1
|
Ives AN, Jooß K, Melani RD, Fellers RT, Janetzko J, Kelleher NL. Capillary Zone Electrophoresis-Mass Spectrometry of Intact G Protein-Coupled Receptors Enables Proteoform Profiling. Anal Chem 2025; 97:7307-7316. [PMID: 40146057 DOI: 10.1021/acs.analchem.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of integral membrane receptors and responsible for transmitting diverse signals in response to extracellular stimuli. Post-translational modifications serve to dictate the subcellular trafficking and function of a GPCR across space and time. Despite significant interest in mapping the diversity of GPCR modification states (proteoforms), technical challenges have hindered this characterization. While advancements in membrane mimetics and mass spectrometry instrumentation have improved analysis, current workflows require large amounts of homogeneous protein, limiting the study of many GPCRs from mammalian sources. Here, we present capillary zone electrophoresis (CZE) as a separation technique for characterizing proteoforms of both intact and partially digested GPCRs. This method allowed for the characterization of multiple proteoforms of both the β2-adrenergic receptor and metabotropic glutamate receptor 2 using low sample volumes and without buffer optimization. Notably, in the case of smaller phosphorylated analytes, CZE can readily separate positional phosphorylation isomers and provide superior fragmentation coverage to conventional reversed phase-liquid chromatography.
Collapse
Affiliation(s)
- Ashley N Ives
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 , United States
| | - Kevin Jooß
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - John Janetzko
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 , United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 , United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 , United States
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Osho KE, Kunwor K, Borotto NB. Ion Mobility-Assisted Free Radical-Initiated Peptide Sequencing. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2025; 508:117396. [PMID: 39830974 PMCID: PMC11737517 DOI: 10.1016/j.ijms.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Free radical-initiated peptide sequencing (FRIPS) is a tandem mass spectrometry technique (MS/MS) that enables radical-based dissociation on instruments only capable of collisional activation. In FRIPS, peptides are chemically-derivatized with a compound that undergoes homolytic cleavage and generates radicals upon collisional activation. These radicals then propagate through the peptide backbone enabling the sequencing of peptide ions. This MS/MS technique has shown promise in sequencing post-translationally modified peptides, but it is typically performed in an MS3 workflow and single-step MS/MS approaches result in the generation of both collisional- and radical-driven dissociation products and highly complex spectra. Recently, our group developed a method to dissociate peptide ions prior to ion mobility analysis within a trapped-ion mobility spectrometry (TIMS) device. In this work, we examine if this "CIDtims" technique can initiate the homolytic cleavage of the FRIPS precursor. We then examine if the resultant ion mobility separation results in additional assignments of product ions and improved sequence coverage. We demonstrate that activation within the TIMS device does indeed promote robust radical initiation and fragmentation of peptide cations and that the generated product ions are mobility separated enabling facile assignment and increased sequence coverage.
Collapse
Affiliation(s)
- Kemi E. Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| | - Keshari Kunwor
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| | - Nicholas B. Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Muneer G, Chen C, Chen Y. Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification. Proteomics 2025; 25:e202400087. [PMID: 39696887 PMCID: PMC11735659 DOI: 10.1002/pmic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes. Here, we provide an overview of the basics and challenges of phosphoproteomics, as well as the technological evolution and current state-of-the-art global and quantitative phosphoproteomics methodologies. With a specific focus on highly sensitive platforms, we summarize recent trends and innovations in miniaturized sample preparation strategies for micro-to-nanoscale and single-cell profiling, data-independent acquisition mass spectrometry (DIA-MS) for enhanced coverage, and quantitative phosphoproteomic pipelines for deep mapping of cell and disease biology. Each aspect of phosphoproteomic analysis presents unique challenges and opportunities for improvement and innovation. We specifically highlight evolving phosphoproteomic technologies that enable deep profiling from low-input samples. Finally, we discuss the persistent challenges in phosphoproteomic technologies, including the feasibility of nanoscale and single-cell phosphoproteomics, as well as future outlooks for biomedical applications.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ju Chen
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
5
|
Donndelinger DV, Yan T, Scoggins TR, Specker JT, Prentice BM. Sequencing of Phosphopeptides Using a Sequential Charge Inversion Ion/Ion Reaction and Electron Capture Dissociation Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1556-1566. [PMID: 38806410 PMCID: PMC11665916 DOI: 10.1021/jasms.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Protein phosphorylation, a common post-translational modification (PTM), is fundamental in a plethora of biological processes, most importantly in modulating cell signaling pathways. Matrix-assisted laser desorption/ionization (MALDI) coupled to tandem mass spectrometry (MS/MS) is an attractive method for phosphopeptide characterization due to its high speed, low limit of detection, and surface sampling capabilities. However, MALDI analysis of phosphopeptides is constrained by relatively low abundances in biological samples and poor relative ionization efficiencies in positive ion mode. Additionally, MALDI tends to produce singly charged ions, generally limiting the accessible MS/MS techniques that can be used for peptide sequencing. For example, collision induced dissociation (CID) is readily amendable to the analysis of singly charged ions, but results in facile loss of phosphoric acid, precluding the localization of the PTM. Electron-based dissociation methods (e.g., electron capture dissociation, ECD) are well suited for PTM localization, but require multiply charged peptide cations to avoid neutralization during ECD. Conversely, phosphopeptides are readily ionized using MALDI in negative ion mode. If the precursor ions are first formed in negative ion mode, a gas-phase charge inversion ion/ion reaction could then be used to transform the phosphopeptide anions produced via MALDI into multiply charged cations that are well-suited for ECD. Herein we demonstrate a multistep workflow combining a charge inversion ion/ion reaction that first transforms MALDI-generated phosphopeptide monoanions into multiply charged cations, and then subjects these multiply charged phosphopeptide cations to ECD for sequence determination and phosphate bond localization.
Collapse
Affiliation(s)
| | - Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
6
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
7
|
Piersma SR, Valles-Marti A, Rolfs F, Pham TV, Henneman AA, Jiménez CR. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications. MASS SPECTROMETRY REVIEWS 2024; 43:725-751. [PMID: 36156810 DOI: 10.1002/mas.21808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant cellular signaling pathways are a hallmark of cancer and other diseases. One of the most important signaling mechanisms involves protein phosphorylation/dephosphorylation. Protein phosphorylation is catalyzed by protein kinases, and over 530 protein kinases have been identified in the human genome. Aberrant kinase activity is one of the drivers of tumorigenesis and cancer progression and results in altered phosphorylation abundance of downstream substrates. Upstream kinase activity can be inferred from the global collection of phosphorylated substrates. Mass spectrometry-based phosphoproteomic experiments nowadays routinely allow identification and quantitation of >10k phosphosites per biological sample. This substrate phosphorylation footprint can be used to infer upstream kinase activities using tools like Kinase Substrate Enrichment Analysis (KSEA), Posttranslational Modification Substrate Enrichment Analysis (PTM-SEA), and Integrative Inferred Kinase Activity Analysis (INKA). Since the topic of kinase activity inference is very active with many new approaches reported in the past 3 years, we would like to give an overview of the field. In this review, an inventory of kinase activity inference tools, their underlying algorithms, statistical frameworks, kinase-substrate databases, and user-friendliness is presented. The most widely-used tools are compared in-depth. Subsequently, recent applications of the tools are described focusing on clinical tissues and hematological samples. Two main application areas for kinase activity inference tools can be discerned. (1) Maximal biological insights can be obtained from large data sets with group comparisons using multiple complementary tools (e.g., PTM-SEA and KSEA or INKA). (2) In the oncology context where personalized treatment requires analysis of single samples, INKA for example, has emerged as tool that can prioritize actionable kinases for targeted inhibition.
Collapse
Affiliation(s)
- Sander R Piersma
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andrea Valles-Marti
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frank Rolfs
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alex A Henneman
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
9
|
Girod M, Arquier D, Helms A, Juetten K, Brodbelt JS, Lemoine J, MacAleese L. Characterization of Phosphorylated Peptides by Electron-Activated and Ultraviolet Dissociation Mass Spectrometry: A Comparative Study with Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1040-1054. [PMID: 38626331 PMCID: PMC11382297 DOI: 10.1021/jasms.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Mass-spectrometry-based methods have made significant progress in the characterization of post-translational modifications (PTMs) in peptides and proteins; however, room remains to improve fragmentation methods. Ideal MS/MS methods are expected to simultaneously provide extensive sequence information and localization of PTM sites and retain labile PTM groups. This collection of criteria is difficult to meet, and the various activation methods available today offer different capabilities. In order to examine the specific case of phosphorylation on peptides, we investigate electron transfer dissociation (ETD), electron-activated dissociation (EAD), and 193 nm ultraviolet photodissociation (UVPD) and compare all three methods with classical collision-induced dissociation (CID). EAD and UVPD show extensive backbone fragmentation, comparable in scope to that of CID. These methods provide diverse backbone fragmentation, producing a/x, b/y, and c/z ions with substantial sequence coverages. EAD displays a high retention efficiency of the phosphate modification, attributed to its electron-mediated fragmentation mechanisms, as observed in ETD. UVPD offers reasonable retention efficiency, also allowing localization of the PTM site. EAD experiments were also performed in an LC-MS/MS workflow by analyzing phosphopeptides spiked in human plasma, and spectra allow accurate identification of the modified sites and discrimination of isomers. Based on the overall performance, EAD and 193 nm UVPD offer alternative options to CID and ETD for phosphoproteomics.
Collapse
Affiliation(s)
- Marion Girod
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Delphine Arquier
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Amanda Helms
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jérôme Lemoine
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Luke MacAleese
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69100 Villeurbanne, France
| |
Collapse
|
10
|
Joyce AW, Searle BC. Computational approaches to identify sites of phosphorylation. Proteomics 2024; 24:e2300088. [PMID: 37897210 DOI: 10.1002/pmic.202300088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Collapse
Affiliation(s)
- Alex W Joyce
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Furutani Y, Hirano Y, Toguchi M, Higuchi S, Qin XY, Yanaka K, Sato-Shiozaki Y, Takahashi N, Sakai M, Kongpracha P, Suzuki T, Dohmae N, Kukimoto-Niino M, Shirouzu M, Nagamori S, Suzuki H, Kobayashi K, Masaki T, Koyama H, Sekiba K, Otsuka M, Koike K, Kohara M, Kojima S, Kakeya H, Matsuura T. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor. Cell Death Discov 2023; 9:467. [PMID: 38135680 PMCID: PMC10746708 DOI: 10.1038/s41420-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.
Collapse
Affiliation(s)
- Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan.
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Mariko Toguchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Higuchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Yanaka
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Yumi Sato-Shiozaki
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Marina Sakai
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Kobayashi
- Laboratory of Biopharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
- Sasaki Institute Shonan Medical Examination Center, 10-4 Takarachou, Hiratsuka-shi, Kanagawa, 254-0034, Japan
| |
Collapse
|
12
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
13
|
Jiang Y, Rex DAB, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Mayta ML, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry. ARXIV 2023:arXiv:2311.07791v1. [PMID: 38013887 PMCID: PMC10680866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8093, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston · Funded by NIST
| | - Germán L. Rosano
- Mass Spectrometry Unit, Institute of Molecular and Cellular Biology of Rosario, Rosario, Argentina · Funded by Grant PICT 2019-02971 (Agencia I+D+i)
| | - Norbert Volkmar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | - Susan B. Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Cananda
| | - Simion Kreimer
- Smidt Heart Institute, Cedars Sinai Medical Center; Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oliver M. Crook
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute · Funded by Grant BT/PR16456/BID/7/624/2016 (Department of Biotechnology, India); Grant Translational Research Program (TRP) at THSTI funded by DBT
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam-690 525, Kerala, India · Funded by Department of Health Research, Indian Council of Medical Research, Government of India (File No.R.12014/31/2022-HR)
| | - Martín L. Mayta
- School of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martín 3103, Argentina; Molecular Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department of Chemistry, University of Washington · Funded by Summer Research Acceleration Fellowship, Department of Chemistry, University of Washington
| | - Nicholas M. Riley
- Department of Chemistry, University of Washington · Funded by National Institutes of Health Grant R00 GM147304
| | - Robert L. Moritz
- Institute for Systems biology, Seattle, WA, USA, 98109 · Funded by National Institutes of Health Grants R01GM087221, R24GM127667, U19AG023122, S10OD026936; National Science Foundation Award 1920268
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center · Funded by National Institutes of Health Grant R21 AG074234; National Institutes of Health Grant R35 GM142502
| |
Collapse
|
14
|
Bons J, Hunter CL, Chupalov R, Causon J, Antonoplis A, Rose J, MacLean B, Schilling B. Localization and Quantification of Post-Translational Modifications of Proteins Using Electron Activated Dissociation Fragmentation on a Fast-Acquisition Time-of-Flight Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2199-2210. [PMID: 37694881 PMCID: PMC11157679 DOI: 10.1021/jasms.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein post-translational modifications (PTMs) are crucial and dynamic players in a large variety of cellular processes and signaling. Proteomic technologies have emerged as the method of choice to profile PTMs. However, these analyses remain challenging due to potential low PTM stoichiometry, the presence of multiple PTMs per proteolytic peptide, PTM site localization of isobaric peptides, and neutral losses. Collision-induced dissociation (CID) is commonly used to characterize PTMs, but the application of collision energy can lead to neutral losses and incomplete peptide sequencing for labile PTM groups. In this study, we assessed the performance of an alternative fragmentation, electron activated dissociation (EAD), to characterize, site localize, and quantify peptides with labile modifications in comparison to CID, both operated on a recently introduced fast-scanning quadrupole-time-of-flight (QqTOF) mass spectrometer. We analyzed biologically relevant phosphorylated, succinylated, malonylated, and acetylated synthetic peptides using targeted parallel reaction monitoring (PRM or MRMHR) assays. We report that electron-based fragmentation preserves the malonyl group from neutral losses. The novel tunable EAD kinetic energy maintained labile modification integrity and provided better peptide sequence coverage with strong PTM-site localization fragment ions. Activation of a novel trap-and-release technology significantly improves the duty cycle and provided significant MS/MS sensitivity gains by an average of 6-11-fold for EAD analyses. Evaluation of the quantitative EAD PRM workflows revealed high reproducibility with coefficients of variation of ∼2-7%, as well as very good linearity and quantification accuracy. This novel workflow combining EAD and trap-and-release technology provides high sensitivity, alternative fragmentation information to achieve confident PTM characterization and quantification.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California 94947, United States
| | | | - Rita Chupalov
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | | | | | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California 94947, United States
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94947, United States
| |
Collapse
|
15
|
Daly LA, Clarke CJ, Po A, Oswald SO, Eyers CE. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem Commun (Camb) 2023; 59:11484-11499. [PMID: 37681662 PMCID: PMC10521633 DOI: 10.1039/d3cc02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Post-translational modifications (PTMs) are ubiquitous and key to regulating protein function. Understanding the dynamics of individual PTMs and their biological roles requires robust characterisation. Mass spectrometry (MS) is the method of choice for the identification and quantification of protein modifications. This article focusses on the MS-based analysis of those covalent modifications that induce a mass shift of +80 Da, notably phosphorylation and sulfation, given the challenges associated with their discrimination and pinpointing the sites of modification on a polypeptide chain. Phosphorylation in particular is highly abundant, dynamic and can occur on numerous residues to invoke specific functions, hence robust characterisation is crucial to understanding biological relevance. Showcasing our work in the context of other developments in the field, we highlight approaches for enrichment and site localisation of phosphorylated (canonical and non-canonical) and sulfated peptides, as well as modification analysis in the context of intact proteins (top down proteomics) to explore combinatorial roles. Finally, we discuss the application of native ion-mobility MS to explore the effect of these PTMs on protein structure and ligand binding.
Collapse
Affiliation(s)
- Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Allen Po
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Sally O Oswald
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
16
|
Geiszler DJ, Polasky DA, Yu F, Nesvizhskii AI. Detecting diagnostic features in MS/MS spectra of post-translationally modified peptides. Nat Commun 2023; 14:4132. [PMID: 37438360 DOI: 10.1038/s41467-023-39828-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Post-translational modifications are an area of great interest in mass spectrometry-based proteomics, with a surge in methods to detect them in recent years. However, post-translational modifications can introduce complexity into proteomics searches by fragmenting in unexpected ways, ultimately hindering the detection of modified peptides. To address these deficiencies, we present a fully automated method to find diagnostic spectral features for any modification. The features can be incorporated into proteomics search engines to improve modified peptide recovery and localization. We show the utility of this approach by interrogating fragmentation patterns for a cysteine-reactive chemoproteomic probe, RNA-crosslinked peptides, sialic acid-containing glycopeptides, and ADP-ribosylated peptides. We also analyze the interactions between a diagnostic ion's intensity and its statistical properties. This method has been incorporated into the open-search annotation tool PTM-Shepherd and the FragPipe computational platform.
Collapse
Affiliation(s)
- Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L. Collision energies: Optimization strategies for bottom-up proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1261-1299. [PMID: 34859467 DOI: 10.1002/mas.21763] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/07/2023]
Abstract
Mass-spectrometry coupled to liquid chromatography is an indispensable tool in the field of proteomics. In the last decades, more and more complex and diverse biochemical and biomedical questions have arisen. Problems to be solved involve protein identification, quantitative analysis, screening of low abundance modifications, handling matrix effect, and concentrations differing by orders of magnitude. This led the development of more tailored protocols and problem centered proteomics workflows, including advanced choice of experimental parameters. In the most widespread bottom-up approach, the choice of collision energy in tandem mass spectrometric experiments has outstanding role. This review presents the collision energy optimization strategies in the field of proteomics which can help fully exploit the potential of MS based proteomics techniques. A systematic collection of use case studies is then presented to serve as a starting point for related further scientific work. Finally, this article discusses the issue of comparing results from different studies or obtained on different instruments, and it gives some hints on methodology transfer between laboratories based on measurement of reference species.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Helga Hevér
- Chemical Works of Gedeon Richter Plc, Budapest, Hungary
| | - Arnold Steckel
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
18
|
Polasky DA, Geiszler DJ, Yu F, Li K, Teo GC, Nesvizhskii AI. MSFragger-Labile: A Flexible Method to Improve Labile PTM Analysis in Proteomics. Mol Cell Proteomics 2023; 22:100538. [PMID: 37004988 PMCID: PMC10182319 DOI: 10.1016/j.mcpro.2023.100538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications of proteins play essential roles in defining and regulating the functions of the proteins they decorate, making identification of these modifications critical to understanding biology and disease. Methods for enriching and analyzing a wide variety of biological and chemical modifications of proteins have been developed using mass spectrometry-based proteomics, largely relying on traditional database search methods to identify the resulting mass spectra of modified peptides. These database search methods treat modifications as static attachments of a mass to particular position in the peptide sequence, but many modifications undergo fragmentation in tandem mass spectrometry experiments alongside, or instead of, the peptide backbone. While this fragmentation can confound traditional search methods, it also offers unique opportunities for improved searches that incorporate modification-specific fragment ions. Here, we present a new labile mode in the MSFragger search engine that provides the flexibility to tailor modification-centric searches to the fragmentation observed. We show that labile mode can dramatically improve spectrum identification rates of phosphopeptides, RNA-crosslinked peptides, and ADP-ribosylated peptides. Each of these modifications presents distinct fragmentation characteristics, showcasing the flexibility of MSFragger labile mode to improve search for a wide variety of biological and chemical modifications.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
19
|
DeMarco AG, Hall MC. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates. Molecules 2023; 28:3675. [PMID: 37175085 PMCID: PMC10180314 DOI: 10.3390/molecules28093675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Protein phosphorylation is a ubiquitous post-translational modification controlled by the opposing activities of protein kinases and phosphatases, which regulate diverse biological processes in all kingdoms of life. One of the key challenges to a complete understanding of phosphoregulatory networks is the unambiguous identification of kinase and phosphatase substrates. Liquid chromatography-coupled mass spectrometry (LC-MS/MS) and associated phosphoproteomic tools enable global surveys of phosphoproteome changes in response to signaling events or perturbation of phosphoregulatory network components. Despite the power of LC-MS/MS, it is still challenging to directly link kinases and phosphatases to specific substrate phosphorylation sites in many experiments. Here, we survey common LC-MS/MS-based phosphoproteomic workflows for identifying protein kinase and phosphatase substrates, noting key advantages and limitations of each. We conclude by discussing the value of inducible degradation technologies coupled with phosphoproteomics as a new approach that overcomes some limitations of current methods for substrate identification of kinases, phosphatases, and other regulatory enzymes.
Collapse
Affiliation(s)
- Andrew G. DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Higgins L, Gerdes H, Cutillas PR. Principles of phosphoproteomics and applications in cancer research. Biochem J 2023; 480:403-420. [PMID: 36961757 PMCID: PMC10212522 DOI: 10.1042/bcj20220220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Phosphorylation constitutes the most common and best-studied regulatory post-translational modification in biological systems and archetypal signalling pathways driven by protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of the phosphoproteome stands to provide unique biological information on signalling pathway activity and on kinase network circuitry that is not captured by genetic or transcriptomic technologies. Here, we discuss the methods and tools used in phosphoproteomics and highlight how this technique has been used, and can be used in the future, for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and in the software required to provide biological information from these datasets. Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation capabilities and sensitivity, in biochemical methods for sample preparation and in computational pipelines are enabling an increasingly deep analysis of the phosphoproteome, where previous bottlenecks in data acquisition, processing and interpretation are being relieved. These powerful hardware and algorithmic innovations are not only providing exciting new mechanistic insights into tumour biology, from where new drug targets may be derived, but are also leading to the discovery of phosphoproteins as mediators of drug sensitivity and resistance and as classifiers of disease subtypes. These studies are, therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to improve personalised anti-cancer therapies.
Collapse
Affiliation(s)
- Luke Higgins
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Henry Gerdes
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Pedro R. Cutillas
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
- Alan Turing Institute, The British Library, London, U.K
- Digital Environment Research Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
21
|
A computational and experimental examination of the CID of phosphorylated serine-H +. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
22
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
23
|
Xiao D, Chen C, Yang P. Computational systems approach towards phosphoproteomics and their downstream regulation. Proteomics 2023; 23:e2200068. [PMID: 35580145 DOI: 10.1002/pmic.202200068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/07/2022]
Abstract
Protein phosphorylation plays an essential role in modulating cell signalling and its downstream transcriptional and translational regulations. Until recently, protein phosphorylation has been studied mostly using low-throughput biochemical assays. The advancement of mass spectrometry (MS)-based phosphoproteomics transformed the field by enabling measurement of proteome-wide phosphorylation events, where tens of thousands of phosphosites are routinely identified and quantified in an experiment. This has brought a significant challenge in analysing large-scale phosphoproteomic data, making computational methods and systems approaches integral parts of phosphoproteomics. Previous works have primarily focused on reviewing the experimental techniques in MS-based phosphoproteomics, yet a systematic survey of the computational landscape in this field is still missing. Here, we review computational methods and tools, and systems approaches that have been developed for phosphoproteomics data analysis. We categorise them into four aspects including data processing, functional analysis, phosphoproteome annotation and their integration with other omics, and in each aspect, we discuss the key methods and example studies. Lastly, we highlight some of the potential research directions on which future work would make a significant contribution to this fast-growing field. We hope this review provides a useful snapshot of the field of computational systems phosphoproteomics and stimulates new research that drives future development.
Collapse
Affiliation(s)
- Di Xiao
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Carissa Chen
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Ives A, Dunn HA, Afsari HS, Seckler HDS, Foroutan MJ, Chavez E, Melani RD, Fellers RT, LeDuc RD, Thomas PM, Martemyanov KA, Kelleher NL, Vafabakhsh R. Middle-Down Mass Spectrometry Reveals Activity-Modifying Phosphorylation Barcode in a Class C G Protein-Coupled Receptor. J Am Chem Soc 2022; 144:23104-23114. [PMID: 36475650 PMCID: PMC9785046 DOI: 10.1021/jacs.2c10697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.
Collapse
Affiliation(s)
- Ashley
N. Ives
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Henry A. Dunn
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States,Department
of Pharmacology and Therapeutics, University
of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada,Division
of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen
Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Hamid Samareh Afsari
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Max J. Foroutan
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Erica Chavez
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. LeDuc
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kirill A. Martemyanov
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States,Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Reza Vafabakhsh
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,
| |
Collapse
|
25
|
Gassaway BM, Li J, Rad R, Mintseris J, Mohler K, Levy T, Aguiar M, Beausoleil SA, Paulo JA, Rinehart J, Huttlin EL, Gygi SP. A multi-purpose, regenerable, proteome-scale, human phosphoserine resource for phosphoproteomics. Nat Methods 2022; 19:1371-1375. [PMID: 36280721 PMCID: PMC9847208 DOI: 10.1038/s41592-022-01638-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
Mass-spectrometry-based phosphoproteomics has become indispensable for understanding cellular signaling in complex biological systems. Despite the central role of protein phosphorylation, the field still lacks inexpensive, regenerable, and diverse phosphopeptides with ground-truth phosphorylation positions. Here, we present Iterative Synthetically Phosphorylated Isomers (iSPI), a proteome-scale library of human-derived phosphoserine-containing phosphopeptides that is inexpensive, regenerable, and diverse, with precisely known positions of phosphorylation. We demonstrate possible uses of iSPI, including use as a phosphopeptide standard, a tool to evaluate and optimize phosphorylation-site localization algorithms, and a benchmark to compare performance across data analysis pipelines. We also present AScorePro, an updated version of the AScore algorithm specifically optimized for phosphorylation-site localization in higher energy fragmentation spectra, and the FLR viewer, a web tool for phosphorylation-site localization, to enable community use of the iSPI resource. iSPI and its associated data constitute a useful, multi-purpose resource for the phosphoproteomics community.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ramin Rad
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kyle Mohler
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale Medical School, New Haven, CT, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA, USA
| | | | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale Medical School, New Haven, CT, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Sridharan S, Hernandez-Armendariz A, Kurzawa N, Potel CM, Memon D, Beltrao P, Bantscheff M, Huber W, Cuylen-Haering S, Savitski MM. Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nat Chem Biol 2022; 18:1104-1114. [PMID: 35864335 PMCID: PMC9512703 DOI: 10.1038/s41589-022-01062-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Reversible protein phosphorylation is an important mechanism for regulating (dis)assembly of biomolecular condensates. However, condensate-specific phosphosites remain largely unknown, thereby limiting our understanding of the underlying mechanisms. Here, we combine solubility proteome profiling with phosphoproteomics to quantitatively map several hundred phosphosites enriched in either soluble or condensate-bound protein subpopulations, including a subset of phosphosites modulating protein-RNA interactions. We show that multi-phosphorylation of the C-terminal disordered segment of heteronuclear ribonucleoprotein A1 (HNRNPA1), a key RNA-splicing factor, reduces its ability to locate to nuclear clusters. For nucleophosmin 1 (NPM1), an essential nucleolar protein, we show that phosphorylation of S254 and S260 is crucial for lowering its partitioning to the nucleolus and additional phosphorylation of distal sites enhances its retention in the nucleoplasm. These phosphorylation events decrease RNA and protein interactions of NPM1 to regulate its condensation. Our dataset is a rich resource for systematically uncovering the phosphoregulation of biomolecular condensates.
Collapse
Affiliation(s)
- Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Hernandez-Armendariz
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Clement M Potel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danish Memon
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Pedro Beltrao
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | | | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
27
|
ZHAO Y, XU W, JIA Q. [Application of smart responsive materials in phosphopeptide and glycopeptide enrichment]. Se Pu 2022; 40:862-871. [PMID: 36222249 PMCID: PMC9577696 DOI: 10.3724/sp.j.1123.2022.06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation and glycosylation of proteins, two of the most widely studied post-translational modifications (PTMs), have shown increasing potential in the early non-invasive diagnosis, prognosis, and therapeutic evaluation of diseases. Besides regulating the function of cell membranes and intracellular signal transduction, protein phosphorylation participates in mitochondrial function and cellular and transcriptional metabolism. Protein glycosylation plays an important role in both intracellular and extracellular signal transduction and intracellular endocytosis. Aberrant phosphorylation and glycosylation of proteins are frequently observed in clinical proteomic studies and in the discovery of disease-related biomarkers. There are generally three methods for detecting protein phosphorylation/glycosylation: isotope radiolabeling, western blotting, and mass spectrometry. Mass spectrometry has become the most important and advantageous detection method due to its high throughput and time- and labor-efficiency. However, phosphopeptides and glycopeptides have low stoichiometry and ionization efficiency, and a large number of non-phosphopeptides and -glycopeptides interference. These issues make it difficult to directly detect phosphopeptides and glycopeptides by mass spectrometry. Therefore, the enrichment of phosphopeptides and glycopeptides before mass spectrometry detection is a key step. At present, a variety of materials have been developed for enrichment studies of phosphopeptides and glycopeptides. For example, immobilized metal affinity (IMAC) and metal oxide affinity chromatography (MOAC) methods are mostly used for the enrichment of phosphopeptides. The IMAC mainly uses positively charged metal ions and negatively charged phosphate groups to attract each other for the purpose of enriching phosphopeptides. MOAC materials rely on the chelation of metal atoms and phosphate oxygens to capture phosphopeptides. IMAC and MOAC materials rely on strong interactions between metals and phosphate groups, which often lead to difficult elution. The enrichment method for glycopeptides is mainly based on the difference in hydrophilicity between glycopeptides and non-glycopeptides, which are mainly enriched by hydrophilic interaction chromatography (HILIC). In addition, materials containing compounds such as boronic acid and lectin materials are also widely used for the separation and enrichment of glycopeptides. Smart responsive materials have also been successively reported for the enrichment of phosphopeptides and glycopeptides due to their unique responsiveness and reversibility. Smart responsive materials can respond to external stimuli; undergo structural and property changes; and convert signals such as optical, electrical, thermal, and mechanical into biochemical signals. Responsive molecules are a prerequisite for determining the response properties of smart responsive materials, and their reversible isomerization under different stimuli (such as temperature, pH, light, mechanical stress, and electromagnetic field) will lead to dynamic changes in the physical and chemical properties of materials. Compared with traditional materials, smart responsive materials can be reversibly "turned on" and "off" with better controllability. Exogenous stimuli, including temperature, light, ultrasound, electromagnetic field, and mechanical stress, can be implemented in a specific time and space. Exogenous responsive materials do not depend on changes in the reaction system itself and are non-invasive. Enzymes, pH, redox, solution polarity, and ionic strength are endogenous stimuli. Endogenous responsive materials depend on changes in the reaction system itself, and sometimes the regulation process requires the introduction of other chemicals into the reaction system. The identification, capture, and release of phosphopeptides or glycopeptides can be achieved by modulating the interactions between smart responsive materials and phosphopeptides or glycopeptides (such as hydrogen bonds, and electrostatic and hydrophobic interactions). This review classifies smart responsive materials according to the types of stimuli, which are specifically divided into exogenous and endogenous responsive materials. The enrichment of phosphopeptides and glycopeptides of exogenous/endogenous responsive materials and endogenous/exogenous co-responsive materials are summarized. In addition, we discuss the development prospects of smart responsive materials in the enrichment of phosphopeptides and glycopeptides, and also raised the challenges existing in the application of smart responsive materials in other protein post-translational modifications.
Collapse
|
28
|
Estrada P, Bañares-Hidalgo Á, Pérez-Gil J. Disulfide bonds in the SAPA domain of the pulmonary surfactant protein B precursor. J Proteomics 2022; 269:104722. [PMID: 36108905 DOI: 10.1016/j.jprot.2022.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The disulfide bonds formed in the SAPA domain of a recombinant version of the NH2-terminal propeptide (SP-BN) from the precursor of human pulmonary surfactant protein B (SP-B) were identified through sequential digestion of SP-BN with GluC/trypsin or thermolysin/GluC, followed by mass spectrometry (MS) analysis. MS spectra allowed identification of disulfide bonds between Cys32-Cys49 and Cys40-Cys55, and we propose a disulfide connectivity pattern of 1-3 and 2-4 within the SAPA domain, with the Cys residues numbered according to their position from the N-terminus of the propeptide sequence. The peaks with m/z ∼ 2136 and ∼ 1780 in the MS spectrum of the GluC/trypsin digest were assigned to peptides 24AWTTSSLACAQGPE37 and 45QALQCR50 linked by Cys32-Cys49 and 38FWCQSLE44 and 51ALGHCLQE58 linked by Cys40-Cys55 respectively. Tandem mass spectrometry (MS/MS) analysis verified the position of the bonds. The results of the series ions, immonium ions and internal fragment ions were all compatible with the proposed 1-3/2-4 position of the disulfide bonds in the SAPA domain. This X-pattern differs from the kringle-type found in the SAPB domain of the SAPLIP proteins, where the first Cys in the sequence links to the last, the second to the penultimate and the third to the fourth one. Regarding the SAPB domain of the SP-BN propeptide, the MS analysis of both digests identified the bond Cys100-Cys112, numbered 7-8, which is coincident with the bond position in the kringle motif. SIGNIFICANCE: The SAPLIP (saposin-like proteins) family encompasses several proteins with homology to saposins (sphingolipids activator proteins). These are proteins with mainly alpha-helical folds, compact packing including well conserved disulfide bonds and ability to interact with phospholipids and membranes. There are two types of saposin-like domains termed as Saposin A (SAPA) and Saposin B (SAPB) domains. While disulfide connectivity has been well established in several SAPB domains, the position of disulfide bonds in SAPA domains is still unknown. The present study approaches a detailed proteomic study to determine disulfide connectivity in the SAPA domain of the precursor of human pulmonary surfactant-associated protein SP-B. This task has been a challenge requiring the combination of different sequential proteolytic treatments followed by MS analysis including MALDI-TOF and tandem mass MS/MS spectrometry. The determination for first time of the position of disulfide bonds in SAPA domains is an important step to understand the structural determinants defining its biological functions.
Collapse
Affiliation(s)
- Pilar Estrada
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Ángeles Bañares-Hidalgo
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
29
|
Zhang Y, Dreyer B, Govorukhina N, Heberle AM, Končarević S, Krisp C, Opitz CA, Pfänder P, Bischoff R, Schlüter H, Kwiatkowski M, Thedieck K, Horvatovich PL. Comparative Assessment of Quantification Methods for Tumor Tissue Phosphoproteomics. Anal Chem 2022; 94:10893-10906. [PMID: 35880733 PMCID: PMC9366746 DOI: 10.1021/acs.analchem.2c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
With increasing sensitivity and accuracy in mass spectrometry,
the tumor phosphoproteome is getting into reach. However, the selection
of quantitation techniques best-suited to the biomedical question
and diagnostic requirements remains a trial and error decision as
no study has directly compared their performance for tumor tissue
phosphoproteomics. We compared label-free quantification (LFQ), spike-in-SILAC
(stable isotope labeling by amino acids in cell culture), and tandem
mass tag (TMT) isobaric tandem mass tags technology for quantitative
phosphosite profiling in tumor tissue. Compared to the classic SILAC
method, spike-in-SILAC is not limited to cell culture analysis, making
it suitable for quantitative analysis of tumor tissue samples. TMT
offered the lowest accuracy and the highest precision and robustness
toward different phosphosite abundances and matrices. Spike-in-SILAC
offered the best compromise between these features but suffered from
a low phosphosite coverage. LFQ offered the lowest precision but the
highest number of identifications. Both spike-in-SILAC and LFQ presented
susceptibility to matrix effects. Match between run (MBR)-based analysis
enhanced the phosphosite coverage across technical replicates in LFQ
and spike-in-SILAC but further reduced the precision and robustness
of quantification. The choice of quantitative methodology is critical
for both study design such as sample size in sample groups and quantified
phosphosites and comparison of published cancer phosphoproteomes.
Using ovarian cancer tissue as an example, our study builds a resource
for the design and analysis of quantitative phosphoproteomic studies
in cancer research and diagnostics.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.,Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Benjamin Dreyer
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Saša Končarević
- Proteome Sciences R&D GmbH & Co. KG, Altenhöferallee 3, 60438 Frankfurt/Main, Germany
| | - Christoph Krisp
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christiane A Opitz
- Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neurology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Pauline Pfänder
- Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, 69117 Heidelberg, Germany
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Groningen 9700 AD, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.,Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Peter L Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
30
|
Piovesana S, Capriotti AL, Cavaliere C, Cerrato A, Montone CM, Zenezini Chiozzi R, Laganà A. The Key Role of Metal Adducts in the Differentiation of Phosphopeptide from Sulfopeptide Sequences by High-Resolution Mass Spectrometry. Anal Chem 2022; 94:9234-9241. [PMID: 35714062 PMCID: PMC9260711 DOI: 10.1021/acs.analchem.1c05621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Site localization of protein sulfation by high-throughput proteomics remains challenging despite the technological improvements. In this study, sequence analysis and site localization of sulfation in tryptic peptides were determined under a conventional nano-liquid chromatography-mass spectrometry configuration. Tryptic sulfopeptide standards were used to study different fragmentation strategies, including collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), electron-transfer dissociation (ETD), electron-transfer/higher-energy collision dissociation (EThcD), and electron-transfer/collision-induced dissociation (ETciD), in the positive ionization mode. Sulfopeptides displayed only neutral loss of SO3 under CID, while the sequence could be determined for all other tested fragmentation techniques. Results were compared to the same sequences with phosphotyrosine, indicating important differences, as the sequence and modification localization could be studied by all fragmentation strategies. However, the use of metal adducts, especially potassium, provided valuable information for sulfopeptide localization in ETD and ETD-hybrid strategies by stabilizing the modification and increasing the charge state of sulfopeptides. In these conditions, both the sequence and localization could be obtained. In-source neutral loss of SO3 under EThcD provided diagnostic peaks suitable to distinguish the sulfopeptides from the nearly isobaric phosphopeptides. Further confirmation on the modification type was found in the negative ionization mode, where phosphopeptides always had the typical phosphate product ion corresponding to PO3-.
Collapse
Affiliation(s)
- Susy Piovesana
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Cerrato
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Aldo Laganà
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
31
|
Identification, production and bioactivity of casein phosphopeptides – A review. Food Res Int 2022; 157:111360. [DOI: 10.1016/j.foodres.2022.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
32
|
Comprehensive Evaluation of Different TiO2-Based Phosphopeptide Enrichment and Fractionation Methods for Phosphoproteomics. Cells 2022; 11:cells11132047. [PMID: 35805136 PMCID: PMC9265536 DOI: 10.3390/cells11132047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Protein phosphorylation is an essential post-translational modification that regulates multiple cellular processes. Due to their low stoichiometry and ionization efficiency, it is critical to efficiently enrich phosphopeptides for phosphoproteomics. Several phosphopeptide enrichment methods have been reported; however, few studies have comprehensively compared different TiO2-based phosphopeptide enrichment methods using complex proteomic samples. Here, we compared four TiO2-based phosphopeptide enrichment methods that used four non-phosphopeptide excluders (glutamic acid, lactic acid, glycolic acid, and DHB). We found that these four TiO2-based phosphopeptide enrichment methods had different enrichment specificities and that phosphopeptides enriched by the four methods had different physicochemical characteristics. More importantly, we discovered that phosphopeptides had a higher deamidation ratio than peptides from cell lysate and that phosphopeptides enriched using the glutamic acid method had a higher deamidation ratio than the other three methods. We then compared two phosphopeptide fractionation methods: ammonia- or TEA-based high pH reversed-phase (HpH-RP). We found that fewer phosphopeptides, especially multi-phosphorylated peptides, were identified using the ammonia-based method than using the TEA-based method. Therefore, the TEA-based HpH-RP fractionation method performed better than the ammonia method. In conclusion, we comprehensively evaluated different TiO2-based phosphopeptide enrichment and fractionation methods, providing a basis for selecting the proper protocols for comprehensive phosphoproteomics.
Collapse
|
33
|
Altenburg T, Giese SH, Wang S, Muth T, Renard BY. Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractMass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%.
Collapse
|
34
|
Abstract
Protein post-translational modifications (PTMs) enable cells to rapidly change in response to biological stimuli. With hundreds of different PTMs, understanding these control mechanisms is complex. To date, efforts have focused on investigating the effect of a single PTM on protein function. Yet, many proteins contain multiple PTMs. Moreover, one PTM can alter the prevalence of another, a phenomenon termed PTM crosstalk. Understanding PTM crosstalk is critical; however, its detection is challenging since PTMs occur substoichiometrically. Here, we develop an enrichment-free, label-free proteomics method that utilizes high-field asymmetric ion mobility spectrometry (FAIMS) to enhance the detection of PTM crosstalk. We show that by searching for multiple combinations of dynamic PTMs on peptide sequences, a 6-fold increase in candidate PTM crosstalk sites is identified compared with that of standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows. Additionally, by cycling through FAIMS compensation voltages within a single LC-FAIMS-MS/MS run, we show that our LC-FAIMS-MS/MS workflow can increase multi-PTM-containing peptide identifications without additional increases in run times. With 159 novel candidate crosstalk sites identified, we envisage LC-FAIMS-MS/MS to play an important role in expanding the repertoire of multi-PTM identifications. Moreover, it is only by detecting PTM crosstalk that we can "see" the full picture of how proteins are regulated.
Collapse
Affiliation(s)
- Kish R. Adoni
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Debbie L. Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - John K. Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Aneika C. Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
35
|
Burastero O, Cabrera M, Lopez ED, Defelipe LA, Arcon JP, Durán R, Marti MA, Turjanski AG. Specificity and Reactivity of Mycobacterium tuberculosis Serine/Threonine Kinases PknG and PknB. J Chem Inf Model 2022; 62:1723-1733. [PMID: 35319884 DOI: 10.1021/acs.jcim.1c01358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.
Collapse
Affiliation(s)
- Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Marisol Cabrera
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Elias D Lopez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Lucas A Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Juan Pablo Arcon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Rosario Durán
- Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.,Instituto de Investigaciones BiológicasClemente Estable, 11600 Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Adrian G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
36
|
Yang X, Wang N, Ren S, Hu Y, Wang H, Ji A, Cao L, Li M, Liu J, Wang H. Phosphorylation regulation of cardiac proteins in Babesia microti infected mice in an effort to restore heart function. Parasit Vectors 2022; 15:98. [PMID: 35313969 PMCID: PMC8935697 DOI: 10.1186/s13071-022-05233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Babesia is a common protozoan parasite that infects red blood cells. In mice infected with Babesia microti, the red blood cells were lysed, resulting in decreased oxygen-carrying capacity. To compensate for low blood oxygen levels, stress on the heart was greatly increased. Babesiosis induces a variety of pathologies; meanwhile, heart tissues initiate self-repair responses to babesiosis-induced tissue damage to restore heart function. Methods To discover the molecular mechanisms of the damage and self-repair in the heart after B. microti infection in mice, we investigated the changes in protein expression and phosphorylation modification levels in heart tissues at 0, 5, 8, 11, and 19 days post-infection using data-independent acquisition (DIA) quantitative proteomics. Results The numbers of global proteins we identified were 1934, 1966, 1984, 1989, and 1955 and of phosphopeptides were 5118, 5133, 5130, 5133, and 5140 at 0, 5, 8, 11, and 19 days, respectively, in heart cells after infection with B. microti. The results showed that after B. microti infection the differentially expressed proteins in mice mainly include fibrinogen α (Fgα), fibrinogen β (Fgβ), Serpina1b, Serpina1c, cathepsin Z, cytochrome c oxidases (COXs), RPS11, and RPS20. The proteins with phosphorylation changes mainly include 20-kDa light chain of myosin II (MLC20), myosin light chain kinase (MLCK), mitogen-activated protein kinase 14 (MAPK14), and Akt1. These proteins were mainly involved in coagulation processes, cell apoptosis, oxidative phosphorylation, and ribosomes. Conclusions The coagulation cascade-related proteins, apoptosis-related proteins, oxidative phosphorylation-related proteins, and other types of proteins are all involved in the damage and self-repair process in the heart after B. microti infection. These results offer a wealth of new targets for further exploration into the causes of heart disease induced by Babesia infection and are of great significance for novel drug development and new opportunities for targeted therapies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05233-7.
Collapse
Affiliation(s)
- Xiaohong Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.,Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Shuguang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.,The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuhong Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.,Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Han Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Aimeng Ji
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lihui Cao
- Animal Disease Control Center of Zhengding County, Shijiazhuang, Hebei, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
37
|
Sisley EK, Hale OJ, Styles IB, Cooper HJ. Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. J Am Chem Soc 2022; 144:2120-2128. [DOI: 10.1021/jacs.1c10032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma K. Sisley
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Oliver J. Hale
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Iain B. Styles
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, U.K
- University of Nottingham, Midlands, NG7 2RD, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| |
Collapse
|
38
|
Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Structure of putative tumor suppressor ALDH1L1. Commun Biol 2022; 5:3. [PMID: 35013550 PMCID: PMC8748788 DOI: 10.1038/s42003-021-02963-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
Putative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4'-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD, 21701, USA.
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
Xue J, Derks RJE, Hoang L, Giera M, Siuzdak G. Proteomics with Enhanced In-Source Fragmentation/Annotation: Applying XCMS-EISA Informatics and Q-MRM High-Sensitivity Quantification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2644-2654. [PMID: 34633184 DOI: 10.1021/jasms.1c00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Enhanced in-source fragmentation/annotation (EISA) has recently been shown to produce fragment ions that match tandem mass spectrometry data across a wide range of small molecules. EISA has been developed to facilitate data-dependent acquisition (DDA), data-independent acquisiton (DIA), and multiple-reaction monitoring (MRM), enabling molecular identifications in untargeted metabolomics and targeted quantitative single-quadrupole MRM (Q-MRM) analyses. Here, EISA has been applied to peptide-based proteomic analysis using optimized in-source fragmentation to generate fragmentation patterns for a mixture of 38 peptides, which were comparable to the b- and y-type fragment ions typically observed in tandem MS experiments. The optimal in-source fragmentation conditions at which high-abundance peptide fragments and precursor ions coexist were compared with automated data-dependent acquisition (DDA) in the same quadrupole time-of-flight (QTOF-MS) mass spectrometer, generating a significantly higher fragment percentage of peptides from both singly and doubly charged b- and y-type fragment (b+, y+, b2+, and y2+) ions. Higher fragment percentages were also observed for these fragment ion series over linear ion trap instrumentation. An XCMS-EISA annotation/deconvolution program was developed, making use of the retention time and peak shape continuity between precursor fragment ions, to perform automated proteomic data analysis on the enhanced in-source fragments. Post-translational modification (PTM) characterization on peptides was demonstrated with EISA, producing fragment ions corresponding to a neutral loss of phosphoric acid with greater intensity than observed with DDA on a QTOF-MS. Moreover, Q-MRM demonstrated the ability to use EISA for peptide quantification. The availability of more sophisticated in-source fragmentation informatics, beyond XCMS-EISA, will further enable EISA for sensitive autonomous identification and Q-MRM quantitative analyses in proteomics.
Collapse
Affiliation(s)
- Jingchuan Xue
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rico J E Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Linh Hoang
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Departments of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Hu W, Bagramyan K, Bhatticharya S, Hong T, Tapia A, Wong P, Kalkum M, Shively JE. Phosphorylation of human CEACAM1-LF by PKA and GSK3β promotes its interaction with β-catenin. J Biol Chem 2021; 297:101305. [PMID: 34656562 PMCID: PMC8564729 DOI: 10.1016/j.jbc.2021.101305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Karine Bagramyan
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Alonso Tapia
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
41
|
Liu X, Fields R, Schweppe DK, Paulo JA. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging. Expert Rev Proteomics 2021; 18:795-807. [PMID: 34652972 DOI: 10.1080/14789450.2021.1994390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Protein phosphorylation is a primary mechanism of signal transduction in cellular systems. Isobaric tagging can be used to investigate alterations in phosphorylation events in sample multiplexing experiments where quantification extends across all conditions. As such, innovations in tandem mass tag methods can facilitate the expansion of the depth and breadth of phosphoproteomic analyses. AREAS COVERED This review discusses the current state of tandem mass tag-centric phosphoproteomics and highlights advances in reagent chemistry, instrumentation, data acquisition, and data analysis. We stress that approaches for phosphoproteomic investigations require high-specificity enrichment, sensitive detection, and accurate phosphorylation site localization. EXPERT OPINION Tandem mass tag-centric phosphoproteomics will continue to be an important conduit for our understanding of signal transduction in living organisms. We anticipate that progress in phosphopeptide enrichment methodologies, enhancements in instrumentation and data acquisition technologies, and further refinements in analytical strategies will be key to the discovery of biologically relevant findings from phosphoproteomics studies.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| |
Collapse
|
42
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
43
|
Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides. ANALYTICA 2021. [DOI: 10.3390/analytica2040014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.
Collapse
|
44
|
LeBlanc BM, Moreno RY, Escobar EE, Venkat Ramani MK, Brodbelt JS, Zhang Y. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain via mass spectrometry. RSC Chem Biol 2021; 2:1084-1095. [PMID: 34458825 PMCID: PMC8341212 DOI: 10.1039/d1cb00083g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and its phosphorylation state are critically important in regulating transcription in vivo. Early methods of identifying phosphorylation on the CTD heptad were plagued by issues of low specificity and ambiguous signals. However, advancements in the field of mass spectrometry (MS) have presented the opportunity to gain new insights into well-studied processes as well as explore new frontiers in transcription. By using MS, residues which are modified within the CTD heptad and across repeats are now able to be pinpointed. Likewise, identification of kinase and phosphatase specificity towards residues of the CTD has reached a new level of accuracy. Now, MS is being used to investigate the crosstalk between modified residues of the CTD and may be a critical technique for understanding how phosphorylation plays a role in the new LLPS model of transcription. Herein, we discuss the development of various MS techniques and evaluate their capabilities. By highlighting the pros and cons of each technique, we aim to provide future investigators with a comprehensive overview of how MS can be used to investigate the complexities of RNAP-II mediated transcription.
Collapse
Affiliation(s)
- Blase M LeBlanc
- Department of Molecular Biosciences, University of Texas Austin USA
| | - R Yvette Moreno
- Department of Molecular Biosciences, University of Texas Austin USA
| | | | | | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas Austin USA
- Institute of Cellular and Molecular Biology, University of Texas Austin USA
| |
Collapse
|
45
|
Grubisha MJ, Sweet RA, MacDonald ML. Investigating Post-translational Modifications in Neuropsychiatric Disease: The Next Frontier in Human Post-mortem Brain Research. Front Mol Neurosci 2021; 14:689495. [PMID: 34335181 PMCID: PMC8322442 DOI: 10.3389/fnmol.2021.689495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
Gene expression and translation have been extensively studied in human post-mortem brain tissue from subjects with psychiatric disease. Post-translational modifications (PTMs) have received less attention despite their implication by unbiased genetic studies and importance in regulating neuronal and circuit function. Here we review the rationale for studying PTMs in psychiatric disease, recent findings in human post-mortem tissue, the required controls for these types of studies, and highlight the emerging mass spectrometry approaches transforming this research direction.
Collapse
Affiliation(s)
- Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Escobar EE, Venkat Ramani MK, Zhang Y, Brodbelt JS. Evaluating Spatiotemporal Dynamics of Phosphorylation of RNA Polymerase II Carboxy-Terminal Domain by Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2021; 143:8488-8498. [PMID: 34053220 DOI: 10.1021/jacs.1c03321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The critical role of site-specific phosphorylation in eukaryotic transcription has motivated efforts to decipher the complex phosphorylation patterns exhibited by the carboxyl-terminal domain (CTD) of RNA polymerase II. Phosphorylation remains a challenging post-translational modification to characterize by mass spectrometry owing to the labile phosphate ester linkage and low stoichiometric prevalence, two features that complicate analysis by high-throughput MS/MS methods. Identifying phosphorylation sites represents one significant hurdle in decrypting the CTD phosphorylation, a problem exaggerated by a large number of potential phosphorylation sites. An even greater obstacle is decoding the dynamic phosphorylation pattern along the length of the periodic CTD sequence. Ultraviolet photodissociation (UVPD) is a high-energy ion activation method that provides ample backbone cleavages of peptides while preserving labile post-translational modifications that facilitate their confident localization. Herein, we report a quantitative parallel reaction monitoring (PRM) method developed to monitor spatiotemporal changes in site-specific Ser5 phosphorylation of the CTD by cyclin-dependent kinase 7 (CDK7) using UVPD for sequence identification, phosphosite localization, and differentiation of phosphopeptide isomers. We capitalize on the series of phospho-retaining fragment ions produced by UVPD to create unique transition lists that are pivotal for distinguishing the array of phosphopeptides generated from the CTD.
Collapse
|
47
|
Marcelot A, Petitalot A, Ropars V, Le Du MH, Samson C, Dubois S, Hoffmann G, Miron S, Cuniasse P, Marquez JA, Thai R, Theillet FX, Zinn-Justin S. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res 2021; 49:3841-3855. [PMID: 33744941 PMCID: PMC8053085 DOI: 10.1093/nar/gkab184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ambre Petitalot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | | | - Guillaume Hoffmann
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Jose Antonio Marquez
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | | | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
48
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
49
|
Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL, Nelson IB, Walker MF, Kawakami K, Inoue A, Krogan NJ, Grunwald DJ, Hüttenhain R, Manglik A, Myers BR. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol 2021; 19:e3001191. [PMID: 33886552 PMCID: PMC8096101 DOI: 10.1371/journal.pbio.3001191] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Collapse
Affiliation(s)
- Corvin D. Arveseth
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John T. Happ
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Danielle S. Hedeen
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob L. Capener
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiahao Liang
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Sara L. Stubben
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Madison F. Walker
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David J. Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
50
|
Paulo JA, Schweppe DK. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics 2021; 21:e2000140. [PMID: 33455035 DOI: 10.1002/pmic.202000140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic protein phosphorylation modulates nearly every major biological process. Phosphorylation regulates protein activity, mediates cellular signal transduction, and manipulates cellular structure. Consequently, the dysregulation of kinase and phosphatase pathways has been linked to a multitude of diseases. Mass spectrometry-based proteomic techniques are increasingly used for the global interrogation of perturbations in phosphorylation-based cellular signaling. Strategies for studying phosphoproteomes require high-specificity enrichment, sensitive detection, and accurate localization of phosphorylation sites with advanced LC-MS/MS techniques and downstream informatics. Sample multiplexing with isobaric tags has also been integral to recent advancements in throughput and sensitivity for phosphoproteomic studies. Each of these facets of phosphoproteomics analysis present distinct challenges and thus opportunities for improvement and innovation. Here, we review current methodologies, explore persistent challenges, and discuss the outlook for isobaric tag-based quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Joao A Paulo
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|