1
|
Meng X, Ma R, Luo X, Liu Y, Yin X, Gu H, Chen Y. 3D DNA walkers integrated with self-reporting MOFs: Pioneering ratiometric electrochemical sensing for Staphylococcus aureus. Anal Chim Acta 2025; 1351:343875. [PMID: 40187870 DOI: 10.1016/j.aca.2025.343875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 04/07/2025]
Abstract
The persistent global challenge of high incidence rates of foodborne bacterial pathogens continues to pose significant threats to both human health and public health security. Accurate determination of foodborne bacteria assumes paramount importance in effectively preventing and controlling related diseases. However, conventional bacterial detection methods often suffer limitations of cumbersome operation procedures, long time consumption, susceptibility to contamination or low sensitivity. The utilization of novel materials with direct self-reporting properties for developing ratiometric electrochemical biosensors offers a promising solution. Here, we present a ratiometric electrochemical aptasensor utilizing a magnetic 3D DNA walking machine and self-assembly of MOF for the sensitive detection of foodborne bacteria, with Staphylococcus aureus as the target model. A self-reporting MOF was employed as a signal probe, while [Fe(CN)6]3-/4- served as an inner reference probe. The introduction of target triggers the release of walker DNA from the walker/aptamer complexes, thereby initiating the DNA walking machine to produce numerous sticky sequences for further self-assembly of the linker probe-modified MOF on the magnetic beads surface. Quantification is accomplished by analyzing the ratio of the current signals. Attributed to the efficient magnetic separation, the self-reporting functionality of MOF, the cascade signal amplification strategy, and incorporation of a ratiometric signal output mode with self-calibration capability, this approach exhibits exceptional analytical performance and feasibility for testing complex samples. This study presents the first ratiometric aptasensor that integrates a DNA walking machine with a self-reporting MOF for the sensitive detection of bacteria. It offers a rapid, robust, and selective method for whole-cell detection without requiring complex sample preparation, demonstrating considerable potential in food safety monitoring and diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Xianzhu Meng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, 434023, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China
| | - Xiao Luo
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, 434023, China
| | - Yang Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China
| | - Xiaoli Yin
- College of Life Sciences, Yangtze University, Jingzhou, 434025, China
| | - Huiwen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, 434023, China
| | - Ying Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, 434023, China.
| |
Collapse
|
2
|
Yuan X, Chen L, Zhao Y, Cheng L, Zhao C. A label-free colorimetric assay for sensitive screening of T4 polynucleotide kinase activity and inhibition based on enzyme-aided cyclic strand displacement amplification and PNA-gold nanoparticle platform. Mikrochim Acta 2025; 192:218. [PMID: 40063137 DOI: 10.1007/s00604-025-07086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
The phosphorylation of nucleic acids mediated by 5'-polynucleotide kinase (PNK) exerts a crucial regulatory function in a wide range of significant cellular activities. Nevertheless, the current approaches for detecting PNK require expensive labeled probes and complex instrumentation, making it impossible to achieve real-time, on-site, and rapid analysis. Here, we take T4 PNK as a model and establish a novel colorimetric strategy for the detection of PNK activity and its inhibition by means of a coupled enzyme-assisted cyclic strand displacement amplification (SDA) and peptide nucleic acid (PNA)-gold nanoparticle (AuNP) based platform. The inspiration for this innovative strategy comes from the high stability, strong binding ability, and potent regulatory effect of PNA probes on AuNPs. Under the catalysis of PNK, the 5'-hydroxyl end of the hairpin-shaped DNA (hpDNA) is initially phosphorylated and subsequently digested by λ exonuclease (λ exo). This results in the release of a single-stranded DNA, which serves as a triggering factor to initiate the strand displacement reaction (SDR). The replaced PNA probe adheres to the surface of AuNPs, inducing their aggregation and causing a remarkable color change. Meanwhile, the double-stranded SDR product releases the SDR trigger with the aid of a nicking enzyme, triggering the next round of the SDR cycle and achieving highly efficient and controllable signal amplification. This assay is simple to operate and does not require bulky and expensive instruments or complex labeled probes. Compared with existing colorimetric methods, the detection sensitivity has been greatly improved, reaching 3.52 × 10-4 U/mL. Additionally, the method has demonstrated satisfactory results when applied to intricate biological matrices and the screening of T4 PNK inhibitors. Therefore, the proposed strategy holds significant potential for real-time analysis, high-throughput detection, and PNK-related drug screening.
Collapse
Affiliation(s)
- Xiaojun Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Long Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yang Zhao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, P. R. China
| | - Li Cheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China.
| |
Collapse
|
3
|
Wang M, Xiao C, Zhao F, Suo Z, Liu Y, Wei M, Jin B. A label-free electrochemical sensor based on π-structured bipedal DNA walker-triggered hybridization chain reaction and AuPt NPs/Zr-MOF for OTA detection. Anal Chim Acta 2025; 1334:343424. [PMID: 39638468 DOI: 10.1016/j.aca.2024.343424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Ochratoxin A (OTA) is a serious food contaminant, not easily degradable, and capable of causing irreversible damage to the human body. Therefore, it is of great practical significance to establish a sensitive and efficient OTA detection method. The electrochemical aptasensor has a broad development prospect in OTA detection with its advantages of fast response speed and low cost. RESULTS Herein, a cascade signal amplification strategy based on AuPt NPs/Zr-MOF and π-structure bipedal DNA walker-triggered hybridization chain reaction (HCR) was designed for the detection of ochratoxin A (OTA). AuPt NPs/Zr-MOF was employed as the electrode modification material, providing a large number of active sites and high conductivity, achieving 1.47 times signal amplification. Interestingly, bipedal DNA walker binds to hairpin 1 (H1) to form the π-structure. Under the activation of Pb2+, one bipedal DNA walker can simultaneously bind and cleave two H1. It exhibits a wide walking range and high recognition efficiency. After H1 is cleaved, the trigger sequence was exposed to trigger HCR and a large amount of methylene blue was loaded on the electrode. Under the optimal conditions, the linear range of the determined OTA is 1 × 10-3-500 ng/mL, and the limit of detection is as low as 0.525 pg/mL. SIGNIFICANCE The experimental results demonstrate that the constructed electrochemical aptasensor is a sensitive and efficient platform for OTA monitoring. The applicability in food samples was also confirmed, and the strategy was efficiently selective and reproducible for different analytes. This provides ideas for subsequent food safety testing.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China
| | - Fengjuan Zhao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng, 475004, PR China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Baohui Jin
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
| |
Collapse
|
4
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
5
|
Shahbazi E, Mollasalehi H, Minai-Tehrani D. A gold nanoparticle conjugated single-legged DNA walker driven by catalytic hairpin assembly biosensor to detect a prokaryotic pathogen. Sci Rep 2024; 14:22980. [PMID: 39363058 PMCID: PMC11449931 DOI: 10.1038/s41598-024-74227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Catalytic hairpin assembly (CHA)-DNA walker allows nanostructures to spontaneously hybridize to the nucleic acids. The localized surface plasmon resonance provides the ability of color-shift for Au nanoparticles (AuNPs) to design a colorimetric biosensor by implementing CHA-DNA walker reaction on AuNPs. A target gene in Klebsiella pneumoniae as the reaction cascade trigger, was selected. H1 and H2 oligonucleotides as the components of the system were designed and verified by NUPACK. The AuNPs were conjugated to H1. The conjugation of the probes to the AuNPs was evaluated using FT-IR. The signal amplification process was conducted at 25℃. TEM imaging, zeta potential, spectroscopy, and gel-electrophoresis were used to examine the conduction of the reaction cascade and specificity. The sensitivity of the method was analyzed using serial dilution of the target. The formation of over-52 bp intermediate secondary structures (which only exist when the reaction happens) was confirmed by gel-electrophoresis. The color distinction between positive (0.08 to 0.058) and negative samples (0.098 to 0.05) was evidenced instantly and in a period of 90 min of the reaction as a drop change of 520 nm intensity absorbance. TEM imaging confirmed the further distance of AuNPs in the positive sample in comparison to that of the negative sample which reveals effective detection of the pathogen. The LOD of the technique was measured as 2.5 nM of the target sequence. The diagnostic approach is a label-free, enzyme-independent approach and can be executed in a single step. It has been designed by employing the CHA-DNA walker system along with the colorimetric properties of AuNPs for the first time, thereby paving the way for more rapid and accurate diagnostic kits.
Collapse
Affiliation(s)
- Erfan Shahbazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Mollasalehi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Dariush Minai-Tehrani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Soliman SS, Abd El-Samie FE, Abd El-Atty SM, Badawy W, Eshra A. DNA nanotechnology for cell-free DNA marker for tumor detection: a comprehensive overview. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:276-290. [PMID: 39357047 DOI: 10.1080/15257770.2024.2337853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 10/04/2024]
Abstract
Advancements in DNA nanotechnology have led to new exciting ways to detect cell-free tumor biomarkers, revolutionizing cancer diagnostics. This article comprehensively reviews recent developments in this field, discussing the significance of liquid biopsies and DNA nanomachines in early cancer detection. The accuracy of cancer diagnosis at its early stages is expected to be significantly improved by identifying biomarkers. Liquid biopsies, offering minimally-invasive testing, hold the potential for capturing tumor-specific components like circulating tumor cells, cell-free DNA, and exosomes. DNA nanomachines are advanced molecular devices that exploit the programmability of DNA sequences for the ultrasensitive and specific detection of these markers. DNA nanomachines, nanostructures made of DNA that can be designable and switchable nanostructures, have a wide range of advantages for detecting tumor biomarkers, including non-invasiveness, affordability, high sensitivity, and specificity. Scientists also work on dealing with challenges like low marker concentrations and interference, which are addressed through microfluidic integration, nanomaterial amplification, and indirect signal detection. Despite advances, multiplex detection remains a challenge. In conclusion, DNA nanomachines bear immense promise for cancer diagnostics, advocating personalized treatment and improving patient outcomes. Continued research could redefine how we find and treat tumors, leading to better patient outcomes.
Collapse
Affiliation(s)
- Sara Sami Soliman
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Fathi E Abd El-Samie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Saied M Abd El-Atty
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Wael Badawy
- School of physics, Engineering, and Computer Science, University of Hertfordshire Hosted by GAF, Cairo, Egypt
| | - Abeer Eshra
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Hamilton Institute, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
7
|
Kong X, Li M, Xiao W, Li Y, Luo Z, Shen JW, Duan Y. Ω-Shaped fiber optic LSPR coated with hybridized nanolayers for tumor cell sensing and photothermal treatment. Talanta 2024; 278:126381. [PMID: 38936108 DOI: 10.1016/j.talanta.2024.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Circulating tumor cell (CTC) in the blood is the main cause of cancer metastasis for death in cancer patients. It is extremely important for cancer diagnosis at an early stage and treatment to simultaneously detect and kill the CTCs. In this work, a new hybridized nanolayer, namely gold nanoparticle/gold nanorods@ Polydopamine (AuNPs/AuNRs@PDA), was coated on the Ω-shaped fiber optics (Ω-FO) for localized surface plasmonic resonance (LSPR) to perform tumor cell sensing and photothermal treatment (PTT). The PDA nanolayer was formed on a bare fiber optic through the self-polymerization of dopamine under mild conditions. The AuNRs and AuNPs were absorbed on the surface of the PDA nanolayer to form a hybridized nanolayer. The hybridized nanolayer-modified Ω-FO LSPR exhibited a high refractive index sensitivity (RIS) of 37.59 (a.u/RIU) and photothermal conversion efficiency. After being modified with the recognition element of aptamer, the Ω-FO LSPR was used to develop a sensitive and specifical tumor cell sensing. Under the irradiation of near-infrared light (NIR) laser, the Ω-FO LSPR can kill the captured tumor cells with the apoptotic/necrotic rate of 62.6 % and low side-effect for the nontarget cells. The FO LSPR sensor realized the dual functions of CTC sensing and PTT, which provided a new idea for the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Mingyue Li
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Xiao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510632, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Jiang P, Zhan Z, Peng Y, Wu C, Wang Y, Wu L, Shi S, Ying B, Wei Y, Chen P, Chen J. Steric Hindrance-Mediated Enzymatic Reaction Enable Homogeneous Dual Fluorescence Indicators Aptasensing of Hepatocellular Carcinoma CTCs. Anal Chem 2024; 96:10705-10713. [PMID: 38910291 DOI: 10.1021/acs.analchem.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Circulating tumor cells (CTCs) serve as important biomarkers in the liquid biopsy of hepatocellular carcinoma (HCC). Herein, a homogeneous dual fluorescence indicators aptasensing strategy is described for CTCs in HCC, with the core assistance of a steric hindrance-mediated enzymatic reaction. CTCs in the sample could specifically bind to a 5'-biotin-modified glypican-3 (GPC3) aptamer and remove the steric hindrance formed by the biotin-streptavidin system. This influences the efficiency of the terminal deoxynucleotidyl transferase enzymatic reaction. Then, methylene blue (MB) was introduced to react with the main product poly cytosine (polyC) chain, and trivalent cerium ion (Ce3+) was added to react with the byproduct pyrophosphate to form fluorescent pyrophosphate cerium coordination polymeric nanoparticles. Finally, the CTCs were quantified by dual fluorescence indicators analysis. Under optimized conditions, the linear range was 5 to 104 cells/mL, and the limits of detection reached 2 cells/mL. Then, 40 clinical samples (15 healthy and 25 HCC patients) were analyzed. The receiver operating characteristic curve analysis revealed an area under the curve of 0.96, a sensitivity of 92%, and a specificity of 100%. Therefore, this study established a sensitive and accurate CTCs sensing system for clinical HCC patients, promoting early tumor diagnosis.
Collapse
Affiliation(s)
- Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufu Peng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengyong Wu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Longfei Wu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yonggang Wei
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Liver Surgery, National Clinical Research Center for Geriatrics, W Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
10
|
Rahmanipour M, Siampour H, Moshaii A, Amirabadizadeh M, Fouani MH, Shariati L, Rafienia M. Precision in cancer diagnostics: ultra-sensitive detection of MCF-7 breast cancer cells by gold nanostructure-enhanced electrochemical biosensing. J Mater Chem B 2024; 12:5551-5560. [PMID: 38747235 DOI: 10.1039/d4tb00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Timely identification of cancers is pivotal in optimizing treatment efficacy and reducing their widespread impact. This study introduces a novel biosensor for the sensitive electrochemical detection of cancer cells overexpressing mucin 1 (MUC1), a well-established model for breast cancer. The sensor substrate comprises gold columnar nanostructures obtained through glancing angle deposition (GLAD) of copper nanostructures, subsequently replaced by gold via a facile galvanic replacement process. Functionalizing these gold nanostructures with aptamers targeting the MUC1 glycoproteins, a prominent cancer biomarker, enables specific recognition of MCF-7 breast cancer cells. The proposed electrochemical sensing platform offers several advantages, including high selectivity, a wide linear range of detection, a low detection limit of 30 cells per mL, and long-term stability, rendering this sensor highly desirable for definitive breast cancer diagnosis.
Collapse
Affiliation(s)
- Mahsa Rahmanipour
- Department of Physics, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Hossein Siampour
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
- Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran
| | - Masoud Amirabadizadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| |
Collapse
|
11
|
Wang X, Zeng Y, Zhu N, Yu Y, Yi Q, Wu Y. In vitro detection of circulating tumor cells using the nicking endonuclease-assisted lanthanide metal luminescence amplification strategy. Talanta 2024; 273:125909. [PMID: 38490020 DOI: 10.1016/j.talanta.2024.125909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The in vitro detection of circulating tumor cells (CTCs) has been proven as a vital method for early diagnosis and evaluation of cancer metastasis, since the existence and number fluctuation of CTCs have shown close correlation with clinical outcomes. However, it remains difficult and technically challenging to realize accurate CTCs detection, due to the rarity of CTCs in the blood samples with complex components. Herein, we reported a CTCs in vitro detection strategy, utilizing a loop amplification strategy based on DNA tetrahedron and nicking endonuclease reaction, as well as the anti-background interference based on lanthanide metal luminescence strategy. In this work, a detection system (ATDN-MLLPs) composed of an aptamer-functionalized tetrahedral DNA nanostructure (ATDN) and magnetic lanthanide luminescent particles (MLLPs) was developed. ATDN targeted the tumor cells via aptamer-antigen recognition and extended three hybridizable target DNA segments from the apex of a DNA tetrahedron to pair with probe DNA on MLLPs. Then, the nicking endonuclease (Nt.BbvCI) recognized the formed double-strand DNA and nicked the probe DNA to release the target DNA for recycling, and the released TbNps served as a high signal-to-noise ratio fluorescence signal source for CTCs detection. With a detection limit of 5 cells/mL, CTCs were selectively screened throughout a linear response range of low orders of magnitude. In addition, the ATDN-MLLPs system was attempted to detect possible existence of CTCs in biological samples in vitro.
Collapse
Affiliation(s)
- Xuekang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Yating Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
12
|
Luo Q, Qiu Z, Liang H, Huang F, Wei C, Cui J, Song Z, Tang Q, Liao X, Liu Z, Wang J, Gao F. Proximity hybridization induced molecular machine for signal-on electrochemical detection of α-synuclein oligomers. Talanta 2024; 271:125720. [PMID: 38309112 DOI: 10.1016/j.talanta.2024.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zhili Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Hongqu Liang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Fa Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chen Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, 221004, Xuzhou, China; Xuzhou Institute of Cardiovascular Disease, 221004, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
13
|
Gao P, Li X, Wei R, Pan W, Li N, Tang B. Glowing Octopus-Inspired Nanomachine: A Versatile Aptasensor for Efficient Capture, Imaging, Separation, and NIR-Triggered Release of Cancer Cells. Anal Chem 2024; 96:309-316. [PMID: 38108827 DOI: 10.1021/acs.analchem.3c04115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The separation and analysis of circulating tumor cells (CTCs) in liquid biopsy significantly facilitated clinical cancer diagnosis and personalized therapy. However, current methods face challenges in simultaneous efficient capturing, separation, and imaging of CTCs, and most of the devices cannot be reused/regenerated. We present here an innovative glowing octopus-inspired nanomachine (GOIN), capable of capturing, imaging, separating, and controlling the release of cancer cells from whole blood and normal cells. The GOIN comprises an aptamer-decorated magnetic fluorescent covalent organic framework (COF), which exhibits a strong affinity for nucleolin-overexpressed cancer cells through a multivalent binding effect. The captured cancer cells can be directly imaged using the intrinsic stable fluorescence of the COF layer in the GOIN. Employing magnet and NIR laser assistance enables easy separation and mild photothermal release of CTCs from the normal cells and the nanomachine without compromising cell viability. Moreover, the GOIN demonstrates a reusing capability, as the NIR-triggered CTC release is mild and nondestructive, allowing the GOIN to be reused at least three times.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
14
|
Meng J, Xu Z, Zheng S, Yang H, Wang T, Wang H, Zhang Y. Development of a regenerable dual-trigger tripedal DNA walker electrochemical biosensor for sensitive detection of microRNA-155. Anal Chim Acta 2024; 1285:342026. [PMID: 38057049 DOI: 10.1016/j.aca.2023.342026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Since microRNAs (miRNAs) are valuable biomarkers for disease diagnosis and prognosis, the pursuit of enhanced detection sensitivity through signal amplification strategies has emerged as a prominent focus in low-abundance miRNA detection research. DNA walkers, as dynamic DNA nanodevice, have gained significant attention for their applications as signal amplification strategies. To overcome the limitations of unipedal DNA walkers with a restricted signal amplification efficiency, there is a great need for multi-pedal DNA walkers that offer improved walking and signal amplification capabilities. Here, we employed a combination of catalytic hairpin assembly (CHA) and APE1 enzymatic cleavage reactions to construct a tripedal DNA walker, driving its movement to establish a cascade signal amplification system for the electrochemical detection of miRNA-155. The biosensor utilizes tumor cell-endogenous microRNA-155 and APE1 as dual-trigger for DNA walker formation and walking movement, leading to highly efficient and controllable signal amplification. The biosensor exhibited high sensitivity, with a low detection limit of 10 pM for microRNA-155, and successfully differentiated and selectively detected microRNA-155 from other interfering RNAs. Successful detection in 20 % serum samples indicates its potential clinical application. In addition, we harnessed strand displacement reactions to create a gentle yet efficient electrode regeneration strategy, to addresses the time-consuming challenges during electrode modification processes. We have successfully demonstrated the stability of current signals even after multiple cycles of electrode regeneration. This study showcased the high-efficiency amplification potential of multi-pedal DNA walkers and the effectiveness and versatility of strand displacement in biosensing applications. It opens a promising path for developing regenerable electrochemical biosensors. This regenerable strategy for electrochemical biosensors is both label-free and cost-effective, and holds promise for detecting various disease-related RNA targets beyond its current application.
Collapse
Affiliation(s)
- Jinting Meng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihao Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shasha Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianfu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
15
|
Wu Y, Pei J, Li Y, Wang G, Li L, Liu J, Tian G. High-sensitive and rapid electrochemical detection of miRNA-31 in saliva using Cas12a-based 3D nano-harvester with improved trans-cleavage efficiency. Talanta 2024; 266:125066. [PMID: 37579676 DOI: 10.1016/j.talanta.2023.125066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Salivary miRNA-31 is a reliable diagnostic marker for early-stage oral squamous cell carcinoma (OSCC), but accurate detection of miRNA-31 in saliva samples is a challenge because of its low level and high sequence homology. The CRISPR/Cas12a system has the exceptional potential to enable simple nucleic acid analysis but suffers from low speed and sensitivity. To achieve rapid and high-sensitive detection of miRNA-31 using the CRISPR/Cas12a system, a Cas12a-based nano-harvester activated by a polymerase-driven DNA walker, named as dual 3D nanorobots, was developed. The target walked rapidly on the surface of DNA hairpin-modified magnetic nanoparticles driven by DNA polymerase, generating numerous double-strand DNA (dsDNA). Then, the Cas12a bound to the generated dsDNA for activating its trans-cleavage activity, forming 3D nano-harvester. Subsequently, the harvester cut and released methylene blue-labeled DNA hairpins immobilized on the sensing interface, leading to the change in electrochemical signal. We found that the trans-cleavage activity of the harvester was higher than the conventional CRISPR/Cas12a system. The developed dual 3D nanorobots could enable rapid (detection time within 60 min), high-sensitive (detection limit of femtomolar), and specific analysis of miRNA-31 in saliva samples. Thus, our established electrochemical biosensing strategy has great potential for early diagnosis of OSCC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingwen Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yi Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guobin Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
16
|
Shen H, Cui G, Liang H, Yang H, Chen M, Xu ZL, Liu W, Liu Y. DNA Nanomachine-Driven Heterogeneous Quadratic Amplification for Sensitive and Programmable miRNA Profiling. Anal Chem 2023; 95:15769-15777. [PMID: 37734028 DOI: 10.1021/acs.analchem.3c03306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Inspired by the molecular crowding effect in biological systems, a novel heterogeneous quadratic amplification molecular circuit (HEQAC) was developed for sensitive bimodal miRNA profiling (HEQAC-BMP) by combining an MNAzyme-based DNA nanomachine with an entropy-driven catalytic hairpin assembly (E-CHA) autocatalytic circuit. Utilizing ferromagnetic nanomaterials as the substrate for DNA nanomachines, a biomimetic heterogeneous interface was established; thus, a localized molecular crowding system was created that can elevate the local reaction concentration and accelerate the molecular recognition process for a significant threshold signal. Simultaneously, the threshold signal undergoes further amplification by E-CHA and is transformed into a chemical signal, enabling a colorimetric-fluorescence bimodal signal readout. The HEQAC-BMP enables miRNA detection from 10 aM to 10 nM with detection limits of 3.7 aM (colorimetry) and 4.8 aM (fluorometry), respectively. Moreover, the design principle and strategy of HEQAC-BMP can be customized to address other critical viruses or diseases with life-threatening and socioeconomic impacts, enhancing healthcare outcomes for individuals.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guosheng Cui
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hui Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Tao J, Zhang H, Weinfeld M, Le XC. Development of a DNAzyme Walker for the Detection of APE1 in Living Cancer Cells. Anal Chem 2023; 95:14990-14997. [PMID: 37725609 PMCID: PMC10568531 DOI: 10.1021/acs.analchem.3c02574] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
DNAzyme walker technology is a compelling option for bioanalytical and drug delivery applications. While nucleic acid and protein targets have been used to activate DNAzyme walkers, investigations into enzyme-triggered DNAzyme walkers in living cells are still in their early stages. The base excision repair (BER) pathway presents an array of enzymes that are overexpressed in cancer cells. Here, we introduce a DNAzyme walker system that sensitively and specifically detects the BER enzyme apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1). We constructed the DNAzyme walker on the surface of 20 nm-diameter gold nanoparticles. We achieved a detection limit of 160 fM of APE1 in a buffer and in whole cell lysate equivalent to the amount of APE1 in a single HeLa cell in a sample volume of 100 μL. Confocal imaging of the DNAzyme walking reveals a cytoplasmic distribution of APE1 in HeLa cells. Walking activity is tunable to exogenous Mn2+ concentrations and the uptake of the DNAzyme walker system does not require transfection assistance. We demonstrate the investigative potential of the DNAzyme walker for up-regulated or overactive enzyme biomarkers of the BER pathway in cancer cells.
Collapse
Affiliation(s)
- Jeffrey Tao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2G3, Canada
| | - Hongquan Zhang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2G3, Canada
| | - Michael Weinfeld
- Division
of Experimental Oncology, Department of Oncology, Faculty of Medicine
and Dentistry, University of Alberta, Cross
Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2G3, Canada
| |
Collapse
|
18
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
19
|
Abstract
miRNAs in circulating blood have been regarded as promising biomarkers for the diagnosis of a series of diseases. Development of ultrasensitive, reliable, and convenient methods for miRNA assay is of great significance. Herein, we present a novel electrochemical sensing strategy. The assembly of DNA walker strands on membrane-coated nanomaterials, target-mediated recycling activation, and electrochemical signal enrichment are integrated. Multipedal DNA walking with magnetic cores and a catalytic hairpin assembly at the electrode lead to the increase of electrochemical response, which can be used to probe initial target miRNA. This DNA walking nanomachine shows enhanced signal amplification efficiency and facile magnetic separation steps. It enables rapid analysis of miRNA at the attomole level and performs satisfactorily in samples of human circulating blood. Given the powerful sensitivity, facile operation, and excellent specificity, this magnetic multipedal DNA walker provides a promising way to determine miRNA level for biomedical applications.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
20
|
Vajhadin F, Mazloum-Ardakani M, Hemati M, Moshtaghioun SM. Facile preparation of a cost-effective platform based on ZnFe 2O 4 nanomaterials for electrochemical cell detection. Sci Rep 2023; 13:4962. [PMID: 36973342 PMCID: PMC10042879 DOI: 10.1038/s41598-023-31377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are important tumor markers that indicate early metastasis, tumor recurrence, and treatment efficacy. To identify and separate these cells from the blood, new nanomaterials need to be developed. The present study explored the potential application of ZnFe2O4 magnetic nanoparticles in capturing CTCs with cell surface markers. Folic acid was coupled to L-cysteine-capped ZnFe2O4 nanoparticles (ZC) to provide binding sites on ZnFe2O4 nanoparticles for the recognition of folate bioreceptors, which are highly expressed in MCF-7 breast cancer cells. The cytotoxicity of ZnFe2O4 nanoparticles and ZC against MCF-7 was analyzed with the MTT assay. After 24 h of incubation, there were IC50 values of 702.6 and 805.5 µg/mL for ZnFe2O4 and ZC, respectively. However, after 48 h of incubation, IC50 values of ZnFe2O4 and ZC were reduced to 267.3 and 389.7 µg/mL, respectively. The cell quantification was conducted with magnetically collected cells placed on a glassy carbon electrode, and the differential pulse voltammetry (DPV) responses were analyzed. This cost-effective ZnFe2O4-based biosensing platform allowed cancer cell detection with a limit of detection of 3 cells/mL, ranging from 25 to 104 cells/mL. In future, these functionalized zinc ferrites may be used in electrochemical cell detection and targeted cancer therapy.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
21
|
DNAzyme-driven bipedal DNA walker triggered to hybridize silver nanoparticle probes for electrochemical detection of amyloid-β oligomer. Anal Chim Acta 2023; 1246:340889. [PMID: 36764775 DOI: 10.1016/j.aca.2023.340889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Amyloid-β oligomer has been considered as a promising molecular biomarker for the diagnosis of Alzheimer's disease due to their significant neural synapse toxicity. Therefore, it is essential to create an easy approach for the selective detection of Amyloid-β oligomer that has high sensitivity and cheap cost. In this work, we developed an innovative enzyme-free electrochemical aptasensor based on the DNAzyme-driven DNA bipedal walker tactics for sensing Amyloid-β oligomer. Bipedal DNA walkers demonstrate a wider walking region, better walking kinetics, and higher amplification effectiveness than typical DNA walkers. The Mg2+-dependent DNAzyme drove the DNA walker, and the binding-induced DNA walker can sequentially shear MBs and form MB fragment structure. Finally, the detection probes modified AgNPs hybridized with the MB fragment structure, resulting in the multiplication of AgNPs on the electrode surface. Electrochemical stripping of AgNPs was used to test the performance of the obtained electrochemical sensor. In particular, a low detection limit of 5.94 fM and a wide linear range of 0.01 pM-0.1 nM were attained. The detection of Amyloid-β oligomer in human serum was then carried out using this bipedal DNA walker biosensor, which shown good selectivity and outstanding reproducibility, indicating its usefulness in bioanalysis.
Collapse
|
22
|
Zhao L, Li C, Kang X, Li Y. A visual detection strategy for SARS-CoV-2 based on dual targets-triggering DNA walker. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133252. [PMID: 36590306 PMCID: PMC9792190 DOI: 10.1016/j.snb.2022.133252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2, a highly transmissible and mutagenic virus, made huge threats to global public health. The detection strategies, which are free from testing site requirements, and the reagents and instruments are portable, are vital for early screening and play a significant role in curbing the spread. This work proposed a silver-coated glass slide (SCGS)/DNA walker based on a dual targets-triggering mechanism, enzyme-catalyzed amplification, and smartphone data analysis, which build a portable visual detection strategy for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. By this method, the detection was reflected by the ultraviolet absorbance changes and visible color changes to the naked eye which was analyzed by Red-Green-Blue (RGB) data analysis via smartphone within 30 min, simplifying the detection process and shortening the detection time. Meanwhile, the dual targets-triggering mechanism and dual signal amplification strategy ensured detection specificity and sensitivity. Further, the practicability was verified by the detection of the real sample which provided this method an application potential in SARS-CoV-2 rapid detection.
Collapse
Affiliation(s)
- Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
23
|
Li J, Dong C, Gan H, Gu X, Zhang J, Zhu Y, Xiong J, Song C, Wang L. Nondestructive separation/enrichment and rolling circle amplification-powered sensitive SERS enumeration of circulating tumor cells via aptamer recognition. Biosens Bioelectron 2023; 231:115273. [PMID: 37054599 DOI: 10.1016/j.bios.2023.115273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Nondestructive separation/enrichment and reliable detection of extremely rare circulating tumor cells (CTCs) in peripheral blood are of considerable importance in tumor precision diagnosis and treatment, yet this remains a big challenge. Herein, a novel strategy for nondestructive separation/enrichment and ultra-sensitive surface-enhanced Raman scattering (SERS)-based enumeration of CTCs is proposed via aptamer recognition and rolling circle amplification (RCA). In this work the magnetic beads modified with "Aptamer (Apt)-Primer" (AP) probes were utilized to specifically capture CTCs, and then after magnetic separation/enrichment, the RCA-powered SERS counting and benzonase nuclease cleavage-assisted nondestructive release of CTCs were realized, respectively. The AP was assembled by hybridizing the EpCAM-specific aptamer with a primer, and the optimal AP contains 4 mismatched bases. The RCA enhanced SERS signal nearly 4.5-fold, and the SERS strategy has good specificity, uniformity and reproducibility. The proposed SERS detection possesses a good linear relationship with the concentration of MCF-7 cells spiked in PBS with the limit of detection (LOD) of 2 cells/mL, which shows good potential practicality for detecting CTCs in blood with recoveries ranging from 100.56% to 116.78%. Besides, the released CTCs remained good cellular activity with the normal proliferation after re-culture for 48 h and normal growth for at least three generations. The proposed strategy of nondestructive separation/enrichment and SERS-based sensitive enumeration is promising for reliable analysis of EpCAM-positive CTCs in blood, which is expected to provide a powerful tool for analysis of extremely rare circulating tumor cells in complex peripheral blood for liquid biopsy.
Collapse
|
24
|
Cheng W, Duan C, Chen Y, Li D, Hou Z, Yao Y, Jiao J, Xiang Y. Highly Sensitive Aptasensor for Detecting Cancerous Exosomes Based on Clover-like Gold Nanoclusters. Anal Chem 2023; 95:3606-3612. [PMID: 36565296 DOI: 10.1021/acs.analchem.2c04280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exosome-based liquid biopsy technologies play an increasingly prominent role in tumor diagnosis. However, the simple and sensitive method for counting exosomes still faces considerable challenges. In this work, the CD63 aptamer-modified DNA tetrahedrons on the gold electrode were used as recognition elements for the specific capture of exosomes. Partially complementary DNA probes act as bridges linking trapped exosomes and three AuNP-DNA signal probes. This clover-like structure can tackle the recognition and sensitivity issues arising from the undesired AuNP aggregation event. When cancerous exosomes are present in the system, the high accumulation of methylene blue molecules from DNA-AuNP nanocomposites on the surface of the electrode leads to an intense current signal. According to the results, the aptasensor responds to MCF-7 cell-derived exosomes in the concentration range from 1.0 × 103 to 1.0 × 108 particles·μL-1, with the detection limit of 158 particles·μL-1. Furthermore, the aptasensor has been extended to serum samples from breast cancer patients and exhibited excellent specificity. To sum it up, the aptasensor is sensitive, straightforward, less expensive, and fully capable of receiving widespread application in clinics for tumor monitoring.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
25
|
Wei J, Ge K, Gong Y, Li L, Tang Q, Liao X, Zhang G, Gao F. DNAzyme-driven bipedal DNA walker for label-free and signal-on electrochemical detection of amyloid-β oligomer. Int J Biol Macromol 2023; 228:234-241. [PMID: 36566812 DOI: 10.1016/j.ijbiomac.2022.12.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As a common technique for detecting AβO, the enzyme-linked immunosorbent assay (ELISA) method is time-consuming, high in cost, and poor in stability. Therefore, it is necessary to develop a highly sensitive, method-simple and low-cost method for the selective detection of AβO. Here, we created a novel signal-on and label-free electrochemical aptamer sensor for the detection of AβO based on a DNAzyme-driven DNA bipedal walking strategy. Compared with common DNA walkers, bipedal DNA walkers exhibit larger walking areas and faster walking kinetics, and provide higher amplification efficiency. The DNAwalker is powered by an Mg2+-dependent DNAzyme, and the binding-induced DNAwalker continuously clamps the MB, unlocking several active G-quadruplex-forming sequences. These G-quadruplexes can be further combined by hemin to generate a G-quadruplex/heme complex, resulting in an amperometric signal, resulting in a broad proportional band from 0.1 pM to 1 nM and an excellent detection range of 46 fM. A bipedal DNA walker aptamer sensor can detect human serum AβO with remarkable specificity, high reproducibility and practical application value.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Kezhen Ge
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanxun Gong
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Liqing Li
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Qianli Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Guanqun Zhang
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Xuzhou Central Hospital, 221004 Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
26
|
Ye T, Deng B, Zhu D, Yuan M, Cao H, Hao L, Wu X, Yin F, Sun D, Zhang S, Lu Y, Xu F. Concatenated DNA Walking and Rolling Machines with Programable Interfacial Tracks for Kanamycin Detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
27
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
28
|
Wang X, Gao T, Zhu J, Long S, Zhao S, Yuan L, Wang Z. Fabrication of Channeled and Three-Dimensional Electrodes for the Integrated Capture and Detection of Invasive Circulating Tumor Cells during Hematogenous Metastasis. Anal Chem 2023; 95:2496-2503. [PMID: 36639744 DOI: 10.1021/acs.analchem.2c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hematogenous metastasis is the main route of cancer spreading, causing majority death of cancer patients. During this process, platelets in the blood are found increasingly essential to promote hematogenous metastasis by forming platelet-interacted circulating tumor cells (CTCs). Hence, we aim to fabricate an integrated method for the availability of capture and detection of such invasive CTCs. Specifically, a new form of channeled and conductive three-dimensional (3D) electrode is constructed by modifying a conductive layer and capture antibody on the templated and channeled poly(dimethylsiloxane) scaffold. The modified antibody enables the capture of the platelet-interacted CTC hybrid, while the conductive layer significantly facilitates electron transfer from electro-active signal molecules that are targeting platelets. Therefore, sensitive electrochemical detection of platelet-interacted CTCs has been realized. Efficient capture and sensitive detection have been demonstrated by this work. Additionally, dynamic analysis of patients' CTCs has also been conducted to provide accurate information about disease assessment and efficacy evaluation. The cut-off line was set as 5.15 nA based on the sample signals from healthy volunteers. Thus, stage III cancer patients with high risk of hematogenous metastasis have been identified. Together, this work shows the development of a new strategy for simultaneous capture and detection of the invasive CTC subtype form patient blood, which favors precise monitoring of hematogenous metastasis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shipeng Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Songyan Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| |
Collapse
|
29
|
Hu X, Tan W, Cheng S, Xian Y, Zhang C. Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Anal Bioanal Chem 2023:10.1007/s00216-022-04509-2. [PMID: 36599923 DOI: 10.1007/s00216-022-04509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
30
|
Li T, Xing W, Yu F, Xue Z, Yang X, Zou G, Zhu Y. Pathogen Identification: Ultrasensitive Nucleic Acid Detection via a Dynamic DNA Nanosystem-Integrated Ratiometric Electrochemical Sensing Strategy. Anal Chem 2022; 94:17725-17732. [PMID: 36472242 DOI: 10.1021/acs.analchem.2c04736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensitively determining trace nucleic acid is of great significance for pathogen identification. Herein, a dynamic DNA nanosystem-integrated ratiometric electrochemical biosensor was proposed to determine human immunodeficiency virus-associated DNA fragment (HIV-DNA) with high sensitivity and selectivity. The dynamic DNA nanosystem was composed of a target recycling unit and a multipedal DNA walker unit. Both of them could be driven by a toehold-mediated strand displacement reaction, enabling an enzyme-free and isothermal amplification strategy for nucleic acid determination. The target recycling unit could selectively recognize HIV-DNA and activate the multipedal DNA walker unit to roll on the electrode surface, which would lead to bidirectional signal variation for ratiometric readout with cascade signal amplification. Benefiting from the synergistic effect of the dynamic DNA nanosystem and the ratiometric output mode, the ultrasensitive detection of HIV-DNA was achieved in a wide linear range of 6 orders of magnitude with a limit of detection of 36.71 aM. The actual usability of the proposed sensor was also verified in complex biological samples with acceptable performance. This dynamic DNA nanosystem-integrated ratiometric sensing strategy might be promising in the development of reliable point-of-care diagnostic devices for highly sensitive and selective pathogen identification.
Collapse
Affiliation(s)
- Tao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Wei Xing
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, China
| | - Fengshan Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ziwei Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Xingdong Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen518000, China
| |
Collapse
|
31
|
Ma X, Li X, Luo G, Jiao J. DNA-functionalized gold nanoparticles: Modification, characterization, and biomedical applications. Front Chem 2022; 10:1095488. [PMID: 36583149 PMCID: PMC9792995 DOI: 10.3389/fchem.2022.1095488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
With the development of technologies based on gold nanoparticles (AuNPs), bare AuNPs cannot meet the increasing requirements of biomedical applications. Modifications with different functional ligands are usually needed. DNA is not only the main genetic material, but also a good biological material, which has excellent biocompatibility, facile design, and accurate identification. DNA is a perfect ligand candidate for AuNPs, which can make up for the shortcoming of bare AuNPs. DNA-modified AuNPs (DNA-AuNPs) have exciting features and bright prospects in many fields, which have been intensively investigated in the past decade. In this review, we summarize the various approaches for the immobilization of DNA strands on the surface of AuNPs. Representative studies for biomedical applications based on DNA-AuNPs are also discussed. Finally, we present the challenges and future directions.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Gangyin Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China,*Correspondence: Gangyin Luo, ; Jin Jiao,
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Gangyin Luo, ; Jin Jiao,
| |
Collapse
|
32
|
Hu J, Tian J, Yuan T, Yin Q, Yin J. The critical role of nanoparticle sizes in the interactions between gold nanoparticles and ABC transporters in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106286. [PMID: 36084499 DOI: 10.1016/j.aquatox.2022.106286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the increasing evidences for adenosine triphosphate-binding cassette (ABC transporters)-mediated efflux of nanoparticles, the universality of these phenomena and the determining factors for the process remained to be clarified. This paper aimed to systemically investigate the role of nanoparticle size in the interactions between adenosine triphosphate-binding cassette (ABC transporters) and gold nanoparticles (AuNPs, 3 nm, 19 nm, and 84 nm, named as Au-3, Au-19, and Au-84) in zebrafish embryos. The results showed that all the three AuNPs induced significant toxicity as reflected by delayed hatching of embryos, decreased glutathione (GSH) contents, and increased reactive oxygen species (ROS) levels. Under the hindrance of embryo chorions, smaller AuNPs could more easily accumulate in the embryos, causing higher toxicity. Addition of transporter inhibitors enhanced the accumulation and toxicity of Au-3 and Au-19, and these nanoparticles induced the expressions of abcc2 and abcb4, indicating a fact that Au-3 and Au-19 were the potential substrates of ABC transporters, but these phenomena were barely found for Au-84. On the contrary, Au-84 suppressed the gene expressions of various ABC transporters like abcc1, abcg5, and abcg8. With specific suppressors, transcription factors like nuclear factor-erythroid 2-related factor-2 (Nrf2) and pregnane X receptor (Pxr) were found to be important in the induction of ABC transporters by AuNPs. After all, these results revealed a vital role of nanoparticle sizes in the interactions between ABC transporters and AuNPs in zebrafish embryos, and the critical size could be around 19 nm. Such information would be beneficial in assessing the environmental risk of nanoparticles, as well as their interactions with other chemical toxicants.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Tongkuo Yuan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China.
| |
Collapse
|
33
|
Cui M, Xiaoyu Chen, Luo X, Zhou Z, Chen Z, Zhou Z, Zhou X, Zou H, Xu T, Wang S, Yang M. Dually stimulative single-chain polymeric nano lock with dynamic ligands for sensitive detection of circulating tumor cells. Biosens Bioelectron 2022; 217:114692. [PMID: 36150325 DOI: 10.1016/j.bios.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and monitoring. However, CTCs detection remains challenging due to their scarcity, where most of the detection methods are compromised by the loss of CTCs in pre-enrichment, and by the lack of universal antibodies for capturing different kinds of cancer cells. Herein, we report a single-chain based nano lock (SCNL) polymer incorporating dually stimulative dynamic ligands that can bind with a broad spectrum of cancer cells and CTCs overexpressing sialic acid (SA) with high sensitivity and selectivity. The high sensitivity is realized by the polymeric single chain structure and the multi-valent functional moieties, which improve the accessibility and binding stability between the target cells and the SCNL. The highly selective targeting of cancer cells is achieved by the dynamic and dually stimulative nano lock structures, which can be unlocked and functionalized upon simultaneous exposure to overexpressed SA and acidic microenvironment. We applied the SCNL to detecting cancer cells and CTCs in clinical samples, where the detection threshold of SCNL reached 4 cells/mL. Besides CTCs enumeration, the SCNL approach could also be extended to metastasis assessment through monitoring the expressing level of surface SA on cancer cells.
Collapse
Affiliation(s)
- Miao Cui
- Shenzhen Bay Laboratory, Shenzhen, 518132, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xu Luo
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiji Chen
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengdong Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Heng Zou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
34
|
Liu X, Xiang J, Cheng H, Wang Y, Li F. Engineering Multipedal
DNA
Walker on Paper for Sensitive Electrochemical Detection of Plant
MicroRNA. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Junzhu Xiang
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Hao Cheng
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Yuying Wang
- College of plant health & medicine Qingdao Agricultural University Qingdao 266109 People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 People's Republic of China
| |
Collapse
|
35
|
Kadaira K, Kuramitz H, Sugawara K. Designing a Peptide‐Modified Screen‐Printed Gold Electrode as a Sensor for the Human Monocytic Leukemia Cell Line. ELECTROANAL 2022. [DOI: 10.1002/elan.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
A sensitive electrochemical sensor based on PtNPs@Cu-MOF signal probe and DNA walker signal amplification for Pb2+ detection. Bioelectrochemistry 2022; 146:108134. [DOI: 10.1016/j.bioelechem.2022.108134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 12/31/2022]
|
37
|
Radfar S, Ghanbari R, Alizadeh A, Safaei Z, Repo E. A Nonenzymatic DNA Nanomachine for Detection of Biomolecules by DNA Walker Strategy and Radical Polymerization Signal Amplification. ChemistrySelect 2022. [DOI: 10.1002/slct.202200724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sasan Radfar
- Stem Cell and Regenerative Medicine Center of Excellence Tehran University of Medical Science Tehran Iran
| | - Reza Ghanbari
- Department of Biological Science and Technology Najafabad Branch Islamic Azad University Najafabad Iran
| | - Abdolhamid Alizadeh
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University Tehran 1993893973 Iran
- Research club iQneiform Oy Juva Finland
| | | | - Eveliina Repo
- Department of Separation Science School of Engineering Science LUT University Finland
| |
Collapse
|
38
|
Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA Walkers for Biosensing Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200327. [PMID: 35460209 PMCID: PMC9366574 DOI: 10.1002/advs.202200327] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer-associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection- of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker-based biosensors are discussed.
Collapse
Affiliation(s)
- Lu Song
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Zhuge
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| | - Xiaolei Zuo
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Min Li
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fang Wang
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| |
Collapse
|
39
|
Li K, Luo S, Guan S, Situ B, Wu Y, Ou Z, Tao M, Zheng L, Cai Z. Tetrahedral framework nucleic acids linked CRISPR/Cas13a signal amplification system for rare tumor cell detection. Talanta 2022; 247:123531. [PMID: 35623245 DOI: 10.1016/j.talanta.2022.123531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
The sensitive and accurate detection of rare tumor cells provides precise diagnosis and dynamic assessment information in various tumor spectrums. However, rare tumor cells assay is still a challenge due to the exceedingly rare presence in the blood. In this research, we develop a fluorescent approach for the identification of rare tumor cells based on a combination of immunosorbent capture and a three-step signal amplification strategy. First, rare tumor cells are captured by immunoadsorption on 96-well plates. Second, self-synthesized tetrahedral framework nucleic acids (tFNAs) spontaneously anchor into the lipid bilayer of rare tumor cells, resulting in a "one to more" amplification effect. Then, the double-stranded DNA (dsDNA) binds to the vertices of the tFNAs and generates a large amount of target RNA by T7 polymerase, which is the secondary signal amplification. Finally, the target RNA activates the collateral cleavage ability of CRISPR/Cas13a, and the reporter RNA is cleaved for third signal amplification. The detection limit of the proposed method is down to 1 cell mL-1. Furthermore, the tFNAs-Cas13a system is also shown to be capable of detecting rare tumor cells in spiked-in samples and clinical blood samples. This platform enables speedy detection of rare tumor cells with high sensitivity and good specificity, and shows great potential for tumor diagnosis.
Collapse
Affiliation(s)
- Kerun Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China; Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Foshan, 528300, Guangdong Province, China.
| | - Zhen Cai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
40
|
You J, Park C, Jang K, Park J, Na S. Novel Detection Method for Circulating EGFR Tumor DNA Using Gravitationally Condensed Gold Nanoparticles and Catalytic Walker DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3301. [PMID: 35591635 PMCID: PMC9101948 DOI: 10.3390/ma15093301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
The detection of circulating tumor DNA is a major challenge in liquid biopsies for cancer. Conventionally, quantitative polymerase chain reactions or next-generation sequencing are used to detect circulating tumor DNA; however, these techniques require significant expertise, and are expensive. Owing to the increasing demand for a simple diagnostic method and constant monitoring of cancer, a cost-effective detection technique that can be conducted by non-experts is required. The aim of this study was to detect the circulating tumor DNA containing the epidermal growth factor receptor (EGFR) exon 19 deletion, which frequently occurs in lung cancer. By applying walker DNA to a catalytic hairpin assembly and using the differential dispersibility of gold nanoparticles, we detected EGFR exon 19 deletion mutant #2 DNA associated with lung cancer. Our sensing platform exhibited a limit of detection of 38.5 aM and a selectivity of 0.1% for EGFR exon 19 wild-type DNA. Moreover, we tested and compared EGFR exon 19 deletion mutants #1 and #3 to evaluate the effect of base pair mismatches on the performance of the said technique.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| | - Chanho Park
- Division of Foundry, Samsung Electronics, Hwaseong-si 18448, Korea;
| | - Kuewhan Jang
- School of Mechanical Engineering, Hoseo University, Asan 31499, Korea;
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 16419, Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| |
Collapse
|
41
|
Zhao LD, Yang X, Zhong X, zhuo Y. Advances in Electrochemiluminescence Biosensors Based on DNA Walkers. Chempluschem 2022; 87:e202200070. [DOI: 10.1002/cplu.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Dan Zhao
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Zhong
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - ying zhuo
- Southwest University College of Chemistry and Chemical Engineering No.2 Tiansheng RoadBeiBei District 400715 Chongqing CHINA
| |
Collapse
|
42
|
Wang FT, Huang KJ, Hou YY, Tan X, Wu X, Yu XM, Zhou X. Integration of a capacitor to a 3-D DNA walker and a biofuel cell-based self-powered system for ultrasensitive bioassays of microRNAs. NANOSCALE 2022; 14:815-822. [PMID: 34984426 DOI: 10.1039/d1nr06271a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A self-powered microRNA biosensor with triple signal amplification systems was assembled through the integration of three-dimensional DNA walkers, enzymatic biofuel cells and a capacitor. The DNA walker is designed from an enzyme-free target triggered catalytic hairpin assembly of modified gold nanoparticles. When triggered by the target microRNA, the DNA walker will move along the catalytic hairpin track, resulting in a payload release of glucose oxidase. The enzymatic biofuel cell contains the glucose oxidase bioanode and a bilirubin oxidase biocathode that bring a dramatic open circuit voltage to realize the self-powered bioassays of microRNA. A capacitor is further coupled with the enzymatic biofuel cell to further amplify the electrochemical signal, and the sensitivity increases 28.82 times through optimizing the matching capacitor. Based on this design, the present biosensor shows high performance, especially for detection limit and sensitivity. Furthermore, the present biosensor was successfully applied for serum samples, directly demonstrating its good application in clinical biomedicine and disease diagnosis.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China.
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China.
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xin-Meng Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
43
|
Peng Y, Lu B, Deng Y, Yang N, Li G. A dual-recognition-controlled electrochemical biosensor for accurate and sensitive detection of specific circulating tumor cells. Biosens Bioelectron 2022; 201:113973. [PMID: 35021133 DOI: 10.1016/j.bios.2022.113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Accurate and sensitive assay of specific circulating tumor cells (CTCs) is of importance for the diagnosis, treatment, and metastasis monitoring of cancer. Herein, we have proposed a dual-recognition-controlled electrochemical biosensor in this work for the detection of specific CTCs. To this sensor, two aptamer hairpin probes are designed to be able to separately bind to two adjacent proteins on the cell membrane to activate the associative toehold for strand displacement reaction, which will then trigger a dimer-like rolling cycle amplification reaction, and finally produce significantly amplified electrochemical signals for sensitive quantification of target CTCs. In our design, only the case that the two proteins are simultaneously expressed on the cell membrane can result in obvious signal responses, which may greatly improve the accuracy of CTCs analysis. The proposed biosensor can possess excellent selectivity to distinguish target cells from different cancer cells. Moreover, the combination of rolling cycle amplification and DNA nanostructure capture probes can effectively lower the detection limit to 3 cells mL-1. Notably, our biosensor can be applied to the assay of the target CTCs in the complex whole blood matrixes, verifying its strong stability and anti-interference. Thus, the as-proposed dual-recognition-controlled electrochemical biosensor may exhibit great promise in clinical cancer diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Bing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Nana Yang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
44
|
Wen J, Liu J, Wu J, He D. Rapid measurement of waterborne bacterial viability based on difunctional gold nanoprobe. RSC Adv 2022; 12:1675-1681. [PMID: 35425161 PMCID: PMC8978865 DOI: 10.1039/d1ra07287k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities. This dGNP-based colorimetric assay has a fast response and can be accomplished within 10 min. Moreover, the proposed colorimetric method is able to measure bacterial viability between 0% and 100%. The method can also measure the viability of other bacteria including Staphylococcus aureus, Shewanella oneidensis, and Escherichia coli O157H7. Furthermore, the proposed method has acceptable recovery (95.5–104.5%) in measuring bacteria-spiked real samples. This study offers a simple and effective method for the rapid measurement of bacterial viability and therefore should have application potential in medical diagnosis, food safety, and environmental monitoring. A colorimetric method is proposed to measure waterborne bacterial viability by using a difunctional gold nanoprobe that can generate color signals while recognizing bacterial suspensions of different viabilities.![]()
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianbo Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jialin Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Daigui He
- College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429
| |
Collapse
|
45
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
Recent Advances in Exosome Analysis Assisted by Functional Nucleic Acid-based Signal Amplification Technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
48
|
Lv Z, Wang Q, Yang M. Multivalent Duplexed-Aptamer Networks Regulated a CRISPR-Cas12a System for Circulating Tumor Cell Detection. Anal Chem 2021; 93:12921-12929. [PMID: 34533940 DOI: 10.1021/acs.analchem.1c02228] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although circulating tumor cells (CTCs) have great potential to act as the mini-invasive liquid biopsy cancer biomarker, a rapid and sensitive CTC detection method remains lacking. CRISPR-Cas12a has recently emerged as a promising tool in biosensing applications with the characteristic of fast detection, easy operation, and high sensitivity. Herein, we reported a CRISPR-Cas12a-based CTC detection sensor that is regulated by the multivalent duplexed-aptamer networks (MDANs). MDANs were synthesized on a magnetic bead surface by rolling circle amplification (RCA), which contain multiple duplexed-aptamer units that allow structure switching induced by cell-binding events. The presence of target cells can trigger the release of free "activator DNA" from the MDANs structure to activate the downstream CRISPR-Cas12a for signal amplification. Furthermore, the 3D DNA network formed by RCA products also provided significantly higher sensitivity than the monovalent aptamer. As a proof-of-concept study, we chose the most widely used sgc8 aptamer that specifically recognizes CCRF-CEM cells to validate the proposed approach. The MDANs-Cas12a system could afford a simple and fast CTC detection workflow with a detection limit of 26 cells mL-1. We also demonstrated that the MDANs-Cas12a could directly detect the CTCs in human blood samples, indicating a great potential of the MDANs-Cas12a in clinical CTC-based liquid biopsy.
Collapse
Affiliation(s)
- Zhengxian Lv
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering and State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering and State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
49
|
Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H. Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol 2021; 907:174294. [PMID: 34217712 DOI: 10.1016/j.ejphar.2021.174294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Lijie Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuewei Yin
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zonghong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mengxian Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tuling Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chen Chen
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, China.
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
50
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|