1
|
Fang F, Fries B, Wang Z, Liu X, Hummon AB, Sun L. Quantitative Top-Down Proteomics Reveals Significant Differences in Histone Proteoforms Between Metastatic and Nonmetastatic Colorectal Cancer Cells. Proteomics 2025:e202400336. [PMID: 40243858 DOI: 10.1002/pmic.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Colorectal cancer (CRC) development is closely associated with the accumulation of both genetic and epigenetic alterations. Many efforts have been made to investigate the role of epigenetic modifications in CRC metastasis. In this work, we present the quantitative top-down proteomics study focusing on histone proteoforms between metastatic (SW620) and nonmetastatic (SW480) CRC cells to reveal potentially critical histone proteoforms in CRC metastasis. We isolated histone proteins from CRC cells, fractionated them by sodium dodecyl-sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), and analyzed them by capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS). A total of 230 histone proteoforms were quantified in SW480 and SW620 cell lines, among which 34 proteoforms were significantly altered in abundance in the metastatic cells, indicating a significant transformation of histone proteoforms during metastasis. We observed a significant increase in abundance of all nine differentially expressed histone H4 proteoforms in metastatic SW620 cells compared to SW480 cells, while differentially expressed proteoforms of other histone proteins display diversified expression patterns. Additionally, two histone H2A proteoforms with a combination of N-terminal acetylation and phosphorylation were upregulated in the metastatic CRC cells. These differentially expressed histone proteoforms could be novel proteoform biomarkers of CRC metastasis.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Brian Fries
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Zhige Wang
- Department of Computer Science, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Fang F, Gao G, Wang Q, Wang Q, Sun L. Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms. Proteomics 2024; 24:e2300650. [PMID: 39018239 PMCID: PMC11647866 DOI: 10.1002/pmic.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Hellinger J, Brodbelt JS. Impact of Charge State on Characterization of Large Middle-Down Sized Peptides by Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1647-1656. [PMID: 39013103 DOI: 10.1021/jasms.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fragmentation trends of large peptides were characterized by five activation methods, including HCD, ETD, EThcD, 213 nm UVPD, and 193 nm UVPD. Sequence coverages and scores were assessed based on charge site, peptide sequence, and peptide size. The effect of charge state and peptide size on sequence coverage was explored for a Glu-C digest of E. coli ribosomal proteins, and linear regression analysis of the collection of peptides indicated that HCD, ETD, and EThcD have a higher dependence charge state than 193 and 213 nm UV. Four model peptides, neuromedin, glucagon, galanin, and amyloid β, were characterized in greater detail based on charge site analysis and showed a charge state dependence on sequence coverage for collision and electron-based activation methods.
Collapse
Affiliation(s)
- Jessica Hellinger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Lan T, Dong Y, Jiang L, Zhang Y, Sui X. Analytical approaches for assessing protein structure in protein-rich food: A comprehensive review. Food Chem X 2024; 22:101365. [PMID: 38623506 PMCID: PMC11016869 DOI: 10.1016/j.fochx.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Soo PC, Lee CC, Shie MF, Patil AA, Descanzo MJN, Chin YC, Chen HA, Horng YT, Lin CB, Lee JJ, Chiang CK, Peng WP. Enhancing the sequence coverage of nanodiamond-extracted early secretory proteins from the Mycobacterium tuberculosis complex. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3464-3474. [PMID: 38804556 DOI: 10.1039/d4ay00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The unambiguous identification of protein species requires high sequence coverage. In this study, we successfully improved the sequence coverage of early secretory 10 kDa cell filtrate protein (CFP-10) and 6 kDa early secretory antigenic target (ESAT-6) proteins from the Mycobacterium tuberculosis complex (MTC) in broth culture media with the use of the 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrix. Conventional matrices, α-cyano-hydroxy-cinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), were also used for comparison. After nanodiamond (ND) extraction, the sequence coverage of the CFP-10 protein was 87% when CHCA and DHB matrices were used, and the ESAT-6 protein was not detected. On the other hand, the sequence coverage for ND-extracted CFP-10 and ESAT-6 could reach 94% and 100%, respectively, when the Cl-CCA matrix was used and with the removal of interference from bovine serum albumin (BSA) protein and α-crystallin (ACR) protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was also adopted to analyze the protein mass spectra. A total of 6 prominent ion signals were observed, including ESAT-6 protein peaks at mass-to-charge ratios (m/z) of ∼7931, ∼7974, ∼9768, and ∼9813 and CFP-10 protein peaks at m/z of ∼10 100 and ∼10 660. The ESAT-6 ion signals were always detected concurrently with CFP-10 ion signals, but CFP-10 ion signals could be detected alone without the ESAT-6 ion signals. Furthermore, the newly found ESAT-6 peaks were also confirmed using a Mag-Beads-Protein G kit with an ESAT-6 antibody to capture the ESAT-6 protein, which was also consistent with the sequence coverage analysis.
Collapse
Affiliation(s)
- Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ching-Chieh Lee
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Meng-Fu Shie
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Avinash A Patil
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | | | - Ya-Ching Chin
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Hsi-An Chen
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jen-Jyh Lee
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| |
Collapse
|
6
|
Zhu Y, Liu Z, Liu J, Zhao H, Feng R, Shu K, Wang F, Chang C. Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2024; 96:8474-8483. [PMID: 38739687 PMCID: PMC11140674 DOI: 10.1021/acs.analchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry unlocks insights into the protein structure and sequence through fragmentation patterns. While N- and C-terminal fragments are traditionally relied upon, this work highlights the critical role of internal fragments in achieving near-complete sequencing of protein. Previous limitations of internal fragment utilization, owing to their abundance and potential for random matching, are addressed here with the development of Panda-UV, a novel software tool combining spectral calibration, and Pearson correlation coefficient scoring for confident fragment assignment. Panda-UV showcases its power through comprehensive benchmarks on three model proteins. The inclusion of internal fragments boosts identified fragment numbers by 26% and enhances average protein sequence coverage to a remarkable 93% for intact proteins, unlocking the hidden region of the largest protein carbonic anhydrase II in model proteins. Notably, an average of 65% of internal fragments can be identified in multiple replicates, demonstrating the high confidence of the fragments Panda-UV provided. Finally, the sequence coverages of mAb subunits can be increased up to 86% and the complementary determining regions (CDRs) are nearly completely sequenced in a single experiment. The source codes of Panda-UV are available at https://github.com/PHOENIXcenter/Panda-UV.
Collapse
Affiliation(s)
- Yinlong Zhu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialiang Liu
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of
Pharmacy, China Medical University, Shenyang 110122, China
| | - Heng Zhao
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Feng
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| | - Kunxian Shu
- Chongqing
Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fangjun Wang
- CAS
Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chang
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences (Beijing),
Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
7
|
Watts E, Bashyal A, Dunham SD, Crittenden CM, Brodbelt JS. Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation. Antibodies (Basel) 2024; 13:30. [PMID: 38651410 PMCID: PMC11036284 DOI: 10.3390/antib13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Sean D. Dunham
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| |
Collapse
|
8
|
Drown BS, Gupta R, McGee JP, Hollas MAR, Hergenrother PJ, Kafader JO, Kelleher NL. Precise Readout of MEK1 Proteoforms upon MAPK Pathway Modulation by Individual Ion Mass Spectrometry. Anal Chem 2024; 96:4455-4462. [PMID: 38458998 PMCID: PMC11008683 DOI: 10.1021/acs.analchem.3c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.
Collapse
Affiliation(s)
- Bryon S Drown
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Raveena Gupta
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - John P McGee
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Michael A R Hollas
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jared O Kafader
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60202, United States
| |
Collapse
|
9
|
Dunham SD, Brodbelt JS. Enhancing Top-Down Analysis of Proteins by Combining Ultraviolet Photodissociation (UVPD), Proton-Transfer Charge Reduction (PTCR), and Gas-Phase Fractionation to Alleviate the Impact of Nondissociated Precursor Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:255-265. [PMID: 38150423 DOI: 10.1021/jasms.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Recent advances in top-down mass spectrometry strategies continue to improve the analysis of intact proteins. 193 nm ultraviolet photodissociation (UVPD) is one method well-suited for top-down analysis. UVPD is often performed using relatively low photon flux in order to limit multiple-generation dissociation of fragment ions and maximize sequence coverage. Consequently, a large portion of the precursor ion survives the UVPD process, dominates the spectrum, and may impede identification of fragment ions. Here, we explore the isolation of subpopulations of fragment ions lower and higher than the precursor ion after UVPD as a means to eliminate the impact of the surviving precursor ion on the detection of low abundance fragment ions. This gas-phase fractionation method improved sequence coverage harvested from fragment ions found in the m/z regions lower and higher than the precursor by an average factor of 1.3 and 2.3, respectively. Combining this gas-phase fractionation method with proton transfer charge reduction (PTCR) further increased the sequence coverage obtained from these m/z regions by another factor of 1.3 and 1.4, respectively. Implementing a post-UVPD fractionation + PTCR strategy with six fractionation events resulted in a sequence coverage of 75% for enolase, the highest reported for 193 nm UVPD.
Collapse
Affiliation(s)
- Sean D Dunham
- Department of Chemistry, University of Texas, Austin, Texas 787812, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 787812, United States
| |
Collapse
|
10
|
Takemori A, Kaulich PT, Konno R, Kawashima Y, Hamazaki Y, Hoshino A, Tholey A, Takemori N. GeLC-FAIMS-MS workflow for in-depth middle-down proteomics. Proteomics 2024; 24:e2200431. [PMID: 37548120 DOI: 10.1002/pmic.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Ehime, Japan
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yuto Hamazaki
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ayuko Hoshino
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Nobuaki Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Ehime, Japan
| |
Collapse
|
11
|
Bashyal A, Hui JO, Flick T, Dykstra AB, Zhang Q, Campuzano IDG, Brodbelt JS. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2023; 95:11510-11517. [PMID: 37458293 PMCID: PMC10588209 DOI: 10.1021/acs.analchem.3c02025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (isoAsp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and isoAsp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or isoAsp. These fragment ions result from the cleavage of bonds N-terminal to Asp/isoAsp residues in addition to the side-chain losses from Asp/isoAsp or the losses of COOH, CO2, CO, or H2O from y-ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced w/w + 1/y - 1/x ions, while isoAsp-containing peptides yielded more enhanced y - 18/y - 45/y - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced y ions N- and C-terminal to isoAsp and differences in b/y ion ratios that were used to identify the isoAsp peptide.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John O Hui
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Andrew B Dykstra
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Qingchun Zhang
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Walker JN, Lam R, Brodbelt JS. Enhanced Characterization of Histones Using 193 nm Ultraviolet Photodissociation and Proton Transfer Charge Reduction. Anal Chem 2023; 95:5985-5993. [PMID: 36989418 DOI: 10.1021/acs.analchem.2c05765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Top-down characterization of histones, proteins that are critical participants in an array of DNA-dependent processes, offers the potential to examine the relationship between histone structure and mechanisms of genetic regulation. Mapping patterns of post-translational modifications (PTMs) of histones requires extensive backbone cleavages to bracket the sites of mass shifts corresponding to specific PTMs. Ultraviolet photodissociation (UVPD) causes substantial fragmentation of proteins, which is well-suited for PTM localization, but the resulting spectra are congested with fragment ions that may have overlapping isotopic distributions that confound deconvolution. Gas-phase proton transfer charge reduction (PTCR) decreases the charge states of highly charged ions, thus alleviating this congestion and facilitating the identification of additional sequence-determining and PTM-localizing fragment ions. By integrating UVPD with PTCR for histone proteoform analyses, sequence coverages up to 91% were achieved for calf thymus histone H4 containing acetylation marks at the N-terminus and Lys12 as well as a dimethylation at Arg3. UVPD-PTCR exhibited large gains in characterization for other histones, such as histone H2A, increasing the sequence coverage from 59 to 77% for monoacetylated H2A.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raymond Lam
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Dunham SD, Wei B, Lantz C, Loo JA, Brodbelt JS. Impact of Internal Fragments on Top-Down Analysis of Intact Proteins by 193 nm UVPD. J Proteome Res 2023; 22:170-181. [PMID: 36503236 DOI: 10.1021/acs.jproteome.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
193 nm ultraviolet photodissociation (UVPD) allows high sequence coverage to be obtained for intact proteins using terminal fragments alone. However, internal fragments, those that contain neither N- nor C- terminus, are typically ignored, neglecting their potential to bolster characterization of intact proteins. Here, we explore internal fragments generated by 193 nm UVPD for proteins ranging in size from 17-47 kDa and using the ClipsMS algorithm to facilitate searches for internal fragments. Internal fragments were only retained if identified in multiple replicates in order to reduce spurious assignments and to explore the reproducibility of internal fragments generated by UVPD. Inclusion of internal fragment improved sequence coverage by an average of 18% and 32% for UVPD and HCD, respectively, across all proteins and charge states studied. However, only an average of 18% of UVPD internal fragments were identified in two out of three replicates relative to the average number identified across all replicates for all proteins studied. Conversely, for HCD, an average of 63% of internal fragments were retained across replicates. These trends reflect an increased risk of false-positive identifications and a need for caution when considering internal fragments for UVPD. Additionally, proton-transfer charge reduction (PTCR) reactions were performed following UVPD or HCD to assess the impact on internal fragment identifications, allowing up to 20% more fragment ions to be retained across multiple replicates. At this time, it is difficult to recommend the inclusion of the internal fragment when searching UVPD spectra without further work to develop strategies for reducing the possibilities of false-positive identifications. All mass spectra are available in the public repository jPOST with the accession number JPST001885.
Collapse
Affiliation(s)
- Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Ives A, Dunn HA, Afsari HS, Seckler HDS, Foroutan MJ, Chavez E, Melani RD, Fellers RT, LeDuc RD, Thomas PM, Martemyanov KA, Kelleher NL, Vafabakhsh R. Middle-Down Mass Spectrometry Reveals Activity-Modifying Phosphorylation Barcode in a Class C G Protein-Coupled Receptor. J Am Chem Soc 2022; 144:23104-23114. [PMID: 36475650 PMCID: PMC9785046 DOI: 10.1021/jacs.2c10697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.
Collapse
Affiliation(s)
- Ashley
N. Ives
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Henry A. Dunn
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States,Department
of Pharmacology and Therapeutics, University
of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada,Division
of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen
Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Hamid Samareh Afsari
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Max J. Foroutan
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Erica Chavez
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. LeDuc
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kirill A. Martemyanov
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States,Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Reza Vafabakhsh
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,
| |
Collapse
|
15
|
Fouque KJD, Miller SA, Pham K, Bhanu NV, Cintron-Diaz YL, Leyva D, Kaplan D, Voinov VG, Ridgeway ME, Park MA, Garcia BA, Fernandez-Lima F. Top-"Double-Down" Mass Spectrometry of Histone H4 Proteoforms: Tandem Ultraviolet-Photon and Mobility/Mass-Selected Electron Capture Dissociations. Anal Chem 2022; 94:15377-15385. [PMID: 36282112 PMCID: PMC11037235 DOI: 10.1021/acs.analchem.2c03147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms. The comparison between q-ECD-ToF MS/MS spectra and traditional Fourier-transform-ion cyclotron resonance-ECD MS/MS spectra of a H4 standard showed a similar sequence coverage (∼75%) with significant faster data acquisition in the ToF MS/MS platform (∼3 vs ∼15 min). Multiple mass shifts (e.g., 14 and 42 Da) were observed for the HeLa derived H4 proteoforms for which the top-down UVPD and ECD fragmentation analysis were consistent in detecting the presence of acetylated PTMs at the N-terminus and Lys5, Lys8, Lys12, and Lys16 residues, as well as methylated, dimethylated, and trimethylated PTMs at the Lys20 residue with a high sequence coverage (∼90%). The presented top-down results are in good agreement with bottom-up TIMS ToF MS/MS experiments and allowed for additional description of PTMs at the N-terminus. The integration of a 213 nm UV laser in the present platform allowed for UVPD events prior to the ion mobility-mass precursor separation for collision-induced dissociation (CID)/ECD-ToF MS. Selected c305+ UVPD fragments, from different H4 proteoforms (e.g., Ac + Me2, 2Ac + Me2 and 3Ac + Me2), exhibited multiple IMS bands for which similar CID/ECD fragmentation patterns per IMS band pointed toward the presence of conformers, adopting the same PTM distribution, with a clear assignment of the PTM localization for each of the c305+ UVPD fragment H4 proteoforms. These results were consistent with the biological "zip" model, where acetylation proceeds in the Lys16 to Lys5 direction. This novel platform further enhances the structural toolbox with alternative fragmentation mechanisms (UVPD, CID, and ECD) in tandem with fast, high-resolution mobility separations and shows great promise for global proteoform analysis.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Samuel A. Miller
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Yarixa L. Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | | | | | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
16
|
Miller SA, Fouque KJD, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1267-1275. [PMID: 35658468 PMCID: PMC9262853 DOI: 10.1021/jasms.2c00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trapped ion mobility spectrometry (TIMS) when coupled with mass spectrometry (MS) offers great advantages for the separation of isobaric, isomeric, and/or conformeric species. In the present work, we report the advantages of coupling TIMS with a low-cost, ultraviolet photodissociation (UVPD) linear ion trap operated at few mbars prior to time-of-flight (ToF) MS analysis for the effective characterization of isobaric, isomeric, and/or conformeric species based on mobility-selected fragmentation patterns. These three traditional challenges to MS-based separations are illustrated for the case of biologically relevant model systems: H3.1 histone tail PTM isobars (K4Me3/K18Ac), lanthipeptide regioisomers (overlapping/nonoverlapping ring patterns), and a model peptide conformer (angiotensin I). The sequential nature of the TIMS operation allows for effective synchronization with the ToF MS scans, in addition to parallel operation between the TIMS and the UVPD trap. Inspection of the mobility-selected UVPD MS spectra showed that for all three cases considered, unique fragmentation patterns (fingerprints) were observed per mobility band. Different from other IMS-UVPD implementations, the higher resolution of the TIMS device allowed for high mobility resolving power (R > 100) and effective mobility separation. The mobility selected UVPD MS provided high sequence coverage (>85%) with a fragmentation efficiency up to ∼40%.
Collapse
Affiliation(s)
- Samuel A. Miller
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Corresponding Author: Francisco Fernandez-Lima,
| |
Collapse
|
17
|
Kohler I, Verhoeven M, Haselberg R, Gargano AF. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: state-of-the-art and current trends. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Dunham SD, Sanders JD, Holden DD, Brodbelt JS. Improving the Center Section Sequence Coverage of Large Proteins Using Stepped-Fragment Ion Protection Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:446-456. [PMID: 35119856 DOI: 10.1021/jasms.1c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry has gained attention in recent years for its ability to provide high sequence coverage of intact proteins. However, secondary dissociation of fragment ions, in which fragment ions subjected to multiple laser pulses decompose into small products, is a common phenomenon during UVPD that contributes to limited coverage in the midsection of protein sequences. To counter secondary dissociation, a method involving the application of notched waveforms to modulate the trajectories of fragment ions away from the laser beam, termed fragment ion protection (FIP), was previously developed to reduce the probability of secondary dissociation. This, in turn, increased the number of identified large fragment ions. In the present study, FIP was applied to UVPD of large proteins ranging in size from 29 to 55 kDa, enhancing the abundances of large fragment ions. A stepped-FIP strategy was implemented in which UVPD mass spectra were collected using multiple different amplitudes of the FIP waveforms and then the results from the mass spectra were combined. By using stepped-FIP, the number of fragment ions in the midsections of the sequences increased for all proteins. For example, whereas no fragment ions were identified in the middle section of the sequence for glutamate dehydrogenase (55 kDa, 55+ charge state), 10 sequence ions were identified by using UVPD-FIP.
Collapse
Affiliation(s)
- Sean D Dunham
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Dustin D Holden
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
19
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
20
|
Jeanne Dit Fouque K, Kaplan D, Voinov VG, Holck FHV, Jensen ON, Fernandez-Lima F. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Anal Chem 2021; 93:9575-9582. [PMID: 34170114 DOI: 10.1021/acs.analchem.1c01735] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comprehensive characterization of post-translationally modified histone proteoforms is challenging due to their high isobaric and isomeric content. Trapped ion mobility spectrometry (TIMS), implemented on a quadrupole/time-of-flight (Q-ToF) mass spectrometer, has shown great promise in discriminating isomeric complete histone tails. The absence of electron activated dissociation (ExD) in the current platform prevents the comprehensive characterization of unknown histone proteoforms. In the present work, we report for the first time the use of an electromagnetostatic (EMS) cell devised for nonergodic dissociation based on electron capture dissociation (ECD), implemented within a nESI-TIMS-Q-ToF mass spectrometer for the characterization of acetylated (AcK18 and AcK27) and trimethylated (TriMetK4, TriMetK9 and TriMetK27) complete histone tails. The integration of the EMS cell in a TIMS-q-TOF MS permitted fast mobility-selected top-down ECD fragmentation with near 10% efficiency overall. The potential of this coupling was illustrated using isobaric (AcK18/TriMetK4) and isomeric (AcK18/AcK27 and TriMetK4/TriMetK9) binary H3 histone tail mixtures, and the H3.1 TriMetK27 histone tail structural diversity (e.g., three IMS bands at z = 7+). The binary isobaric and isomeric mixtures can be separated in the mobility domain with RIMS > 100 and the nonergodic ECD fragmentation permitted the PTM localization (sequence coverage of ∼86%). Differences in the ECD patterns per mobility band of the z = 7+ H3 TriMetK27 molecular ions suggested that the charge location is responsible for the structural differences observed in the mobility domain. This coupling further enhances the structural toolbox with fast, high resolution mobility separations in tandem with nonergodic fragmentation for effective proteoform differentiation.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Desmond Kaplan
- KapScience, LLC., Tewksbury, Massachusetts 01876, United States
| | - Valery G Voinov
- e-MSion, Inc., Corvallis, Oregon 97330, United States.,Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Frederik H V Holck
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Holt MV, Wang T, Young NL. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis. Curr Protoc 2021; 1:e26. [PMID: 33534192 DOI: 10.1002/cpz1.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Histones are the primary protein component of chromatin and are involved in virtually all DNA-templated processes. Histones are abundantly post-translationally modified by a variety of chromatin-modifying machinery. These post-translational modifications (PTMs) are recognized by a range of "reader" proteins, which recruit additional proteins to specific locations on chromatin and impart precise and powerful effects on gene regulation. Each PTM typically exerts a positive or negative effect on transcription, and recent studies have shown that histone PTMs function in a combinatorial histone code: that is, histone PTMs function in combination to exert precise DNA-templated regulation. Thus, there is a need to identify and understand proteoforms, or unambiguously defined single protein molecules with all combinations of modifications. Top-down proteomics is currently the only viable approach for identifying and quantitating histone proteoforms, and mass spectrometry instruments have become sufficiently powerful to perform these quantitative analyses in a robust and high-throughput fashion. These recent innovations have enabled new experimental directions in chromatin research but have also introduced temporal and other constraints. This has led us to develop the protocols described here, which increase throughput, reduce sample requirements, and maintain robust quantitation. Although originally designed for high-throughput quantitative top-down proteomics, the protocols described here are useful for a wide range of chromatin biology applications. Starting with small amounts of cells or tissue, we describe two basic protocols for exceptionally rapid and efficient nuclei isolation, acid extraction of histones, and high-performance liquid chromatography fractionation of histones into histone families. We additionally describe the quantitative top-down proteomic analysis of histone H4 proteoforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Nuclei isolation and acid extraction of histones from mammalian cells in culture/tissues Basic Protocol 2: HPLC fractionation of histones and histone H4 HPLC-MS/MS Support Protocol: Preparation of intact H3 histone tails by Glu-C digestion.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Current Address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
22
|
Lu C, Coradin M, Janssen KA, Sidoli S, Garcia BA. Combinatorial Histone H3 Modifications Are Dynamically Altered in Distinct Cell Cycle Phases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1300-1311. [PMID: 33818074 PMCID: PMC8380055 DOI: 10.1021/jasms.0c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell cycle is a highly regulated and evolutionary conserved process that results in the duplication of cell content and the equal distribution of the duplicated chromosomes into a pair of daughter cells. Histones are fundamental structural components of chromatin in eukaryotic cells, and their post-translational modifications (PTMs) benchmark DNA readout and chromosome condensation. Aberrant regulation of the cell cycle associated with dysregulation of histone PTMs is the cause of critical diseases such as cancer. Monitoring changes of histone PTMs could pave the way to understanding the molecular mechanisms associated with epigenetic regulation of cell proliferation. Previously, our lab established a novel middle-down workflow using porous graphitic carbon (PGC) as a stationary phase to analyze histone PTMs, which utilizes the same reversed-phase chromatography for gradient separation as canonical proteomics coupled with online mass spectrometry (MS). Here, we applied this novel workflow for high-throughput analysis of histone modifications of H3.1 and H3.2 during the cell cycle. Collectively, we identified 1133 uniquely modified canonical histone H3 N-terminal tails. Consistent with previous findings, histone H3 phosphorylation increased significantly during the mitosis (M) phase. Histone H3 variant-specific and cell-cycle-dependent expressions of PTMs were observed, underlining the need to not combine H3.1 and H3.2 together as H3. We confirmed previously known H3 PTM crosstalk (e.g., K9me-S10ph) and revealed new information in this area as well. These findings imply that the combinatorial PTMs play a role in cell cycle control, and they may serve as markers for proliferation.
Collapse
Affiliation(s)
- Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin A. Janssen
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- To whom correspondence should be addressed.
| |
Collapse
|
23
|
The challenge of detecting modifications on proteins. Essays Biochem 2020; 64:135-153. [PMID: 31957791 DOI: 10.1042/ebc20190055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.
Collapse
|
24
|
Coradin M, Mendoza MR, Sidoli S, Alpert AJ, Lu C, Garcia BA. Bullet points to evaluate the performance of the middle-down proteomics workflow for histone modification analysis. Methods 2020; 184:86-92. [PMID: 32070774 PMCID: PMC7727281 DOI: 10.1016/j.ymeth.2020.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Middle-down proteomics has emerged as the method of choice to study combinatorial histone post translational modifications (PTMs). In the common bottom-up workflow, histones are digested into relatively short peptides (4-20 aa), separated using reversed-phase chromatography and analyzed using typical proteomics methods in mass spectrometry. In middle-down, histones are cleaved into longer polypeptides (50-60 aa) mostly corresponding to their N-terminal tails, resolved using weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) and analyzed with less conventional mass spectrometry, i.e. using Electron Transfer Dissociation (ETD) for analyte fragmentation. Middle-down is not nearly as utilized as bottom-up for PTM analysis, partially due to its limited reproducibility and robustness. This has also limited the establishment of rigorous benchmarks to discriminate good vs poor quality experiments. Here, we describe critical aspects of the middle-down workflow to assist the user in evaluating the presence of biased and misleading results. Specifically, we tested the use of porous graphitic carbon (PGC) during the desalting step, demonstrating that desalting using only C18 material leads to sample loss. We also tested different salts in the WCX-HILIC buffers for their effect on retention, selectivity, and reproducibility of analysis of variants of histone tail fragments, in particular replacing ammonium ion with ethylenediammonium ion in buffer A. These substitutions had marked effects on selectivity and retention. Our results provide a streamlined way to evaluate middle-down performance to identify and quantify combinatorial histone PTMs.
Collapse
Affiliation(s)
- Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Congcong Lu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Abdelmouleh M, Lalande M, El Feghaly J, Vizcaino V, Rebelo A, Eden S, Schlathölter T, Poully JC. Mass Spectral Signatures of Complex Post-Translational Modifications in Proteins: A Proof-of-Principle Based on X-ray Irradiated Vancomycin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1738-1743. [PMID: 32551638 DOI: 10.1021/jasms.0c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterizing post-translational modifications (PTM) of proteins is of key relevance for the understanding of many biological processes, as these covalent modifications strongly influence or even determine protein function. Among the different analytical techniques available, mass spectrometry is attracting growing attention because recent instrumental and computational improvements have led to a massive rise of the number of PTM sites that can be identified and quantified. However, multiple PTM occurring at adjacent amino acid residues can lead to complex and dense chemical patterns that are a challenge to characterize. By means of X-ray synchrotron radiation coupled to mass spectrometry, and through the test-case of the glycopeptide antibiotic vancomycin, we show that such a pattern has a unique and robust signature in terms of photon energy and molecular environment. This highlights the potential of this technique in proteomics and its value as a tool to understand the biological roles of PTM.
Collapse
Affiliation(s)
- Marwa Abdelmouleh
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Mathieu Lalande
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Johnny El Feghaly
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Violaine Vizcaino
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - André Rebelo
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, FCT - Universidade NOVA de Lisboa, P-2829-516 Caparica, Portugal
| | - Samuel Eden
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, Netherlands
| | - Jean-Christophe Poully
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| |
Collapse
|
26
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Shliaha PV, Gorshkov V, Kovalchuk SI, Schwämmle V, Baird MA, Shvartsburg AA, Jensen ON. Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Anal Chem 2020; 92:2364-2368. [DOI: 10.1021/acs.analchem.9b05011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pavel V. Shliaha
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I. Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Ole N. Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
28
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Janssen KA, Coradin M, Lu C, Sidoli S, Garcia BA. Quantitation of Single and Combinatorial Histone Modifications by Integrated Chromatography of Bottom-up Peptides and Middle-down Polypeptide Tails. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2449-2459. [PMID: 31512222 DOI: 10.1007/s13361-019-02303-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has been critical to the advancement of the field of epigenetics. The most sensitive and accurate workflow is similar to the canonical proteomics analysis workflow (bottom-up MS), where histones are digested into short peptides (4-20 aa) and quantitated in extracted ion chromatograms. However, this limits the ability to detect even very common co-occurrences of modifications on histone proteins, preventing biological interpretation of PTM crosstalk. By digesting with GluC rather than trypsin, it is possible to produce long polypeptides corresponding to intact histone N-terminal tails (50-60 aa), where most modifications reside. This middle-down MS approach is used to study distant PTM co-existence. However, the most sensitive middle-down workflow uses weak cation exchange-hydrophilic interaction chromatography (WCX-HILIC), which is less robust than conventional reversed-phase chromatography. Additionally, since the buffer systems for middle-down and bottom-up proteomics differ substantially, it is cumbersome to toggle back and forth between both experimental setups on the same LC system. Here, we present a new workflow using porous graphitic carbon (PGC) as a stationary phase for histone analysis where bottom-up and middle-down sized histone peptides can be analyzed simultaneously using the same reversed-phase buffer setup. By using this protocol for middle-down sized peptides, we identified 406 uniquely modified intact histone tails and achieved a correlation of 0.85 between PGC and WCX-HILIC LC methods. Together, our method facilitates the analysis of single and combinatorial histone PTMs with much simpler applicability for conventional proteomics labs than the state-of-the-art middle-down MS.
Collapse
Affiliation(s)
- Kevin A Janssen
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Benjamin A Garcia
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Sun F, Suttapitugsakul S, Xiao H, Wu R. Comprehensive Analysis of Protein Glycation Reveals Its Potential Impacts on Protein Degradation and Gene Expression in Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2480-2490. [PMID: 31073893 PMCID: PMC6842084 DOI: 10.1007/s13361-019-02197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/02/2023]
Abstract
Glycation as a type of non-enzymatic protein modification is related to aging and chronic diseases, especially diabetes. Global analysis of protein glycation will aid in a better understanding of its formation mechanism and biological significance. In this work, we comprehensively investigated protein glycation in human cells (HEK293T, Jurkat, and MCF7 cells). The current results indicated that this non-enzymatic modification was not random, and protein at the extracellular regions and the nucleus were more frequently glycated. Systematic and site-specific analysis of glycated proteins allowed us to study the effect of the primary sequences and secondary structures of proteins on glycation. Furthermore, nearly every enzyme in the glycolytic pathway was found to be glycated and a possible mechanism was proposed. Many glycation sites were also previously reported as acetylation and ubiquitination sites, which strongly suggested that this non-enzymatic modification may disturb protein degradation and gene expression. The current results will facilitate further studies of protein glycation in biomedical and clinical research.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|