1
|
Zhan J, Wang S, Li X, Zhang J. Molecular engineering of functional DNA molecules toward point-of-care diagnostic devices. Chem Commun (Camb) 2025; 61:4316-4338. [PMID: 39998439 DOI: 10.1039/d5cc00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The pursuit of rapid, sensitive, and specific diagnostic methodologies is imperative across diverse applications, including the detection of pathogens and disease biomarkers, food safety testing and environmental monitoring. Point-of-care testing (POCT) is characterized by its portability, ease of use, rapidity, and affordability, emerging as an attractive alternative for traditional diagnostics. Over recent years, the incorporation of functional DNA (fDNA) into POC diagnostic devices has emerged as a groundbreaking advancement, significantly enhancing sensitivity, specificity, and user-friendliness. In this review, we explore the innovative applications of fDNA in POC devices, highlighting its potential to revolutionize diagnostics by providing rapid, portable, and precise solutions. We discuss the unique advantages of fDNA, including its stability in complex biological matrices and its ability to recognize a wide range of targets. Furthermore, we explore the potential synergy between fDNA and cutting-edge technologies, such as nanotechnology and artificial intelligence (AI), to forge a path toward more personalized and accessible healthcare solutions. Despite significant progress, challenges remain in translating these innovations from the bench to the clinic. This review aims to provide a comprehensive overview of the current status of fDNA-based POCT devices and future directions for their development, emphasizing their critical role in meeting the global demand for accessible, efficient, and precise diagnostic solutions.
Collapse
Affiliation(s)
- Jiayin Zhan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Qu X, Ma Z, Wu X, Lv L. Recent Advances of Processing and Detection Techniques on Crustacean Allergens: A Review. Foods 2025; 14:285. [PMID: 39856951 PMCID: PMC11764718 DOI: 10.3390/foods14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Crustaceans are delicious and highly nutritional food. However, crustaceans are one of the main food allergens, causing severe public health issues. Thus, it is important to increase the knowledge on crustacean allergens and protect the health of sensitized individuals. This review systematically summarizes the basic information on major crustacean allergens' characteristics, structures, and function. It also summarizes the latest evaluation and detection methods of crustacean allergens. In addition, various processing techniques to alleviate crustacean's allergenicity are discussed and compared. A host of multiplex approaches as innovative research is attractive to decrease crustacean allergenicity. In addition, the strategies to address the risk of crustacean allergens are also reviewed and discussed in detail. This review provides updates and new findings on crustacean allergens, which helps better understand crustacean allergy and provide novel strategies for its prevention and management.
Collapse
Affiliation(s)
- Xin Qu
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road Shibei District, Qingdao 266033, China;
| | - Zekun Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
3
|
Wang YY, Chen PW, Chen YH, Yeh MY. Research on advanced photoresponsive azobenzene hydrogels with push-pull electronic effects: a breakthrough in photoswitchable adhesive technologies. MATERIALS HORIZONS 2025; 12:227-237. [PMID: 39453280 DOI: 10.1039/d4mh01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Smart materials that adapt to various stimuli, such as light, hold immense potential across many fields. Photoresponsive molecules like azobenzenes, which undergo E-Z photoisomerization when exposed to light, are particularly valuable for applications in smart coatings, light-controlled adhesives, and photoresists in semiconductors and integrated circuits. Despite advances in using azobenzene moieties for stimuli-responsive adhesives, the role of push-pull electronic effects in regulating reversible adhesion remains largely unexplored. In this study, we investigate for the first time photo-controlled hydrogel adhesives of azobenzene with different push-pull electronic groups. We synthesized the monomers 4-methoxyazobenzene acrylate (ABOMe), azobenzene acrylate (ABH), and 4-nitroazobenzene acrylate (ABNO2), and examined their effects on reversible adhesion properties. By incorporating these azobenzene monomers into acrylamide, dialdehyde-functionalized poly(ethylene glycol), and [3-(methacryloylamino)propyl]-trimethylammonium chloride, we prepared ABOMe, ABH, and ABNO2 ionic hydrogels. Our research findings demonstrate that only the ABOMe ionic hydrogel exhibits reversible adhesion. This is due to its distinct transition state mechanism compared to ABH and ABNO2, which enables efficient E-Z photoisomerization and drives its reversible adhesion properties. Notably, the ABOMe ionic hydrogel reveals an outstanding skin adhesion strength of 360.7 ± 10.1 kPa, surpassing values reported in current literature. This exceptional adhesion is attributed to Schiff base reactions, monopole-quadrupole interactions, π-π interactions, and hydrogen bonding with skin amino acids. Additionally, the ABOMe hydrogel exhibits excellent reversible self-healing capabilities, significantly enhancing its potential for injectable medical applications. This research underscores the importance of integrating multifunctional properties into a single system, opening new possibilities for innovative and durable adhesive materials.
Collapse
Affiliation(s)
- Yun-Ying Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Peng-Wen Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Yu-Hsin Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| |
Collapse
|
4
|
Wu W, Jiang X, Zeng Q, Zou H, Deng C. Facile and green synthesis of Au nanoparticles decorated Epigallocatechin-3-Gallate nanospheres with enhanced performance in stability, photothermal conversion and nanozymatic activity. BIOMATERIALS ADVANCES 2025; 166:214050. [PMID: 39317045 DOI: 10.1016/j.bioadv.2024.214050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
In this study, epigallocatechin-3-gallate nanospheres (EGCG NSs) are employed as an innovative alternative to traditional reducing agents for the in-situ growth of AuNPs on the EGCG NS surface to produce the Au nanoparticles decorated EGCG nanospheres (EGCG NS@AuNPs). This eco-friendly approach avoids toxic chemicals and simplifies the synthesis process, enhancing biocompatibility and functional properties of the resulting EGCG NS@AuNPs nanocomposite. The nanocomposite exhibits remarkable stability, photothermal properties, and peroxidase-like enzymatic activity. Taking advantage of the enhanced photothermal properties, the application of EGCG NS@AuNPs in the antibacterial field was investigated, and the antibacterial activity was greatly improved against both Gram-negative and Gram-positive bacteria comparing to bare AuNPs or EGCG NS. Additionally, based on the excellent enzymatic activity, the sensing application of EGCG NS@AuNPs was explored by developing a colorimetric method for detecting ascorbic acid (AA). A remarkably low detection limit of 0.076 μM was achieved. This method has been successfully applied to measure the AA content in vitamin C tablets, demonstrating the practicality and accuracy of this approach. Therefore, the synthesis for EGCG NS@AuNPs is not only rapid, and cost-effective, but also eco-friendly and not harmful to biological systems, which is potential in biosensing, clinical diagnosis, and therapeutics. Future research could explore further applications of EGCG NS@AuNPs in biomedicine field, revealing even more of its remarkable potential.
Collapse
Affiliation(s)
- Wuming Wu
- School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xiaolian Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huiyu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China..
| |
Collapse
|
5
|
Yu ZJ, Deng DH, Liang SR, Huang YL, Yi XY. Overview of Gas-Generating-Reaction-Based Immunoassays. BIOSENSORS 2024; 14:580. [PMID: 39727844 PMCID: PMC11726966 DOI: 10.3390/bios14120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Zhao-Jiang Yu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - De-Hua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Si-Rui Liang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Ya-Liang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Xin-Yao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
6
|
Sui JH, Wei YY, Ren XY, Xu ZR. Pressure and multicolor dual-mode detection of mucin 1 based on the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124352. [PMID: 38678841 DOI: 10.1016/j.saa.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.
Collapse
Affiliation(s)
- Jin-Hong Sui
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yun-Yun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xiu-Yan Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
7
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
8
|
Yin S, Zhao Y, Chen F, Zhong Z, Lu Q, Li H, Zhang Y. DNA Sensor-Based Strategy to Visualize the TRPM7 mRNA-Mg 2+ Signaling Pathway in Cancer Cells. Anal Chem 2023; 95:18107-18113. [PMID: 38019640 DOI: 10.1021/acs.analchem.3c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Technological advances and methodological innovations in cell signaling pathway analysis will facilitate progress in understanding biological processes, intervening in diseases, and screening drugs. In this work, an elaborate strategy for visualizing and monitoring the transient receptor potential melastatin 7 (TRPM7)-Mg2+ signaling pathway in living cells was constructed through the logical analysis of upstream mRNA and downstream molecules by two individual DNA sensors. The DNA sensors are constructed by modifying the dye-labeled DNA sequences on the surface of gold nanoparticles. By hybridizing with upstream mRNA, Cy5-modified DNA sensor 1 can detect and silence it simultaneously, outputting a red fluorescence signal. When the upstream mRNA is silenced, the concentration of downstream molecules of Mg2+ will be affected and down-regulated. The FAM-modified DNA sensor 2 detects this change and emits a green fluorescence as a signal. Therefore, the dynamic information on TRPM7 mRNA and the Mg2+-mediated signaling pathway can be successfully obtained by fluorescence imaging methods. Furthermore, the TRPM7 mRNA-Mg2+ signaling pathway also affects cell activity and migratory function through cell scratching and other experiments. More importantly, the proposed sensor also shows potential for screening signaling pathway inhibitors. Our work provides a simple and general strategy for the visualization of signaling pathways, which helps to understand the changes in the physiological activities of cancer cells and the causes of carcinogenesis and is crucial for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Shuhang Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yang Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zijie Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University, Changsha, Hunan 410022, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Chen Y, Huang Y, Chen S, Gao L, Zhang S, Dai H, Zeng B. A pressure-colorimetric multimode system with photothermal activated multiple rolling signal amplification for ovarian cancer biomarker detection. Talanta 2023; 265:124876. [PMID: 37390673 DOI: 10.1016/j.talanta.2023.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Utilizing the photothermal effect to activate enzyme activity, realize signal conversion and amplification show promising prospects in biosensing. Herein, a pressure-colorimetric multi-mode bio-sensor was proposed through the multiple rolling signal amplification strategy of photothermal control. Under NIR light radiation, the Nb2C MXene labeled photothermal probe caused notable temperature elevation on a multi-functional signal conversion paper (MSCP), leading to decomposition of thermal responsive element and in-situ formation of Nb2C MXene/Ag-Sx hybrid. The generation of Nb2C MXene/Ag-Sx hybrid accompanied with valid color change from pale yellow to dark brown on MSCP. Moreover, the Ag-Sx as a signal amplification element enhanced the NIR light absorption to further improve the photothermal effect of Nb2C MXene/Ag-Sx thereby induce cyclic in situ production of Nb2C MXene/Ag-Sx hybrid with rolling enhanced photothermal effect. Subsequently, the continuously enhanced photothermal effect rolling activated catalase-like activity of Nb2C MXene/Ag-Sx, which accelerated the decomposition of H2O2 and promoted the pressure elevation. Therefore, the rolling-enhanced photothermal effect and rolling activated catalase-like activity of Nb2C MXene/Ag-Sx considerately amplified the pressure and color change. Making full use of multi-signal readout conversion and rolling signal amplification, accurate results can be obtained in a short time, whether in the laboratory or in the patient's homes.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Baoshan Zeng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
10
|
Yang L, Guo H, Hou T, Zhang J, Li F. Metal-mediated Fe 3O 4@polydopamine-aptamer capture nanoprobe coupling multifunctional MXene@Au@Pt nanozyme for direct and portable photothermal analysis of circulating breast cancer cells. Biosens Bioelectron 2023; 234:115346. [PMID: 37148800 DOI: 10.1016/j.bios.2023.115346] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Breast cancer (BC) is the most common cancer in the world and circulating tumor cells (CTCs) are reliable biomarkers for early breast cancer diagnosis in a non-invasive manner. However, effective isolation and sensitive detection of BC-CTCs by portable devices in human blood samples are extremely challenging. Herein, we proposed a highly sensitive and portable photothermal cytosensor for direct capture and quantification of BC-CTCs. To achieve efficient isolation of BC-CTCs, aptamer functionalized Fe3O4@PDA nanoprobe was facilely prepared through Ca2+-mediated DNA adsorption. To further detect the captured BC-CTCs with high sensitivity, multifunctional two-dimensional Ti3C2@Au@Pt nanozyme was synthesized, which not only possessed superior photothermal effect but also exhibited high peroxidase-like activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal characteristic, combining with Ti3C2@Au@Pt to synergistically amplify the temperature signal. Moreover, numerous Ti3C2@Au@Pt nanocomposites would be selectively attained on the BC-CTCs surface through multi-aptamer recognition and binding strategy, which further enhanced the specificity and facilitated signal amplification. Therefore, direct separation and highly sensitive detection of BC-CTCs was successfully achieved in human blood samples. More significantly, the controlled release of the captured BC-CTCs without affecting cell viability could be straightforwardly realized by a simple strand displacement reaction. Thus, with the distinct features of portability, high sensitivity, and easy operation, the current method holds great promise for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
11
|
Lu W, Chen J, Guo Z, Ma Y, Gu Z, Liu Z. Targeted degradation of ABCG2 for reversing multidrug resistance by hypervalent bispecific gold nanoparticle-anchored aptamer chimeras. Chem Commun (Camb) 2023; 59:3118-3121. [PMID: 36807620 DOI: 10.1039/d3cc00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hypervalent bispecific gold nanoparticle-anchored aptamer chimeras (AuNP-APTACs) were designed as a new tool of lysosome-targeting chimeras (LYTACs) for efficient degradation of the ATP-binding cassette, subfamily G, isoform 2 protein (ABCG2) to reverse multidrug resistance (MDR) of cancer cells. The AuNP-APTACs could effectively increase the accumulation of drugs in drug-resistant cancer cells and provide comparable efficacy to small-molecule inhibitors. Thus, this new strategy provides a new way to reverse MDR, holding great promise in cancer therapy.
Collapse
Affiliation(s)
- Weihua Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
12
|
Zhang S, Yao L, Lv X, Lu M, Gao F, Zhang L, Zhao S, Hu S. Engineered Cancer Cells as Signal Probes for Fluorescence-Assisted Digital Counting Analysis. Anal Chem 2023; 95:4227-4234. [PMID: 36795965 DOI: 10.1021/acs.analchem.2c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fluorescence-assisted digital counting analysis allowed sensitive quantification of targets by measuring individual fluorescent labels. However, traditional fluorescent labels suffered from low brightness, small size, and sophisticated preparation procedures. Herein, engineering fluorescent dye-stained cancer cells with magnetic nanoparticles were proposed to construct single-cell probes for fluorescence-assisted digital counting analysis by quantifying the target-dependent binding or cleaving events. Various engineering strategies of cancer cells including biological recognition and chemical modification were developed for rationally designing single-cell probes. Introduction of suitable recognition elements into single-cell probes allowed digital quantification of each target-dependent event via counting the colored single-cell probes in the representative image taken using a confocal microscope. The reliability of the proposed digital counting strategy was corroborated by traditional optical microscopy- and flow cytometry-dependent counting technologies. The advantages of single-cell probes, including high brightness, big size, ease of preparation, and magnetic separation, contributed to the sensitive and selective analysis of targets of interest. As proof-to-concept assays, indirect analysis of exonuclease III (Exo III) activity, as well as direct quantitation of cancer cells, were investigated, and the potential in biological sample analysis was also assessed. This sensing strategy will open a new avenue for the development of biosensors.
Collapse
Affiliation(s)
- Shengkai Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Lijia Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaofei Lv
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Meijun Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
13
|
Hu S, Huang L, Zhou L, Wu T, Zhao S, Zhang L. Single-Excitation Triple-Emission Down-/Up-Conversion Nanoassemblies for Tumor Microenvironment-Enhanced Ratiometric NIR-II Fluorescence Imaging and Chemo-/Photodynamic Combination Therapy. Anal Chem 2023; 95:3830-3839. [PMID: 36706236 DOI: 10.1021/acs.analchem.2c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor microenvironment-mediated ratiometric second near-infrared (NIR-II) fluorescence imaging and photodynamic therapy contribute to accurate diagnosis and highly efficient therapy of deep tumors. However, it is challenging to integrate these functions into one nanodrug due to the difficulty in preparing triple-emission nanoprobes. In this work, single-excitation triple-emission (wavelength at 660, 1060, and 1550 nm) down-/up-conversion nanoassemblies were prepared by conjugating dual-ligands-stabilized gold nanoclusters (cgAuNCs) into down-/up-conversion nanoparticles (D/UCNPs), which simultaneously realized ratiometric NIR-II fluorescence imaging and chemo-/photodynamic combination therapy toward tumors upon exposure to an 808 nm laser. The presence of dual ligands endowed cgAuNCs with an enhanced NIR-II fluorescence response to endogenous glutathione, allowing in situ ratiometric NIR-II fluorescence imaging of tumors using the prepared nanoassemblies. Additionally, the stabilizing ligand cyclodextrin of cgAuNCs facilitated the loading of the antitumor drug doxorubicin, and D/UCNPs could be modified with the photosensitizer methylene blue. Such a spatially separated functionalization method enabled chemo-/photodynamic combination therapy. This study provides new insights into the design of multifunctional nanoplatforms for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liuyan Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Tingchan Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| |
Collapse
|
14
|
Zhu Y, Fang X, Lv X, Lu M, Xu H, Hu S, Zhao S, Ye F. A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal-Organic Framework-Based Nanozymes. BIOSENSORS 2023; 13:225. [PMID: 36831991 PMCID: PMC9954218 DOI: 10.3390/bios13020225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
A typical colorimetric sandwich-type sensor relies on dual antibodies/aptamers to specifically visualize the targets. The requirement of dual antibodies/aptamers and low signal intensity inevitably increases the design difficulty and compromises the sensing sensitivity. In this work, a novel sandwich-type aptasensor was developed using single aptamer-functionalized magnetic nanoparticles as a specific recognition unit to target cancer cells and a bimetallic metal-organic frameworks (MOFs)-based nanozymes as a colorimetric signal amplification unit. The well-defined crystalline structure of UIO-66 MOFs enabled the introduction of Fe/Zr bimetal nodes, which possessed integrated properties of the peroxidase-like nanozyme activity and direct coordinately binding to the cell surface. Such a novel construction strategy of sandwich-type aptasensors achieved simple, sensitive, and specific detection of the target cancer cells, which will inspire the development of biosensors.
Collapse
Affiliation(s)
- Yuhui Zhu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xueting Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofei Lv
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Meijun Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hui Xu
- Nanxian Inspection and Testing Center of Yiyang City in Hunan Province, Yiyang 413299, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
15
|
Yuan Y, He Y, Pei D, Tong L, Hu S, Liu L, Yi X, Wang J. Urease-Functionalized Near-Infrared Light-Responsive Gold Nanoflowers for Rapid Detection of Urea by a Portable Pressure Meter. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Yang L, Guo H, Hou T, An B, Li F. Portable multi-amplified temperature sensing for tumor exosomes based on MnO2/IR780 nanozyme with high photothermal effect and oxidase-like activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Chen P, He Y, Liu T, Li F, Huang K, Tang D, Jiang P, Wang S, Zhou J, Huang J, Xie Y, Wei Y, Chen J, Hu W, Ying B. Homogeneous two-dimensional visual and fluorescence analysis of circulating tumor cells in clinical samples via steric hindrance regulated enzymes recognition cleavage and elongation. Biosens Bioelectron 2022; 202:114009. [DOI: 10.1016/j.bios.2022.114009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
|
18
|
He K, Xing S, Shen Y, Jin C. A flexible optical gas pressure sensor as the signal readout for point-of-care immunoassay. Analyst 2022; 147:5428-5436. [DOI: 10.1039/d2an01305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inspired by the concept of pneumatic micro/nanoscale surface morphing, an optical flexible gas pressure immunosensor constructed with an optical Ag/PDMS BGPS and a SiO2/Pt immunocomplex induced gas-generated reaction element for the sensitive detection of AFP was proposed.
Collapse
Affiliation(s)
- Kai He
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shan Xing
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongjun Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Zhang D, Jiang N, Li P, Zhang Y, Sun S, Mao J, Liu S, Wei W. Detection of monoamine oxidase B using dark-field light scattering imaging and colorimetry. Chem Commun (Camb) 2022; 58:12329-12332. [DOI: 10.1039/d2cc05139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of MAO-B using dark-field light scattering imaging and colorimetry based on localized surface plasmon resonance induced by silver deposited gold nanostars.
Collapse
Affiliation(s)
- Duoduo Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Nan Jiang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Yusheng Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
20
|
He L, He F, Feng Y, Wang X, Li Y, Tian Y, Gao A, Zhang P, Qi X, Luo Z, Duan Y. Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy. Biosens Bioelectron 2021; 194:113599. [PMID: 34521011 DOI: 10.1016/j.bios.2021.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Inadequate sensitivity and side-effect are the main challenges to develop cytosensors combining with therapeutic potential simultaneously for cancer diagnosis and treatment. Herein, localized surface plasma resonance (LSPR) based on hybridized nanolayer modified Ω-shaped fiber-optic (HN/Ω-FO) was developed to integrate cytosensor and plasmonic photothermal treatment (PPT). On one hand, hybridized nanolayers improve the coverage of nanoparticles and refractive index sensitivity (RIS). Moreover, the hybridized nanoploymers of gold nanorods/gold nanoparticles (AuNRs/AuNPs) also result in intense enhancement in electronic field intensity (I). On the other hand, Ω-shaped fiber-optic (Ω-FO) led to strong bending loss in its bending part. To be specific, a majority of light escaped from fiber will interact with HN. Thus, HN/Ω-FO synergistically enhances the plasmonic, which achieved the goal of ultrasensitive cytosensor and highly-efficient plasmonic photothermal treatment (PPT). The proposed cytosensor exhibits ultrasensitivity for detection of cancer cells with a low limit of detection down to 2.6 cells/mL was realized just in 30 min. HN/Ω-FO-based LSPR exhibits unique characteristics of highly efficient, localized, and geometry-dependent heat distribution, which makes it suitable for PPT to only kill the cancer cells specifically on the surface or surrounding fiber-optic (FO) surface. Thus, HN/Ω-FO provides a new approach to couple cytosensor with PPT, indicating its great potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Lu He
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Fan He
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yanting Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xu Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Aihua Gao
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Pei Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xinyuan Qi
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| |
Collapse
|
21
|
Huang L, Zhang J, Pang L, Hu S, Zhang L, Zhao S. Reversible assembly-disassembly of plasmonic spherical nucleic acids enabling temperature-self-controllable and biomarker-activatable photothermal effects. Chem Commun (Camb) 2021; 57:11617-11620. [PMID: 34643633 DOI: 10.1039/d1cc04792b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the photothermal heating of plasmonic spherical nucleic acids (pSNAs) depends on the self-assembly level and melting temperature (Tm), a temperature-self-controllable and biomarker-activatable photothermal effect in vivo was thus achieved using the Tm-dependent assembly-disassembly of pSNAs.
Collapse
Affiliation(s)
- Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Jinling Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Lifang Pang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
22
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Liu S, Lu S, Sun S, Hai J, Meng G, Wang B. NIR II Light-Response Au Nanoframes: Amplification of a Pressure- and Temperature-Sensing Strategy for Portable Detection and Photothermal Therapy of Cancer Cells. Anal Chem 2021; 93:14307-14316. [PMID: 34641676 DOI: 10.1021/acs.analchem.1c03486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative detection of cancer cells using portable devices is promising for the development of simple, fast, and point-of-care cancer diagnostic techniques. However, how to further amplify the detection signal to improve the sensitivity and accuracy of detecting cancer cells by portable devices remains a challenge. To solve the problem, we, for the first time, synthesized folic-acid-conjugated Au nanoframes (FA-Au NFs) with amplification of pressure and temperature signals for highly sensitive and accurate detection of cancer cells by portable pressure meters and thermometers. The resulting Au NFs exhibit excellent near-infrared (NIR) photothermal performance and catalase activity, which can promote the decomposition of NH4HCO3 and H2O2 to generate corresponding gases (CO2, NH3, and O2), thereby synergistically amplifying pressure signals in a closed reaction vessel. At the same time, Au NFs with excellent peroxidase-like activity can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal effect, thereby cooperating with Au NFs to amplify the photothermal signal. In the presence of cancer cells with overexpressing folate receptors (FRs), the molecular recognition signals between FA and FR can be converted into amplified pressure and temperature signals, which can be easily read by portable pressure meters and thermometers, respectively. The detection limits for cancer cells using pressure meters and thermometers are 6 and 5 cells/mL, respectively, which are better than other reported methods. Moreover, such Au NFs can improve tumor hypoxia by catalyzing the decomposition of H2O2 to produce O2 and perform photothermal therapy of cancer. Together, our work provides new insight into the application of Au NFs to develop a dual-signal sensing platform with amplification of pressure and temperature signals for portable and ultrasensitive detection of cancer cells as well as personalized cancer therapy.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Liu S, Chai J, Sun S, Zhang L, Yang J, Fu X, Hai J, Jing YH, Wang B. Site-Selective Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II Light-Driven O 2- and O 2•--Evolving Synergistic Photothermal Therapy against Deep Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46451-46463. [PMID: 34570459 DOI: 10.1021/acsami.1c16999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven endogenous water oxidation has been considered as an attractive and desirable way to obtain O2 and reactive oxygen species (ROS) in the hypoxic tumor microenvironment. However, the use of a second near-infrared (NIR-II) light to achieve endogenous H2O oxidation to alleviate tumor hypoxia and realize deep hypoxic tumor phototherapy is still a challenge. Herein, novel plasmonic Ag-AgCl@Au core-shell nanomushrooms (NMs) were synthesized by the selective photodeposition of plasmonic Au at the bulge sites of the Ag-AgCl nanocubes (NCs) under visible light irradiation. Upon NIR-II light irradiation, the resulting Ag-AgCl@Au NMs could oxidize endogenous H2O to produce O2 to alleviate tumor hypoxia. Almost synchronously, O2 could react with electrons on the conduction band of the AgCl core to generate superoxide radicals (O2•-)for photodynamic therapy. Moreover, Ag-AgCl@Au NMs with an excellent photothermal performance could further promote the phototherapy effect. In vitro and in vivo experimental results show that the resulting Ag-AgCl@Au NMs could significantly improve tumor hypoxia and enhance phototherapy against a hypoxic tumor. The present study provides a new strategy to design H2O-activatable, O2- and ROS-evolving NIR II light-response nanoagents for the highly efficient and synergistic treatment of deep O2-deprived tumor tissue.
Collapse
Affiliation(s)
- Sha Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Chai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shihao Sun
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiayue Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Jun Hai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
25
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
26
|
Chen P, Wang Y, He Y, Huang K, Wang X, Zhou R, Liu T, Qu R, Zhou J, Peng W, Li M, Bai Y, Chen J, Huang J, Geng J, Xie Y, Hu W, Ying B. Homogeneous Visual and Fluorescence Detection of Circulating Tumor Cells in Clinical Samples via Selective Recognition Reaction and Enzyme-Free Amplification. ACS NANO 2021; 15:11634-11643. [PMID: 34129315 DOI: 10.1021/acsnano.1c02080] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we report a simple all-nucleic-acid enzyme-free catalyzed hairpin assembly assisted amplification strategy with quantum dots (QDs) as the nanoscale signal reporter for homogeneous visual and fluorescent detection of A549 lung cancer cells from clinical blood samples. This work was based on the phenomenon that CdTe QDs can selectively recognize Ag+ and C-Ag+-C and by using mucin 1 as the circulating tumor cells (CTCs) marker and aptamer as the recognition probe. Under optimized conditions, the limits of detections as low as 0.15 fg/mL of mucin 1 and 3 cells/mL of A549 cells were achieved with fluorescence signals. A 1 fg/mL concentration of mucin 1 and 100 cells/mL of A549 can be distinguished by the naked eye. This method was used to quantitatively analyze CTCs in 51 clinical whole blood samples of patients with lung cancer. The levels of CTCs detected in clinical samples by this method were consistent with those obtained using the folate receptor-polymerase chain reaction clinical test kit and correlated with radiologic and pathological findings.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yaqin He
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Runlian Qu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Wu Peng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Mei Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yunjin Bai
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jin Huang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Walter Hu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Li X, Lu S, Mu X, Li T, Sun S, Zhao Y, Hai J, Wang B. Red-light-responsive coordination polymers nanorods: New strategy for ultrasensitive photothermal detection of targeted cancer cells. Biosens Bioelectron 2021; 190:113417. [PMID: 34134071 DOI: 10.1016/j.bios.2021.113417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The development of highly sensitive and simple detection methods for cancer cells is an important challenge to achieve early cancer diagnosis and effective treatment. In this paper, folic acid (FA)-conjugated platinum (IV) methylene blue (MB) coordination polymers nanorods (denoted as FA-PtCPs NRs) were developed by the photochemical method. The structure of the PtCPs NRs was investigated using the meta-dynamics and genetic algorithms (MTD-GC) method, and it was found that the coordination bond was formed between platinum (IV) and N atoms of MB. The field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) indicated that the morphology of PtCPs NRs was rod-like. The resulting FA-PtCPs NRs was used for the specific and ultra-sensitive temperature detection of cancer cells based on PtCPs NRs as a signal trigger unit and FA as a target recognition tool. After three-step reaction, oxidized 3,3',5,5'-tetramethylbenzidine (ox-TMB) with photothermal effect was obtained. Under 660 nm laser irradiation, such detection platform can convert the molecular recognition signal between FA and folate receptor (FR) of cancer cells into readable temperature value, which can be directly read by an ordinary thermometer, with a detection limit as low as 2 cells/mL. In addition, FA-PtCPs NRs could be used as fluorescent probes for in-situ bioimaging. Therefore, this photothermal sensing platform has a broad prospect in the field of point-of-care detection of cancer cells.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Siyu Lu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Yang Zhao
- School of Life Sciences, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| |
Collapse
|
28
|
Zhou Y, Wang Z, Peng Y, Wang F, Deng L. Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections-A Review. J Biomed Nanotechnol 2021; 17:744-770. [PMID: 34082865 DOI: 10.1166/jbn.2021.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes research on functionalized gold nanomaterials as pathogen detection sensors and pathogen elimination integrated tools. After presenting the challenge of current severe threat from pathogenic bacteria and the increasingly serious growth rate of drug resistance, the first section mainly introduces the conspectus of gold nanostructures from synthesis, characterization, physicochemical properties and applications of gold nanomaterials. The next section deals with gold nanomaterials-based pathogen detection sensors such as colorimetric sensors, fluorescence sensors and Surface-Enhanced Raman Scattering sensors. We then discuss strategies based on gold nanomaterials for eliminating pathogenic infections, such as the dual sterilization strategy for grafting gold nanomaterials with antibacterial substances, photothermal antibacterial and photodynamic antibacterial methods. The fourth part briefly introduces the comprehensive strategy for diagnosis and sterilization of pathogen infection based on gold nanomaterials, such as the diagnosis and treatment strategy for pathogen infection using Roman signals real-time monitoring and photothermal sterilization. A concluding section that summarizes the current status and challenges of the novel diagnosis and treatment integrated strategy for pathogenic infections, gives an outlook on potential future perspectives.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
29
|
Wei Z, Yu Y, Hu S, Yi X, Wang J. Bifunctional Diblock DNA-Mediated Synthesis of Nanoflower-Shaped Photothermal Nanozymes for a Highly Sensitive Colorimetric Assay of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16801-16811. [PMID: 33788550 DOI: 10.1021/acsami.0c21109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The activity of a nanozyme is closely related to its surface area-to-volume ratio and the surrounding temperature. To acquire highly active nanozymes, one-pot metallization-like synthesis of novel nanoflower-shaped photothermal nanostructures was conducted using polyadenine-containing diblock DNA as the scaffold. The nanoflower-shaped structures with a high surface area-to-volume ratio and photothermal performance exhibited excellent peroxidase-mimicking activity, and the biorecognition capability was retained by the capping agent of diblock DNA. The functionalized nanostructures were used for a proof-of-concept colorimetric assay of cancer cells in vitro. Upon incorporation of 808 nm laser irradiation, high sensitivity and selectivity for the cancer cell assay were achieved with the lowest detection level of 10 cells/mL. Relative to spherical gold nanostructures, the nanoflower-shaped photothermal nanozyme exhibited higher assay sensitivity, paving the way for the construction of nanozyme-based colorimetric sensors for point-of-care testing.
Collapse
Affiliation(s)
- Zhaohui Wei
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuefan Yu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
30
|
Fang X, Zhang X, Zhang Z, Hu S, Ye F, Zhao S. Complementary atomic flame/molecular colorimetry dual-mode assay for sensitive and wide-range detection of cancer cells. Chem Commun (Camb) 2021; 57:3327-3330. [PMID: 33870366 DOI: 10.1039/d1cc00192b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Since multicolor switch was involved in both Sr2+-related flame and precipitation reactions, these reactions can be thus utilized for constructing a complementary atomic flame/molecular colorimetry dual-mode sensing platform for a sensitive and wide-range analysis of cancer cells by virtue of the gas generation from platinum nanozyme-mediated hydrogen peroxide decomposition.
Collapse
Affiliation(s)
- Xueting Fang
- College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | | | | | | | | | | |
Collapse
|
31
|
Ma J, Wang X, Feng J, Huang C, Fan Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004287. [PMID: 33522074 DOI: 10.1002/smll.202004287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.
Collapse
Affiliation(s)
- Jun Ma
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Feng
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcai Fan
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
32
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Huang L, Yu Z, Chen J, Tang D. Pressure-Based Bioassay Perceived by a Flexible Pressure Sensor with Synergistic Enhancement of the Photothermal Effect. ACS APPLIED BIO MATERIALS 2020; 3:9156-9163. [DOI: 10.1021/acsabm.0c01447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Zhonghua Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jialun Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
34
|
Jiang H, Rao X, Li L, Liu Z. A gas pressure and colorimetric signal dual-mode strategy for sensitive detection of spermine using ssDNA-coated Au@Pt nanoparticles as the probe. Analyst 2020; 145:7673-7679. [PMID: 32970056 DOI: 10.1039/d0an01473g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The naturally occurring spermine (Spm), as one of the many cationic polyamines, plays a key role in biological processes and is involved in a variety of diseases. The very similar structures among biogenic polyamines present a major challenge to achieve discriminative testing among them. In this contribution, using arbitrary ssDNA-coated Au@PtNPs as the probe, we demonstrated that a dual-mode strategy via a gas pressure and colorimetric signal readout can be used for the sensitive and specific detection of Spm, due to the target-responsive aggregation of the Au@PtNPs leading to the inhibition of the catalyzed gas-generation reaction and the colorimetric change of the Au@PtNP solution. The proposed pressure-based signaling strategy has a detection limit of 9.6 nM, and can be used not only in the laboratory but also in the point-of-care setting. Meanwhile, the colorimetric assay displays the advantage of being easily discerned with the naked eye. Compared with the traditional methods of chromatography and capillary electrophoresis combined with chemical derivatization, the strategy described here would provide a convenient new alternative for the specific detection of Spm in biological samples.
Collapse
Affiliation(s)
- Huan Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | | | | | | |
Collapse
|
35
|
Hao Z, Lin X, Li J, Yin Y, Gao X, Wang S, Liu Y. Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosens Bioelectron 2020; 173:112789. [PMID: 33220533 DOI: 10.1016/j.bios.2020.112789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Bacterial infection is a growing public health concern and causes a huge medical and financial burden. It is of significance to efficiently construct multifunctional platforms for bacterial point-of-care testing (POCT) and elimination. Herein, near-infrared (NIR) light-responded vancomycin-doped prussian blue nanoparticles (PB-VANNPs) with high efficient photothermal conversion was synthesized for binding, dual-mode portable detection, and elimination of bacteria. The PB-VANNPs can bind to the surface of Gram-positive bacteria such as Staphylococcus aureus (S. aureus), forming complex of PB-VANNPs/S. aureus. After being centrifugated, the suspension solution of PB-VANNPs can stimulate perfluorohexane (PFH) to rapidly release oxygen (O2) under NIR irradiation. Thus, the bacteria can be sensitively detected with portable pressure meter as signal reader, reporting a limit of detection (LOD) of 1.0 CFU mL-1. On the other side, the sediment of PB-VANNPs/S. aureus can be detected via thermal camera, reporting a LOD of 1.0 CFU mL-1. Interestingly, the bacteria can be effectively inactivated with the local temperature elevation during temperature-based detection. The antibacterial efficiency reaches as high as 99.8%. The developed multifunctional nanoplatform not only provides a straightforward "mix-then-test" way for portable detection of bacteria with high sensitivity, also realizes high efficiency elimination of bacteria simultaneously. The developed strategy was further applied for promoting wound healing of bacteria-infected mice.
Collapse
Affiliation(s)
- Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jinjie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yanliang Yin
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100037, PR China.
| |
Collapse
|
36
|
Zhang Y, Zhou L, Tan J, Liu J, Shan X, Ma Y. Laser-triggered collaborative chemophotothermal effect of gold nanoparticles for targeted colon cancer therapy. Biomed Pharmacother 2020; 130:110492. [PMID: 32682110 DOI: 10.1016/j.biopha.2020.110492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology has shown advantages for cancer treatment. Multimodal nanoparticles (NPs) combining chemotherapy and photothermal therapy are promising and elicit synergetic benefit. However, there were still less multifunctional nanomaterials with good targeting and anti-tumor property applied as the colon cancer therapeutic strategy. In this study, we designed the gold NPs modified with AS1411 and DNA riched of GC intercalation (hairpin DNA) with doxorubicin (DOX) for targeted chemotherapy and NIR laser-triggered chemo-photothermal effect (PTT). We took advantage of PTT effect to realize DOX release from hairpin DNA. We also demonstrated AS1411 based NPs exhibited remarkable targeted binding towards SW480 colon cancer cells in vitro and enhanced uptake inside the cells. Strikingly, AS1411 based NPs exhibited the most efficient cytotoxicity and markedly enhanced inhibition effect on cells proliferation to SW480 cells under laser exposure when compared to the NPs merely with PTT or chemotherapy. Our study appears to provide an alternative nanoplatform with good targeted and chemo-photothermal therapy against colon cancer.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu Zhou
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jingwei Tan
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jianling Liu
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoqing Shan
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Yong Ma
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
37
|
Li H, Li Y, Xiang J, Yang X, Li C, Liu C, Zhao Q, Zhou L, Gong P, Huang J. Intelligent Bimetallic Nanoagents as Reactive Oxygen Species Initiator System for Effective Combination Phototherapy. Front Bioeng Biotechnol 2020; 8:423. [PMID: 32457891 PMCID: PMC7225307 DOI: 10.3389/fbioe.2020.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Phototherapy is a promising oncotherapy method. However, there are various factors greatly restricted phototherapy development, including poor tumor-specific accumulation, the hypoxia in solid tumor, and the systemic phototoxicity of photosensitizer. Herein, a tumor microenvironment (TME)-responsive intelligent bimetallic nanoagents (HSA-Pd-Fe-Ce6 NAs) composed of human serum albumin (HSA), palladium-iron (Pd-Fe) bimetallic particles, and chlorin e6 (Ce6) was designed for effective combination phototherapy. The Pd-Fe part in the HSA-Pd-Fe-Ce6 NAs would react with the endogenous hydrogen peroxide (H2O2) in an acidic ambiance within tumor to generate cytotoxic superoxide anion free radical through the “Fenton-like reaction.” H2O2, coupled with highly toxic singlet oxygen (1O2) caused by the Ce6 component under the irradiation of 660 nm laser, resulted in synergistic cancer therapy effects in hypoxia surroundings. Besides, this nanoagents could result in hyperpyrexia-induced cell apoptosis because of superior absorption performance in near-infrared wavelength window bringing about excellent photothermal conversion efficiency. The cell cytotoxicity results showed that the survival rate after treated by 40 μg mL–1 nanoagents was only 17%, which reveals that the HSA-Pd-Fe-Ce6 NAs had the advantage of efficient and controllable phototherapy. In short, it exhibited excellent hypoxia-resistant combination phototherapy efficacy in vitro. Therefore, the multifunctional nanoagents are powerful and provide a new avenue for effective combination phototherapy.
Collapse
Affiliation(s)
- Hongfeng Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Ying Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.,School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunbing Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Chuangjun Liu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.,Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, China
| | - Jiahao Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|