitable biomarkers and metrics for assessing the effectiveness of these novel compounds. This will ensure that significant treatment outcomes are accurately measured. This review provides a comprehensive overview of the prospects of Raman spectroscopy and its applications in the diagnosis and analysis of lung tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
4
|
Fang L, Pan XT, Liu K, Jiang D, Ye D, Ji LN, Wang K, Xia XH. Surface-Roughened SERS-Active Single Silver Nanowire for Simultaneous Detection of Intracellular and Extracellular pHs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20677-20685. [PMID: 37071781 DOI: 10.1021/acsami.3c00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The simultaneous and accurate detection of intracellular pH (pHi) and extracellular pH (pHe) is essential for studying the complex physiological activities of cancer cells and exploring pH-related therapeutic mechanisms. Here, we developed a super-long silver nanowire-based surface-enhanced Raman scattering (SERS) detection strategy for simultaneous sensing of pHi and pHe. A surface-roughened silver nanowire (AgNW) with a high aspect ratio is prepared at a nanoelectrode tip using a Cu-mediated oxidation process, which is then modified by pH-sensitive 4-mercaptobenzoic acid (4-MBA) to form 4-MBA@AgNW as a pH sensing probe. With the assistance of a 4D microcontroller, 4-MBA@AgNW is efficient in simultaneously detecting pHi and pHe in both 2D and 3D culture cancer cells by SERS, with minimal invasiveness, high sensitivity, and spatial resolution. Further investigation proves that the surface-roughened single AgNW can also be used in monitoring the dynamic variation of pHi and pHe of cancer cells upon stimulation with anticancer drugs or under a hypoxic environment.
Collapse
Affiliation(s)
- Leyi Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Shen J, Liu G, Zhang W, Shi W, Zhou Y, Yu Z, Mei Q, Zhang L, Huang W. Design and Detection of Cyanide Raman Tag pH-Responsive SERS Probes. BIOSENSORS 2022; 13:21. [PMID: 36671856 PMCID: PMC9855686 DOI: 10.3390/bios13010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
As one of the most important parameters of biochemical analysis and detection, the pH value plays a very important role in cell function, food preservation and production, soil and water sources, and other applications. This makes it increasingly important to explore pH detection methods in depth. In this paper, a pH-responsive SERS probe based on the cyano Raman Tag was designed to realize pH sensing detection through the influence of the pH value of analytes on the displacement of the cyano Raman peak in the SERS probe. This cyano Raman tag exhibited not only excellent sensitivity in the liner range of pH 3.0-9.0 with a limit of detection (LOD) of pH 0.33, but also the anti-interference performance and stability (the relative standard deviation (RSD) was calculated to be 6.68%, n = 5). These results indicated that this pH SERS probe with the Raman cyano tag can provide new research ideas for future biological detection, bioimaging, and environmental detection.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Guan Liu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wen Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wenwen Shi
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Zejie Yu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Qunbo Mei
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Lei Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
6
|
Chen S, Fan J, Lv M, Hua C, Liang G, Zhang S. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells. Anal Chem 2022; 94:14675-14681. [PMID: 36222749 DOI: 10.1021/acs.analchem.2c02961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2S), as the third endogenous gasotransmitter, is closely associated with various physiological and pathological processes, whereas many aspects of its functions remain unclear. Effective tools for the accurate detection of H2S in living organisms are urgently needed. We herein reported an internal standard assisted surface-enhanced Raman scattering (SERS) nanoprobe for ratiometric detection of H2S in vitro and in living cells based on the reduction of nitros with H2S. This nanoprobe consists of an internal standard (4-mercaptobenzonitrile, MPBN) embedded core-molecule-shell Au nanoflower (Au@MPBN@Au) as the high plasmonic active SERS substrate and the 4-nitrothiophenol (4-NTP) molecule immobilized on the surface as the H2S recognition unit. With the addition of H2S, the nitros peak (1329 cm-1) decreased. Meanwhile, three obvious new peaks appeared at 1139, 1387, and 1433 cm-1, which were related to the vibration of the dimerized product 4,4'-dimercaptoazobisbenzene (DMAB) of 4-aminothiophenol (4-ATP). However, the peak intensity at 2223 cm-1 derived from MPBN was not influenced by the outer environment. Thus, the H2S level was able to be determined based on the ratio of two peak intensities (I1139/I2223) with a detection limit as low as 0.24 μM. Notably, we have proved that SERS nanoprobe Au@MPBN@Au@4-NTP could ratiometrically image both the endogenous and exogenous H2S in living cells. We anticipate that Au@MPBN@Au@4-NTP could be applied for the study of H2S-related physiological function in the future.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.,Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jiayi Fan
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mengya Lv
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Chenfeng Hua
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, 2 Fengyang Street, Zhengzhou 450001, China
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
7
|
Tanwar S, Kim JH, Bulte JWM, Barman I. Surface-enhanced Raman scattering: An emerging tool for sensing cellular function. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1802. [PMID: 35510405 PMCID: PMC9302385 DOI: 10.1002/wnan.1802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Continuous long-term intracellular imaging and multiplexed monitoring of biomolecular changes associated with key cellular processes remains a challenge for the scientific community. Recently, surface-enhanced Raman scattering (SERS) has been demonstrated as a powerful spectroscopic tool in the field of biology owing to its significant advantages. Some of these include the ability to provide molecule-specific information with exquisite sensitivity, working with small volumes of precious samples, real-time monitoring, and optimal optical contrast. More importantly, the availability of a large number of novel Raman reporters with narrower full width at half maximum (FWHM) of spectral peaks/vibrational modes than conventional fluorophores has created a versatile palette of SERS-based probes that allow targeted multiplex sensing surpassing the detection sensitivity of even fluorescent probes. Due to its nondestructive nature, its applicability has been recognized for biological sensing, molecular imaging, and dynamic monitoring of complex intracellular processes. We critically discuss recent developments in this area with a focus on different applications where SERS has been used for obtaining information that remains elusive for conventional imaging methods. Current reports indicate that SERS has made significant inroads in the field of biology and has the potential to be used for in vivo human applications. This article is categorized under: Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
9
|
Lin T, Song YL, Kuang P, Chen S, Mao Z, Zeng TT. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond) 2021; 16:2389-2406. [PMID: 34530631 DOI: 10.2217/nnm-2021-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pu Kuang
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Zhang L, Zhao Q, Jiang Z, Shen J, Wu W, Liu X, Fan Q, Huang W. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging. BIOSENSORS 2021; 11:282. [PMID: 34436084 PMCID: PMC8392648 DOI: 10.3390/bios11080282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
As pH value almost affects the function of cells and organisms in all aspects, in biology, biochemical and many other research fields, it is necessary to apply simple, intuitive, sensitive, stable detection of pH and base characteristics inside and outside the cell. Therefore, many research groups have explored the design and application of pH probes based on surface enhanced Raman scattering (SERS). In this review article, we discussed the basic theoretical background of explaining the working mechanism of pH SERS sensors, and also briefly described the significance of cell pH measurement, and simply classified and summarized the factors that affected the performance of pH SERS probes. Some applications of pH probes based on surface enhanced Raman scattering in intracellular and extracellular pH imaging and the combination of other analytical detection techniques are described. Finally, the development prospect of this field is presented.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Qianqian Zhao
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Zhitao Jiang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Jingjing Shen
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Weibing Wu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210023, China;
| | - Xingfen Liu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Quli Fan
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; (Q.Z.); (Z.J.); (J.S.); (X.L.); (Q.F.); (W.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
11
|
Jaworska A, Malek K, Kudelski A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119410. [PMID: 33465573 DOI: 10.1016/j.saa.2020.119410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 05/13/2023]
Abstract
The value of pH in various parts of protoplasm can affect nearly all aspects of cell functions. Therefore, the determination of intracellular acid-base features is required in many areas of biological and biochemical studies. Because of a significant scientific importance of in vivo intracellular pH measurements, various groups carried out such experiments. In this review article we describe intracellular pH measurements using two the most sensitive optical spectroscopies: surface-enhanced Raman scattering (SERS) and fluorescence. It is reasonable to present these two techniques in one review article because the experimental approach in Raman and fluorescence experiments is relatively similar. The basic theoretical background explaining the mechanism of operation of fluorescence and SERS sensors are discussed and the motivations to carry out intracellular pH measurements are briefly described. Future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|
13
|
Huang C, Tan W, Zheng J, Zhu C, Huo J, Yang R. Azoreductase-Responsive Metal-Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25740-25749. [PMID: 31251022 DOI: 10.1021/acsami.9b08115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insufficient oxygen supply may cause hypoxia in a solid tumor, which can lead to drug resistance and unsatisfactory chemotherapy effect. To address this issue, a new nanodrug has been developed with azoreductase-responsive functional metal-organic frameworks (AMOFs), where chemotherapeutic drugs were encapsulated in the AMOFs and small interfering RNAs (siRNAs) were absorbed on the surface of AMOFs. The siRNA was designed to contain hypoxia-inducible factor (HIF)-1α against RX-0047, which can induce significant downregulation of HIF-1α protein. The azobenzene units within the frameworks of AMOFs could be reduced to amines by the highly expressed azoreductase under the oxygen-deficient environment, which results in azoreductase-responsive release of the encapsulated drugs and siRNAs under the hypoxic condition. Therefore, once the drug-loaded AMOF entered the hypoxic cancer cells, the azoreductase-responsive release of siRNA could decrease the efflux of chemotherapeutic drugs via inhibiting the expressions of HIF-1α, multidrug resistance gene 1, and P-glycoprotein. This nanodrug can thus efficiently break hypoxia-induced chemoresistance and result in high-efficient cancer therapy in hypoxic tumors. As far as we know, this is the first attempt to construct an AMOF-based nanodrug with hypoxic harvesting behaviors. This proof-of-concept research provides a simple strategy for the construction of hypoxic-responsive AMOFs and also offers a unique on-command drug delivery platform, which can effectively break hypoxia-induced chemoresistance.
Collapse
MESH Headings
- Animals
- Cell Hypoxia/drug effects
- Cell Hypoxia/genetics
- Delayed-Action Preparations/chemistry
- Delayed-Action Preparations/pharmacokinetics
- Delayed-Action Preparations/pharmacology
- Drug Carriers/chemistry
- Drug Carriers/pharmacokinetics
- Drug Carriers/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Nanostructures/chemistry
- Nanostructures/therapeutic use
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Nitroreductases
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Wenlong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Jia Huo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- Shenzhen Research Institute , Hunan University , Shenzhen 518000 , Guangdong , China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410076 , China
| |
Collapse
|
14
|
Ghoneim MT, Nguyen A, Dereje N, Huang J, Moore GC, Murzynowski PJ, Dagdeviren C. Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem Rev 2019; 119:5248-5297. [PMID: 30901212 DOI: 10.1021/acs.chemrev.8b00655] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
pH-sensing materials and configurations are rapidly evolving toward exciting new applications, especially those in biomedical applications. In this review, we highlight rapid progress in electrochemical pH sensors over the past decade (2008-2018) with an emphasis on key considerations, such as materials selection, system configurations, and testing protocols. In addition to recent progress in optical pH sensors, our main focus in this review is on electromechanical pH sensors due to their significant advances, especially in biomedical applications. We summarize developments of electrochemical pH sensors that by virtue of their optimized material chemistries (from metal oxides to polymers) and geometrical features (from thin films to quantum dots) enable their adoption in biomedical applications. We further present an overview of necessary sensing standards and protocols. Standards ensure the establishment of consistent protocols, facilitating collective understanding of results and building on the current state. Furthermore, they enable objective benchmarking of various pH-sensing reports, materials, and systems, which is critical for the overall progression and development of the field. Additionally, we list critical issues in recent literary reporting and suggest various methods for objective benchmarking. pH regulation in the human body and state-of-the-art pH sensors (from ex vivo to in vivo) are compared for suitability in biomedical applications. We conclude our review by (i) identifying challenges that need to be overcome in electrochemical pH sensing and (ii) providing an outlook on future research along with insights, in which the integration of various pH sensors with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics and prevention.
Collapse
|
15
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019; 58:2710-2714. [DOI: 10.1002/anie.201812677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
16
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
17
|
Zhu C, Zou Z, Huang C, Zheng J, Liu N, Li J, Yang R. Highly selective imaging of lysosomal azoreductase under hypoxia using pH-regulated and target-activated fluorescent nanoprobes. Chem Commun (Camb) 2019; 55:3235-3238. [DOI: 10.1039/c9cc00462a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pH-regulated and target-activated nanoprobe for highly selective monitoring of lysosomal azoreductase under hypoxia.
Collapse
Affiliation(s)
- Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Zhen Zou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
- Changsha
- China
| | - Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Na Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
- Changsha
- China
| |
Collapse
|
18
|
Liu N, Zou Z, Liu J, Zhu C, Zheng J, Yang R. A fluorescent nanoprobe based on azoreductase-responsive metal–organic frameworks for imaging VEGF mRNA under hypoxic conditions. Analyst 2019; 144:6254-6261. [DOI: 10.1039/c9an01671f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new fluorescent nanoprobe based on azoreductase-responsive functional AMOFs was developed to realize the imaging of VEGF mRNA under hypoxic conditions.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Zhen Zou
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| |
Collapse
|
19
|
Li Y, Yang S, Zheng J, Zou Z, Yang R, Tan W. "Trojan Horse" DNA Nanostructure for Personalized Theranostics: Can It Knock on the Door of Preclinical Practice? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15028-15044. [PMID: 30295491 DOI: 10.1021/acs.langmuir.8b02008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotheranostics, combing diagnostic and therapeutic components in an all-in-one nanomaterial, possess exciting potentials for precision nanomedicine. However, a major obstacle for current nanotheranostics to enter preclinical and/or clinical trials is the intrinsic toxicities of these nanomaterials. As an emerging biomaterial, the bioinspired DNA nanostructure shows advantages for constructing better nanotheranostics due to its excellent features, including native biocompatibility, full programmability, and ready accessibility. In this feature article, we highlight recent advances in the design of DNA-nanostructure-based diagnostics and/or therapeutics capable of specifically responding to biological stimuli in a dynamic way, with a particular focus on the design mechanism, responsive performance, and potential for preclinical and/or clinical trials in personalized theranostics.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Sheng Yang
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Zhen Zou
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
20
|
Xu M, Ma X, Wei T, Lu ZX, Ren B. In Situ Imaging of Live-Cell Extracellular pH during Cell Apoptosis with Surface-Enhanced Raman Spectroscopy. Anal Chem 2018; 90:13922-13928. [PMID: 30394732 DOI: 10.1021/acs.analchem.8b03193] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular pH (pHe) is an important regulating factor that determines many cellular processes, including proliferation, differentiation, and apoptosis. In our previous work, we developed 4-MPy (4-mercaptopyridine) modified Au nanoparticles as intracellular pH sensors based on surface-enhanced Raman spectroscopy (SERS). We herein modified a Au-nanoparticle-assembled solid SERS substrate with 4-MPy molecules for in situ pHe sensing during apoptosis. We found a more acidic extracellular environment of cancer cells than that of normal cells from the pH imaging. We then in situ investigated the temporal and spatial evolution of pHe of cancer cells after addition of transforming growth factor-β (TGF-β). The pHe showed a fast decrease at the beginning, followed by a slow decrease until the complete loss of cellular functions, and the pH values in and out of the cells became similar. This work shows that our SERS substrate combined with an in situ cell culture system is well suitable for in situ pHe sensing during cell processes and will be a promising technique for understanding more pHe-related biological and pathological issues.
Collapse
|
21
|
Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone 2018; 112:71-89. [PMID: 29626545 PMCID: PMC9851731 DOI: 10.1016/j.bone.2018.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets. That said, development of inhibitors, typically competitors of ATP binding, is inherently difficult due to the conserved nature of the active site of the 500+ human protein kinases. Since these enzymes are regulated via inherent plasticity, pharmacological chaperone-like drugs binding to another (allosteric) site could hypothetically modulate kinase conformation and activity. To test for such a mechanism, a surface pocket of ALK2 kinase formed largely by a key allosteric substructure was targeted by supercomputer docking of drug-like compounds from a virtual library. Subsequently, the effects of docked hits were further screened in vitro with purified recombinant kinase protein. A family of compounds with terminal hydrogen-bonding acceptor groups was identified that significantly destabilized the protein, inhibiting activity. Destabilization was pH-dependent, putatively mediated by ionization of a histidine within the allosteric substructure with decreasing pH. In vivo, nonnative proteins are degraded by proteolysis in the proteasome complex, or cellular trashcan, allowing for the emergence of therapeutics that inhibit through degradation of over-active proteins implicated in the pathology of diseases and disorders. Because HO is triggered by soft-tissue trauma and ensuing hypoxia, dependency of ALK destabilization on hypoxic pH imparts selective efficacy on the allosteric inhibitors, providing potential for safe prophylactic use.
Collapse
Affiliation(s)
- Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Mary R Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Alyssa C Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Trenton J Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
22
|
Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. BIOSENSORS 2018; 8:E46. [PMID: 29751641 PMCID: PMC6022968 DOI: 10.3390/bios8020046] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Taylor D Payne
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Grace M Sarabia
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Alyssa R Daniel
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
23
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
24
|
Zhang M, Zhang X, Qu B, Zhan J. Portable kit for high-throughput analysis of polycyclic aromatic hydrocarbons using surface enhanced Raman scattering after dispersive liquid-liquid microextraction. Talanta 2017; 175:495-500. [DOI: 10.1016/j.talanta.2017.07.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/16/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
|
25
|
Liang H, Wu Y, Ou XY, Li JY, Li J. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. NANOTECHNOLOGY 2017; 28:465702. [PMID: 28925921 DOI: 10.1088/1361-6528/aa8d9c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Hong Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Kim YI, Jeong S, Jun BH, Lee YS, Lee YS, Jeong DH, Lee DS. Endoscopic imaging using surface-enhanced Raman scattering. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2017-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn this review, we assessed endoscopic imaging using surface-enhanced Raman scattering (SERS). As white-light endoscopy, the current standard for gastrointestinal endoscopy, is limited to morphology, Raman endoscopy using surface-enhanced Raman scattering nanoparticles (SERS endoscopy) was introduced as one of the novel functional modalities. SERS endoscopy has multiplex capability and high sensitivity with low autofluorescence and photobleaching. As a result, multiple molecular characteristics of the lesion can be accurately evaluated in real time while performing endoscopy using SERS probes and appropriate instrumentation. Especially, recently developed dual modality of fluorescence and SERS endoscopy offers easy localization with identification of multiple target molecules. For clinical use of SERS endoscopy in the future, problems of limited field of view and cytotoxicity should be addressed by fusion imaging, topical administration, and non-toxic coating of nanoparticles. We expect SERS endoscopic imaging would be an essential endoscopic technique for diagnosis of cancerous lesions, assessment of resection margins and evaluation of therapeutic responses.
Collapse
|