1
|
Le YTH, Kim DW, Kang C, Bae GN, Park PM, Jung YW, Jang KW, Kang DI, Youn JS, Jeon KJ. Rethinking primary particulate matter: Integrating filterable and condensable particulate matter in measurement and analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178396. [PMID: 39793131 DOI: 10.1016/j.scitotenv.2025.178396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The current definition of primary particulate matter (PM) encompasses filterable PM (FPM) and condensable PM (CPM), which are evaluated using two distinct conventional measurement methods: cooling and dilution. While the cooling method exclusively considers the homogenous formation of CPM, the dilution method, closer to real-world conditions, neglects FPM characterization. To overcome this limitation, we propose a doubled-dilution system that enables the parallel characterization of both FPM and primary PM without diverting FPM from the CPM formation pathway. The doubled-dilution system has been investigated from a laboratory scale to a full-scale coal-fired power plant to facilitate simultaneous, real-time measurements of primary PM and FPM size distributions. Moreover, the formation rates of homogeneous and heterogeneous nucleation were compared. The evolution of the primary PM size revealed a bimodal distribution, and the filter-based mass concentration results demonstrated a pronounced preference for heterogeneous reactions (17.6 times higher than homogeneous nucleation). In particular, primary PM emissions were underestimated by up to 65.3 % when only homogeneous CPM formation was considered, underscoring the importance of including FPM during primary PM measurements. Considering these results, we advocate adopting the term "primary PM" over "CPM."
Collapse
Affiliation(s)
- Yen Thi-Hoang Le
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea
| | - Dong-Woo Kim
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Cheonwoong Kang
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Gi-Nam Bae
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Poong-Mo Park
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea
| | - Yong-Won Jung
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kee-Won Jang
- Air Pollution Engineering Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Dae-Il Kang
- Air Pollution Engineering Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jong-Sang Youn
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Ki-Joon Jeon
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Wang T, Wei J, Cheng Z, Luo M, Zou L, Zhang L, Zhang M, Li P. Plasmonic Nanocubes with a Controllable "Crescent Arc" Facet: Tunable Hotspot Engineering for Highly Reliable and Sensitive SERS Detection. Anal Chem 2024; 96:17453-17462. [PMID: 39418182 PMCID: PMC11525925 DOI: 10.1021/acs.analchem.4c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The fine control of the nanogap and morphology of metal nanoparticles (NPs) has always been an obstacle, hindering the development and application of surface-enhanced Raman scattering (SERS) quantitative detection. Here, Au/4-mercaptobenzoic acid@Ag@Au-Ag bimetal core-shell nanocubes (NCs) with a "crescent arc" facet (C-Au/4MBA@Ag NCs) as a highly reliable and sensitive surface-enhanced Raman scattering SERS substrate is proposed for the first time. The bifunctional internal standard (IS) molecules (4MBA) govern the morphology of metal shells to maintain cubic configuration and provide calibration for SERS signals' flotation. In parallel, the controllable curvature of the C-Au/4MBA@Ag NCs is directly modulated by adjusting the relative rates of the galvanic replacement and co-reduction reaction, which generates a controllable interparticle nanogap to offer large depositing spaces for analytes and improve authoritative SERS signals' enhancement. The proposed C-Au/4MBA@Ag NCs exhibit an enhancement factor of up to 4.8 × 1010 and contribute to the ultralow RSD (7.9%). These C-Au/4MBA@Ag NCs also enable the detection of hazardous pesticide residues such as methamidophos and thiram in herbal plants with a complex matrix, with an average detection accuracy of up to 96%. In summary, this study achieves a fine control strategy of the "crescent arc" surface for improving SERS performance and explores the practical application potential for accurate and sensitive Raman detection of hazardous substances.
Collapse
Affiliation(s)
- Ting Wang
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Pharmacy, Chengdu University of Traditional
Chinese Medicine, Chengdu 611137, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Centre
for Research and Development in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Jinchao Wei
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Centre
for Research and Development in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Zehua Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Centre
for Research and Development in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Mai Luo
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Centre
for Research and Development in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Liang Zou
- School
of Food and Biological Engineering, Chengdu
University, Chengdu 610106, China
| | - Lele Zhang
- School
of Food and Biological Engineering, Chengdu
University, Chengdu 610106, China
| | - Mei Zhang
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Pharmacy, Chengdu University of Traditional
Chinese Medicine, Chengdu 611137, China
| | - Peng Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Centre
for Research and Development in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
3
|
Jones RR, Miksch C, Kwon H, Pothoven C, Rusimova KR, Kamp M, Gong K, Zhang L, Batten T, Smith B, Silhanek AV, Fischer P, Wolverson D, Valev VK. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209282. [PMID: 36631958 DOI: 10.1002/adma.202209282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.
Collapse
Affiliation(s)
- Robin R Jones
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Cornelia Miksch
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Coosje Pothoven
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kristina R Rusimova
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Maarten Kamp
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Tim Batten
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Brian Smith
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Alejandro V Silhanek
- Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, University of Liége, Sart Tilman, B-4000, Belgium
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Wolverson
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
4
|
Wang N, Gan Z, Duan F, Chen H, Ma C, Ji J, Sun Z. Adhesive surface-enhanced Raman scattering Cu-Au nanoassembly for the sensitive analysis of particulate matter. J Environ Sci (China) 2023; 128:35-44. [PMID: 36801040 DOI: 10.1016/j.jes.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been used in atmospheric aerosol detection as it enables the high-resolution analysis of particulate matter. However, its use in the detection of historical samples without damaging the sampling membrane while achieving effective transfer and the high-sensitivity analysis of particulate matter from sample films remains challenging. In this study, a new type of SERS tape was developed, consisting of Au nanoparticles (NPs) on an adhesive double-sided Cu film (DCu). The enhanced electromagnetic field generated by the coupled resonance of the local surface plasmon resonances of AuNPs and DCu led to an enhanced SERS signal with an experimental enhancement factor of 107. The AuNPs were semi-embedded and distributed on the substrate, and the viscous DCu layer was exposed, enabling particle transfer. The substrates exhibited good uniformity and favorable reproducibility with relative standard deviations of 13.53% and 9.74% respectively, and the substrates could be stored for 180 days with no signs of signal weakening. The application of the substrates was demonstrated by the extraction and detection of malachite green and ammonium salt particulate matter. The results demonstrated that SERS substrates based on AuNPs and DCu are highly promising in real-world environmental particle monitoring and detection.
Collapse
Affiliation(s)
- Ning Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhiqiang Gan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chensheng Ma
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jie Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Liu J, Wang Z, Meng Y, Chen C, Chen Q, Wang Y, Dou S, Liu X, Lu N. Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes. Talanta 2023; 258:124408. [PMID: 36871516 DOI: 10.1016/j.talanta.2023.124408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Trace analysis has great promise in the fields of disease diagnosis and environment protection. Surface-enhanced Raman scattering (SERS) has wide range of utilization due to its reliable fingerprint detection. However, the sensitivity of SERS still needs to be enhanced. Raman scattering of target molecules around hotspots, the area with extremely strong electromagnetic field, can be highly amplified. Therefore, to increase the density of hotspots is one of the major approaches for enhancing the detection sensitivity of target molecules. In this paper, an ordered array of Ag nanocubes was assembled on a thiol modified silicon substrate as a SERS substrate, which provided high-density hotspots. The detection sensitivity is demonstrated by the limit of detection, which is down to 10-6 nM with Rhodamine 6G as probe molecule. The wide linear range (10-7-10-13 M) and low relative standard deviation (<6.48%) indicate the good reproducibility of the substrate. Furthermore, the substrate can be used for the detection of dye molecules in lake water. This method provides an approach for increasing hotspots of SERS substrate, which could be a promising method to achieve good reproducibility and high sensitivity.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ya'nan Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qiye Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuzhen Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Hwang CH, Lee S, Lee S, Kim H, Kang T, Lee D, Jeong KH. Highly Adsorptive Au-TiO 2 Nanocomposites for the SERS Face Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54550-54557. [PMID: 36448483 PMCID: PMC9718102 DOI: 10.1021/acsami.2c16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Human respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols.
Collapse
Affiliation(s)
- Charles
S. H. Hwang
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Sangyeon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sejin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| | - Hanjin Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Taejoon Kang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Doheon Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Hun Jeong
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- KAIST
Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
7
|
Lv X, Li S, Yang Q, Zhang S, Su J, Cheng SB, Lai Y, Chen J, Zhan J. Robust, reliable and quantitative sensing of aqueous arsenic species by Surface-enhanced Raman Spectroscopy: The crucial role of surface silver ions for good analytical practice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121600. [PMID: 35816865 DOI: 10.1016/j.saa.2022.121600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Arsenic speciation analysis is important for pollution and health risk assessment. Surface-enhanced Raman Spectroscopy (SERS) is supposed to be a promising detection technology for arsenic species owing to the unique fingerprints. However, further application of SERS is hampered by its poor repeatability. Herein, the role of surface silver ions on colloidal Ag was revealed in SERS analysis of arsenic species. Arsenic species were adsorbed on Ag nanoparticles (Ag NPs) driven by surface silver ions and were simultaneously sensed by the SERS "hot spots" generated from the aggregation of Ag NPs. So, the inconsistent SERS activities of Ag NPs synthesized from different batches can be significantly improved by modifying external silver ions onto Ag NPs (AgNPs@Ag+), Specific binding affinity of surface silver ions to arsenic species generated higher sensitivity (detection limit, 4.0 × 10-11 mol L-1 for arsenite, 8.0 × 10-11 mol L-1 for arsenate), wider linear range, faster response, cleaner spectra background and better reproducibility. Batch-to-batch reproducibility was significantly improved with a variation below 3.1%. The method was also demonstrated with drinking and environmental water with adequate recovery and high interference resistance. Our findings displayed good analytical practice of the surface silver ions derived SERS method and its great potential in the rapid detection of hazardous materials.
Collapse
Affiliation(s)
- Xiaochen Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shaoying Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
9
|
Yoo H, Lee H, Park C, Shin D, Ro CU. Novel Single-Particle Analytical Technique for Submicron Atmospheric Aerosols: Combined Use of Dark-Field Scattering and Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:13028-13035. [DOI: 10.1021/acs.analchem.2c01696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanjin Yoo
- Department of Chemistry, Inha University, Incheon 22212, South Korea
- Particle Pollution Research and Management Center, Incheon 21999, South Korea
| | - Hayeong Lee
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Changmin Park
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Dongha Shin
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon 22212, South Korea
- Particle Pollution Research and Management Center, Incheon 21999, South Korea
| |
Collapse
|
10
|
Zhengkun W, Zhinan Y, Ning W, Yong Z, Jie Z. Raman enhancement mechanism and experiments of cavity-enhanced AgNP decorated tapered fiber sensor. OPTICS LETTERS 2021; 46:4300-4303. [PMID: 34469999 DOI: 10.1364/ol.435839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
A Raman sensor based on a cavity-enhanced Ag nanoparticle (AgNP) decorated tapered fiber is proposed. Its Raman enhancements are mainly caused by the localized surface plasmon resonance effect of AgNPs decorated on the tapered optical fiber surface and the further reflective laser excitation induced by the capillary-based reflective cavity. We theoretically investigate the backward Stokes power conversion efficiency and cavity enhancement factor of the sensor. The calculated relationship between the cavity enhancement factor ξ and distance L from the tip to reflective rod is also discussed. Subsequently, the proving experiments were carried out for a tapered fiber surface-enhanced Raman scattering (SERS) probe and cavity-enhanced metal decorated tapered fiber Raman sensors. The analytical enhancement factor is 5.51×104 for the tapered fiber SERS probe. Moreover, the predicted curves of the theoretical model are close to the experimental values. This Letter provides a possible way to rigorously quantify the complete coupling efficiency for tapered fiber SERS probes, as well as cavity enhancement factors of cavity-enhanced Raman sensors.
Collapse
|
11
|
Chen H, Duan F, Du J, Yin R, Zhu L, Dong J, He K, Sun Z, Wang S. Surface-enhanced Raman scattering for mixing state characterization of individual fine particles during a haze episode in Beijing, China. J Environ Sci (China) 2021; 104:216-224. [PMID: 33985724 DOI: 10.1016/j.jes.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The nondestructive characterization of the mixing state of individual fine particles using the traditional single particle analysis technique remains a challenge. In this study, fine particles were collected during haze events under different pollution levels from September 5 to 11 2017 in Beijing, China. A nondestructive surface-enhanced Raman scattering (SERS) technique was employed to investigate the morphology, chemical composition, and mixing state of the multiple components in the individual fine particles. Optical image and SERS spectral analysis results show that soot existing in the form of opaque material was predominant during clear periods (PM2.5 ≤ 75 µg/m3). During polluted periods (PM2.5 > 75 µg/m3), opaque particles mixed with transparent particles (nitrates and sulfates) were generally observed. Direct classical least squares analysis further identified the relative abundances of the three major components of the single particles: soot (69.18%), nitrates (28.71%), and sulfates (2.11%). A negative correlation was observed between the abundance of soot and the mass concentration of PM2.5. Furthermore, mapping analysis revealed that on hazy days, PM2.5 existed as a core-shell structure with soot surrounded by nitrates and sulfates. This mixing state analysis method for individual PM2.5 particles provides information regarding chemical composition and haze formation mechanisms, and has the potential to facilitate the formulation of haze prevention and control policies.
Collapse
Affiliation(s)
- Hui Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ranhao Yin
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinlu Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Suhua Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
12
|
Cheng H, Dong X, Yang Y, Feng Y, Wang T, Tahir MA, Zhang L, Fu H. Au nanoring arrays as surface enhanced Raman spectroscopy substrate for chemical component study of individual atmospheric aerosol particle. J Environ Sci (China) 2021; 100:11-17. [PMID: 33279023 DOI: 10.1016/j.jes.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 06/12/2023]
Abstract
Monolayer-ordered gold nanoring arrays were prepared by ion-sputtering method and used as surface enhanced Raman spectroscopy (SERS) substrates to test the individual atmospheric aerosols particle. Compared to other methods used for testing atmospheric aerosols particles, the collection and subsequent detection in our work is performed directly on the gold nanoring SERS substrate without any treatment of the analyte. The SERS performance can be tuned by changing the depth of the gold nanoring cavity as originating from coupling of dipolar modes at the inner and outer surfaces of the nanorings. The electric field exhibits uniform enhancement and polarization in the ordered Au nanoring substrate, which can improve the accuracy for detecting atmospheric aerosol particles. Combined with Raman mapping, the information about chemical composition of individual atmospheric aerosols particle and distribution of specific components can be presented visually. The results show the potential of SERS in enabling improved analysis of aerosol particle chemical composition, mixing state, and other related physicochemical properties.
Collapse
Affiliation(s)
- Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Xu Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yiqing Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Gao MY, Jiang HQ, Han FY, Deng HX, Hu JM, Shen AG. A laser metallurgy route for the batch preparation of mm-scale 3D silver/graphite heteronanoclusters in air. NANOSCALE 2020; 12:24054-24061. [PMID: 33244546 DOI: 10.1039/d0nr06806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a batch preparation of mm-scale 3D Ag hetero-nanoclusters which exhibit an excellent surface plasmon resonance ability via facile laser metallurgy. Under laser irradiation, the porous AgI-based coordination network crystals were instantly converted into 3D graphite-encapsulated Ag hetero-nanoclusters with uniform sizes and gaps in several seconds. The obtained hetero-nanoclusters exhibited superior 3D confocal laser energy utilization compared with the other 0D, 1D and 2D SERS substrates, solving the bottleneck caused by laser focusing deviation in the SERS active depth. The mass-produced SERS devices were ultra-sensitive for the detection of life and industrial organic pollutants in terms of low detection and enriched capacity.
Collapse
Affiliation(s)
- Meng-Yue Gao
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | |
Collapse
|
14
|
Chen S, Liu C, Liu Y, Liu Q, Lu M, Bi S, Jing Z, Yu Q, Peng W. Label-Free Near-Infrared Plasmonic Sensing Technique for DNA Detection at Ultralow Concentrations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000763. [PMID: 33304743 PMCID: PMC7709993 DOI: 10.1002/advs.202000763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Biomolecular detection at a low concentration is usually the most important criterion for biological measurement and early stage disease diagnosis. In this paper, a highly sensitive nanoplasmonic biosensing approach is demonstrated by achieving near-infrared plasmonic excitation on a continuous gold-coated nanotriangular array. Near-infrared incident light at a small incident angle excites surface plasmon resonance with much higher spectral sensitivity compared with traditional configuration, due to its greater interactive volume and the stronger electric field intensity. By introducing sharp nanotriangular metallic tips, intense localization of plasmonic near-fields is realized to enhance the molecular perception ability on sensing surface. This approach with an enhanced sensitivity (42103.8 nm per RIU) and a high figure of merit (367.812) achieves a direct assay of ssDNA at nanomolar level, which is a further step in label-free ultrasensitive sensing technique. Considerable improvement is recorded in the detection limit of ssDNA as 1.2 × 10-18 m based on the coupling effect between nanotriangles and gold nanoparticles. This work combines high bulk- and surface-sensitivities, providing a simple way toward label-free ultralow-concentration biomolecular detection.
Collapse
Affiliation(s)
- Shimeng Chen
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Chuan Liu
- State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalian116024China
| | - Yun Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qiang Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Mengdi Lu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Sheng Bi
- Key Laboratory for Precision and Non‐traditional MachiningTechnology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Zhenguo Jing
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qingxu Yu
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Wei Peng
- School of PhysicsDalian University of TechnologyDalian116024China
| |
Collapse
|
15
|
Zhang WC, Luoshan MD, Wang PF, Huang CY, Wang QQ, Ding SJ, Zhou L. Growth of Porous Ag@AuCu Trimetal Nanoplates Assisted by Self-Assembly. NANOMATERIALS 2020; 10:nano10112207. [PMID: 33167463 PMCID: PMC7694533 DOI: 10.3390/nano10112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/03/2023]
Abstract
The self-assembly process of metal nanoparticles has aroused wide attention due to its low cost and simplicity. However, most of the recently reported self-assembly systems only involve two or fewer metals. Herein, we first report a successful synthesis of self-assembled Ag@AuCu trimetal nanoplates in aqueous solution. The building blocks of multibranched AuCu alloy nanocrystals were first synthesized by a chemical reduction method. The growth of Ag onto the AuCu nanocrystals in the presence of hexadecyltrimethylammonium chloride (CTAC) induces a self-assembly process and formation of Ag@AuCu trimetal nanoplates. These nanoplates with an average side length of over 2 μm show a porous morphology and a very clear boundary with the branches of the as-prepared AuCu alloy nanocrystals extending out. The shape and density of the Ag@AuCu trimetal nanoplates can be controlled by changing the reaction time and the concentration of silver nitrate. The as-assembled Ag@AuCu nanoplates are expected to have the potential for wide-ranging applications in surface-enhanced Raman scattering (SERS) and catalysis owing to their unique structures.
Collapse
Affiliation(s)
- Wan-Cheng Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Meng-Dai Luoshan
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Peng-Fei Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Chu-Yun Huang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Qu-Quan Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
- Correspondence: (S.-J.D.); (L.Z.)
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
- Correspondence: (S.-J.D.); (L.Z.)
| |
Collapse
|
16
|
Zhou J, Chu W, Lu D, Liu J, Mao X, Na X, Zhang S, Qian Y. A novel 3D printed negative pressure small sampling system for bubble-free liquid core waveguide enhanced Raman spectroscopy. Talanta 2020; 216:120942. [DOI: 10.1016/j.talanta.2020.120942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
|