1
|
Zhang X, Xiao J, Yang F, Qu H, Ye C, Chen S, Guo Y. Identification of sudden cardiac death from human blood using ATR-FTIR spectroscopy and machine learning. Int J Legal Med 2024; 138:1139-1148. [PMID: 38047927 DOI: 10.1007/s00414-023-03118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE The aim of this study is to identify a rapid, sensitive, and non-destructive auxiliary approach for postmortem diagnosis of SCD, addressing the challenges faced in forensic practice. METHODS ATR-FTIR spectroscopy was employed to collect spectral features of blood samples from different cases, combined with pathological changes. Mixed datasets were analyzed using ANN, KNN, RF, and SVM algorithms. Evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix were used to select the optimal algorithm and construct the postmortem diagnosis model for SCD. RESULTS A total of 77 cases were collected, including 43 cases in the SCD group and 34 cases in the non-SCD group. A total of 693 spectrogram were obtained. Compared to other algorithms, the SVM algorithm demonstrated the highest accuracy, reaching 95.83% based on spectral biomarkers. Furthermore, by combing spectral biomarkers with age, gender, and cardiac histopathological changes, the accuracy of the SVM model could get 100%. CONCLUSION Integrating artificial intelligence technology, pathology, and physical chemistry analysis of blood components can serve as an effective auxiliary method for postmortem diagnosis of SCD.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Chengxin Ye
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhang K, Liu R, Wei X, Wang Z, Huang P. Use of Raman spectroscopy to study rat lung tissues for distinguishing asphyxia from sudden cardiac death. RSC Adv 2024; 14:5665-5674. [PMID: 38357034 PMCID: PMC10865087 DOI: 10.1039/d3ra07684a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Determining asphyxia as the cause of death is crucial but is based on an exclusive strategy because it lacks sensitive and specific morphological characteristics in forensic practice. In some cases where the deceased has underlying heart disease, differentiation between asphyxia and sudden cardiac death (SCD) as the primary cause of death can be challenging. Herein, Raman spectroscopy was employed to detect pulmonary biochemical differences to discriminate asphyxia from SCD in rat models. Thirty-two rats were used to build asphyxia and SCD models, with lung samples collected immediately or 24 h after death. Twenty Raman spectra were collected for each lung sample, and 640 spectra were obtained for further data preprocessing and analysis. The results showed that different biochemical alterations existed in the lung tissues of the rats that died from asphyxia and SCD and could be used to distinguish between the two causes of death. Moreover, we screened and used 8 of the 11 main differential spectral features that maintained their significant differences at 24 h after death to successfully determine the cause of death, even with decomposition and autolysis. Eventually, seven prevalent machine learning classification algorithms were employed to establish classification models, among which the support vector machine exhibited the best performance, with an area under the curve value of 0.9851 in external validation. This study shows the promise of Raman spectroscopy combined with machine learning algorithms to investigate differential biochemical alterations originating from different deaths to aid determining the cause of death in forensic practice.
Collapse
Affiliation(s)
- Kai Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science Shanghai People's Republic of China
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Ruina Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an People's Republic of China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Ping Huang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science Shanghai People's Republic of China
- Institute of Forensic Science, Fudan University Shanghai People's Republic of China
| |
Collapse
|
3
|
Xiong L, Zhang J, Li D, Yu H, Tian T, Deng K, Qin Z, Zhang J, Huang J, Huang P. FTIR microspectroscopy of renal tubules for the identification of diabetic ketoacidosis death. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Zhang K, Liu R, Tuo Y, Ma K, Zhang D, Wang Z, Huang P. Distinguishing Asphyxia from Sudden Cardiac Death as the Cause of Death from the Lung Tissues of Rats and Humans Using Fourier Transform Infrared Spectroscopy. ACS OMEGA 2022; 7:46859-46869. [PMID: 36570197 PMCID: PMC9773813 DOI: 10.1021/acsomega.2c05968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The ability to determine asphyxia as a cause of death is important in forensic practice and helps us to judge whether a case is criminal. However, in some cases where the deceased has underlying heart disease, death by asphyxia cannot be determined by traditional autopsy and morphological observation under a microscope because there are no specific morphological features for either asphyxia or sudden cardiac death (SCD). Here, Fourier transform infrared (FTIR) spectroscopy was employed to distinguish asphyxia from SCD. A total of 40 lung tissues (collected at 0 h and 24 h postmortem) from 20 rats (10 died from asphyxia and 10 died from SCD) and 16 human lung tissues from 16 real cases were used for spectral data acquisition. After data preprocessing, 2675 spectra from rat lung tissues and 1526 spectra from human lung tissues were obtained for subsequent analysis. First, we found that there were biochemical differences in the rat lung tissues between the two causes of death by principal component analysis and partial least-squares discriminant analysis (PLS-DA), which were related to alterations in lipids, proteins, and nucleic acids. In addition, a PLS-DA classification model can be built to distinguish asphyxia from SCD. Second, based on the spectral data obtained from lung tissues allowed to decompose for 24 h, we could still distinguish asphyxia from SCD even when decomposition occurred in animal models. Nine important spectral features that contributed to the discrimination in the animal experiment were selected and further analyzed. Third, 7 of the 9 differential spectral features were also found to be significantly different in human lung tissues from 16 real cases. A support vector machine model was finally built by using the seven variables to distinguish asphyxia from SCD in the human samples. Compared with the linear PLS-DA model, its accuracy was significantly improved to 0.798, and the correct rate of determining the cause of death was 100%. This study shows the application potential of FTIR spectroscopy for exploring the subtle biochemical differences resulting from different death processes and determining the cause of death even after decomposition.
Collapse
Affiliation(s)
- Kai Zhang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ruina Liu
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ya Tuo
- Department
of Biochemistry and Physiology, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, People’s Republic of China
| | - Kaijun Ma
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Dongchuan Zhang
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Zhenyuan Wang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ping Huang
- Shanghai
Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, People’s Republic of China
| |
Collapse
|
5
|
Wang G, Wu H, Yang C, Li Z, Chen R, Liang X, Yu K, Li H, Shen C, Liu R, Wei X, Sun Q, Zhang K, Wang Z. An Emerging Strategy for Muscle Evanescent Trauma Discrimination by Spectroscopy and Chemometrics. Int J Mol Sci 2022; 23:ijms232113489. [PMID: 36362276 PMCID: PMC9658611 DOI: 10.3390/ijms232113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Trauma is one of the most common conditions in the biomedical field. It is important to identify it quickly and accurately. However, when evanescent trauma occurs, it presents a great challenge to professionals. There are few reports on the establishment of a rapid and accurate trauma identification and prediction model. In this study, Fourier transform infrared spectroscopy (FTIR) and microscopic spectroscopy (micro-IR) combined with chemometrics were used to establish prediction models for the rapid identification of muscle trauma in humans and rats. The results of the average spectrum, principal component analysis (PCA) and loading maps showed that the differences between the rat muscle trauma group and the rat control group were mainly related to biological macromolecules, such as proteins, nucleic acids and carbohydrates. The differences between the human muscle trauma group and the human control group were mainly related to proteins, polysaccharides, phospholipids and phosphates. Then, a partial least squares discriminant analysis (PLS-DA) was used to evaluate the classification ability of the training and test datasets. The classification accuracies were 99.10% and 93.69%, respectively. Moreover, a trauma classification and recognition model of human muscle tissue was constructed, and a good classification effect was obtained. The classification accuracies were 99.52% and 91.95%. In conclusion, spectroscopy and stoichiometry have the advantages of being rapid, accurate and objective and of having high resolution and a strong recognition ability, and they are emerging strategies for the identification of evanescent trauma. In addition, the combination of spectroscopy and stoichiometry has great potential in the application of medicine and criminal law under practical conditions.
Collapse
|
6
|
Cheng Q, Zhu Y, Deng K, Qin Z, Zhang J, Zhang J, Huang P, Wan C. Label-Free Diagnosis of Pulmonary Fat Embolism Using Fourier Transform Infrared (FT-IR) Spectroscopic Imaging. APPLIED SPECTROSCOPY 2022; 76:352-360. [PMID: 35020546 DOI: 10.1177/00037028211061430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The diagnosis of pulmonary fat embolism (PFE) is of great significance in the field of forensic medicine because it can be considered a major cause of death or a vital reaction. Conventional histological analysis of lung tissue specimens is a widely used method for PFE diagnosis. However, variable and labor-intensive tissue staining procedures impede the validity and informativeness of histological image analysis. To obtain complete information from tissues, a method based on infrared imaging of unlabeled tissue sections was developed to identify pulmonary fat emboli in the present study. We selected 15 PFE-positive lung samples and 15 PFE-negative samples from real cases. Oil red O (ORO) staining and infrared spectral imaging collection were both performed on all lung tissue samples. And the fatty tissue of the abdominal wall and the embolized lipid droplets in the lungs were taken for comparison. The results of the blind, evaluation by pathologists, showed good agreement between the infrared spectral imaging of the lung tissue and the standard histological stained images. Fourier transform infrared (FT-IR) spectroscopic imaging significantly simplifies the typical painstakingly laborious histological staining procedure. And we found a difference between lipid droplets embolized in abdominal wall fat and lung tissue.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Forensic Medicine, 74628Guizhou Medical University, Guizhou, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yongzheng Zhu
- School of Forensic Medicine, 74648Shanxi Medical University, Taiyuan, China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Zhiqiang Qin
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Changwu Wan
- Department of Forensic Medicine, 74628Guizhou Medical University, Guizhou, China
| |
Collapse
|
7
|
Lou J, Chen H, Huang S, Chen P, Yu Y, Chen F. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med 2022; 87:102332. [DOI: 10.1016/j.jflm.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
|
8
|
Xiong H, Wang Q, Zhao M, Zheng Z, Zhu S, Zhu Y, Li Y, Li S, Ding S, Li H, Li J. Drowning and postmortem immersion identification using attenuated total reflection-Fourier transform infrared spectroscopy. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chatchawal P, Wongwattanakul M, Tippayawat P, Jearanaikoon N, Jumniansong A, Boonmars T, Jearanaikoon P, Wood BR. Monitoring the Progression of Liver Fluke-Induced Cholangiocarcinoma in a Hamster Model Using Synchrotron FTIR Microspectroscopy and Focal Plane Array Infrared Imaging. Anal Chem 2020; 92:15361-15369. [PMID: 33170647 DOI: 10.1021/acs.analchem.0c02656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is a bile duct cancer that originates in the bile duct epithelium. Northeastern Thailand has the highest incidence of CCA, and there is a direct correlation with liver fluke (Opisthorchis viverrini) infection. The high mortality rate of CCA is a consequence of delayed diagnosis. Fourier transform infrared (FTIR) spectroscopy is a powerful technique that detects the absorbance of molecular vibrations and is perfectly suited for the interrogation of biological samples. In this study, we applied synchrotron radiation-FTIR (SR-FTIR) microspectroscopy and focal plane array (FPA-FTIR) microspectroscopy to characterize periductal fibrosis and bile duct cells progressing to CCA induced by inoculating O. viverrini metacercariae into hamsters. SR-FTIR and FPA-FTIR measurements were performed in liver sections harvested from 1-, 2-, 3-, and 6-month post-infected hamsters compared to uninfected liver tissues. Principal component analysis (PCA) of the tissue samples showed a clear discrimination among uninfected and early-stage (1 and 2 months) and cancerous-stage (3 and 6 months) tissues. The discrimination is based on intensity changes in the phosphodiester band (1081 cm-1), amino acid residue (∼1396 cm-1), and C═O stretching carboxylic esters (1745 cm-1). Infected tissues also show definitive bands at ∼1280, 1234, and 1201 cm-1 characteristic of the collagen triplet and indicative of fibrosis. Hierarchical cluster analysis (HCA) was performed on the FPA data and showed a classification into specific cell types. Hepatocyte, fibrotic lesion, and bile duct (cancer) were classified and HCA mapping showed similar cellular distribution pattern compared to Sirius red staining. This study was also extended to less invasive sample analysis using attenuated total reflectance-FTIR (ATR-FTIR) spectroscopy. Sera from O. viverrini-infected and uninfected hamsters were analyzed using multivariate analysis, including principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA). PCA was able to classify spectra of normal, early-stage CCA, and CCA, while the PLS-DA gave 100% accuracy for the validation. The model was established from 17 samples (11 normal, 6 cancer) in the calibration set and 9 samples in the validation set (4 normal, 2 cancer, 3 precancerous). These results indicate that FTIR-based technology is a potential tool to detect the progression of CCA, especially in the early stages of the disease.
Collapse
Affiliation(s)
- Patutong Chatchawal
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Molin Wongwattanakul
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Patcharaporn Tippayawat
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Amonrat Jumniansong
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thidarat Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Jearanaikoon
- Center for Research and Development of Medical Diagnosis Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen40002, Thailand
| | - Bayden R Wood
- Center for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Victoria 3800, Australia
| |
Collapse
|
10
|
Identifying muscle hemorrhage in rat cadavers with advanced decomposition by FT-IR microspectroscopy combined with chemometrics. Leg Med (Tokyo) 2020; 47:101748. [PMID: 32682296 DOI: 10.1016/j.legalmed.2020.101748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/10/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
The identification of muscle hemorrhage in a cadaver that is in an advanced stage of decomposition is an important but challenging task. Our study investigated whether Fourier transform infrared (FT-IR) microspectroscopy in conjunction with chemometrics could identify muscle hemorrhage using rat cadavers with advanced decomposition. In this study, an intramuscular blood injection method, instead of a mechanical injury method, was used to construct a muscle hemorrhage model, and the modeling idea of muscle hemorrhage identification was to discriminate and classify hemoglobin-leaking myofibrils from negative myofibrils. First, the optical images of hematoxylin/eosin (H&E) stained hemorrhagic muscle at different postmortem intervals (PMIs) were observed and showed that the morphological features of whole erythrocytes disappeared since the PMI of 4 d. Subsequently, principle component analysis (PCA) was performed and indicated that the biochemical differences in protein structures between fresh erythrocytes and myofibrils can be detected by the IR spectroscopic method. Ultimately, several classification models based on the partial least square discriminant analysis (PLS-DA) algorithm were successfully constructed for different PMIs and PMI ranges and achieved great prediction performances in external validations. This preliminary study demonstrates the feasibility of using FT-IR microspectroscopy combined with chemometrics as a potential approach for identifying muscle hemorrhage in cadavers with advanced decomposition for offering vital evidences in judicial process.
Collapse
|
11
|
Species identification of semen stains by ATR-FTIR spectroscopy. Int J Legal Med 2020; 135:73-80. [PMID: 32647962 DOI: 10.1007/s00414-020-02367-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Semen stains are the most important biological evidence when identifying the aggressor in sexual assault cases. Current detecting assays of semen stains species identification were not confirmative enough. In this study, we investigated the potential of species identification of semen stains by using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy combined with advanced chemometrics methods. The effect of substrates types and time since deposition (TSD) were considered in the study. A partial least squares-discriminant analysis (PLS-DA) classification model was established which demonstrated complete separation between human and other species (rabbit, dog, boar, bull, and ram). Validation was conducted which showed prediction abilities with 100% accuracy. Additionally, we found species identification could be achieved without sperm cells which proved ability of spectroscopic methods detecting the semen samples from the case of azoospermia. This work provides a powerful and practical tool for species identification of semen stains in real forensic casework.
Collapse
|
12
|
Lin H, Luo Y, Sun Q, Deng K, Chen Y, Wang Z, Huang P. Determination of causes of death via spectrochemical analysis of forensic autopsies-based pulmonary edema fluid samples with deep learning algorithm. JOURNAL OF BIOPHOTONICS 2020; 13:e201960144. [PMID: 31957147 DOI: 10.1002/jbio.201960144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This study investigated whether infrared spectroscopy combined with a deep learning algorithm could be a useful tool for determining causes of death by analyzing pulmonary edema fluid from forensic autopsies. A newly designed convolutional neural network-based deep learning framework, named DeepIR and eight popular machine learning algorithms, were used to construct classifiers. The prediction performances of these classifiers demonstrated that DeepIR outperformed the machine learning algorithms in establishing classifiers to determine the causes of death. Moreover, DeepIR was generally less dependent on preprocessing procedures than were the machine learning algorithms; it provided the validation accuracy with a narrow range from 0.9661 to 0.9856 and the test accuracy ranging from 0.8774 to 0.9167 on the raw pulmonary edema fluid spectral dataset and the nine preprocessing protocol-based datasets in our study. In conclusion, this study demonstrates that the deep learning-equipped Fourier transform infrared spectroscopy technique has the potential to be an effective aid for determining causes of death.
Collapse
Affiliation(s)
- Hancheng Lin
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- Department of Forensic Pathology, Xi'an Jiaotong University, Xi'an, China
| | - Yiwen Luo
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Qiran Sun
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Yijiu Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, Xi'an Jiaotong University, Xi'an, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
13
|
Postmortem diagnosis of fatal hypothermia/hyperthermia by spectrochemical analysis of plasma. Forensic Sci Med Pathol 2019; 15:332-341. [PMID: 31054024 DOI: 10.1007/s12024-019-00111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/25/2023]
Abstract
Postmortem diagnosis of extreme-weather-related deaths is a challenging forensic task. Here, we present a state-of-the-art study that employed attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy in combination with Chemometrics for postmortem diagnosis of fatal hypothermia/hyperthermia by biochemical investigation of plasma in rats. The results of principal component analysis (PCA) and spectral analysis revealed that plasma samples from the fatal hypothermia, fatal hyperthermia, and control groups, are substantially different from each other based on the spectral variations associated with the lipid, carbohydrate and nucleic acid components. Two partial least squares-discriminant analysis (PLS-DA) classification models (hypothermia-nonhypothermia and hyperthermia-nonhyperthermia binary models) with a 100% accuracy rate were constructed. Subsequently, internal cross-validation was performed to assess the robustness of these two models, which resulted in 98.1 and 100% accuracy. Ultimately, classification predictions of 42 unknown plasma samples were performed by these two models, and both models achieved 100% accuracy. Additionally, our results demonstrated that hemolysis and postmortem hypothermic/hyperthermic effects did not weaken the prediction ability of these two classification models. In summary, this work demonstrates ATR-FTIR spectroscopy's great potential for postmortem diagnosis of fatal hypothermia/hyperthermia.
Collapse
|
14
|
Biochemical detection of fatal hypothermia and hyperthermia in affected rat hypothalamus tissues by Fourier transform infrared spectroscopy. Biosci Rep 2019; 39:BSR20181633. [PMID: 30824563 PMCID: PMC6418404 DOI: 10.1042/bsr20181633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
It is difficult to determinate the cause of death from exposure to fatal hypothermia and hyperthermia in forensic casework. Here, we present a state-of-the-art study that employs Fourier-transform infrared (FTIR) spectroscopy to investigate the hypothalamus tissues of fatal hypothermic, fatal hyperthermic and normothermic rats to determine forensically significant biomarkers related to fatal hypothermia and hyperthermia. Our results revealed that the spectral variations in the lipid, protein, carbohydrate and nucleic acid components are highly different for hypothalamuses after exposure to fatal hypothermic, fatal hyperthermic and normothermic conditions. In comparison with the normothermia group, the fatal hypothermia and hyperthermia groups contained higher total lipid amounts but were lower in unsaturated lipids. Additionally, their cell membranes were found to have less motional freedom. Among these three groups, the fatal hyperthermia group contained the lowest total proteins and carbohydrates and the highest aggregated and dysfunctional proteins, while the fatal hypothermia group contained the highest level of nucleic acids. In conclusion, this study demonstrates that FTIR spectroscopy has the potential to become a reliable method for the biochemical characterization of fatal hypothermia and hyperthermia hypothalamus tissues, and this could be used as a postmortem diagnostic feature in fatal hypothermia and hyperthermia deaths.
Collapse
|
15
|
Großgarten M, Holzlechner M, Vennemann A, Balbekova A, Wieland K, Sperling M, Lendl B, Marchetti-Deschmann M, Karst U, Wiemann M. Phosphonate coating of SiO 2 nanoparticles abrogates inflammatory effects and local changes of the lipid composition in the rat lung: a complementary bioimaging study. Part Fibre Toxicol 2018; 15:31. [PMID: 30012173 PMCID: PMC6048815 DOI: 10.1186/s12989-018-0267-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The well-known inflammatory and fibrogenic changes of the lung upon crystalline silica are accompanied by early changes of the phospholipid composition (PLC) as detected in broncho-alveolar lavage fluid (BALF). Amorphous silica nanoparticles (NPs) evoke transient lung inflammation, but their effect on PLC is unknown. Here, we compared effects of unmodified and phosphonated amorphous silica NP and describe, for the first time, local changes of the PLC with innovative bioimaging tools. METHODS Unmodified (SiO2-n), 3-(trihydroxysilyl) propyl methylphosphonate coated SiO2-n (SiO2-p) as well as a fluorescent surrogate of SiO2-n (SiO2-FITC) nanoparticles were used in this study. In vitro toxicity was tested with NR8383 alveolar macrophages. Rats were intratracheally instilled with SiO2-n, SiO2-p, or SiO2-FITC, and effects on lungs were analyzed after 3 days. BALF from the right lung was analyzed for inflammatory markers. Cryo-sections of the left lung were subjected to fluorescence microscopy and PLC analyses by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MS), Fourier transform infrared microspectroscopy (FT-IR), and tandem mass spectrometry (MS/MS) experiments. RESULTS Compared to SiO2-p, SiO2-n NPs were more cytotoxic to macrophages in vitro and more inflammatory in the rat lung, as reflected by increased concentration of neutrophils and protein in BALF. Fluorescence microscopy revealed a typical patchy distribution of SiO2-FITC located within the lung parenchyma and alveolar macrophages. Superimposable to this particle distribution, SiO2-FITC elicited local increases of phosphatidylglycerol (PG) and phosphatidylinositol (PI), whereas phoshatidylserine (PS) and signals from triacylgyceride (TAG) were decreased in the same areas. No such changes were found in lungs treated with SiO2-p or particle-free instillation fluid. CONCLUSIONS Phosphonate coating mitigates effects of silica NP in the lung and abolishes their locally induced changes in PLC pattern. Bioimaging methods based on MALDI-MS may become a useful tool to investigate the mode of action of NPs in tissues.
Collapse
Affiliation(s)
- Mandy Großgarten
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Matthias Holzlechner
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Antje Vennemann
- IBE R&D Institute for Lung Health gGmbH, Mendelstraße 11, 48149, Münster, Germany
| | - Anna Balbekova
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, Mendelstraße 11, 48149, Münster, Germany.
| |
Collapse
|
16
|
Ondruschka B, Sieber M, Kirsten H, Franke H, Dreßler J. Measurement of Cerebral Biomarkers Proving Traumatic Brain Injuries in Post-Mortem Body Fluids. J Neurotrauma 2018; 35:2044-2055. [PMID: 29732941 DOI: 10.1089/neu.2017.5441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Until now, it is impossible to identify a fatal traumatic brain injury (TBI) before post-mortem radiological investigations or an autopsy take place. It would be preferable to have an additional diagnostic tool such as post-mortem biochemistry to get greater insight into the pathological pathways and survival times after sustaining TBI. Cerebrospinal fluid (CSF) and serum samples of 84 autopsy cases were collected from forensic autopsies with post-mortem intervals (PMI) of up to 148 h. The cases were categorized into a fatal TBI case group (n = 42) and non-TBI controls (n = 42). The values of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and neutrophil gelatinase-associated lipocalin (NGAL) were analyzed by means of quantitative chemiluminescent multiplex immunoassays. The main results indicate that the usage of liquid samples with good macroscopic quality is more relevant for meaningful biomarker analyses than the length of the PMI. All three proteins were shown to differentiate TBI fatalities from the controls in CSF. In serum, only GFAP could be shown to be able to identify TBI cases. This study is the first approach to measure the three proteins together in CSF and serum in autopsy cases. Determined threshold values may differentiate between fatal TBI and control cases. The presented results emphasize the possible use of post-mortem biochemistry as a supplemental tool in everyday forensic routine.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- 1 Institute of Legal Medicine, Medical Faculty, University of Leipzig , Leipzig, Germany
| | - Monique Sieber
- 1 Institute of Legal Medicine, Medical Faculty, University of Leipzig , Leipzig, Germany
| | - Holger Kirsten
- 2 Institute for Medical Informatics, Statistics, and Epidemiology, Medical Faculty, University of Leipzig , Leipzig, Germany
| | - Heike Franke
- 3 Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig , Leipzig, Germany
| | - Jan Dreßler
- 1 Institute of Legal Medicine, Medical Faculty, University of Leipzig , Leipzig, Germany
| |
Collapse
|