1
|
Phua DYZ, Sun X, Alushin GM. Force-activated zyxin assemblies coordinate actin nucleation and crosslinking to orchestrate stress fiber repair. Curr Biol 2025; 35:854-870.e9. [PMID: 39952249 PMCID: PMC11867737 DOI: 10.1016/j.cub.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIN-11, Isl-1, and Mec-3 (LIM)-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin's force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin's LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multivalent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin-depleted regions are rapidly restored. Thus, zyxin's force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.
Collapse
Affiliation(s)
- Donovan Y Z Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA.
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Kurasawa S, Ganaha A, Ayabe S, Yoshiki A, Kawama F, Kitayama S, Tabuchi K, Yamashita K, Ueyama T. Hearing loss occurs prior to thrombocytopenia in both mice and humans with DFNA1. FASEB J 2025; 39:e70309. [PMID: 39831886 DOI: 10.1096/fj.202402118r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1)KIΔv3/KIΔv3, in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.R1213X) was knocked into the ATG site of Dia1. Additionally, the exon 7 of Dia1 was deleted using genome editing to knock out (KO) Dia1-v3, a specific variant of Dia1. AcGFP-DIA1(p.R1213X) expression and endogenous DIA1 KO were confirmed in cochleae and platelets. Hearing function in DIA1KIΔv3/KIΔv3, but not DIA1KIΔv3/+ mice, evaluated by auditory brainstem response, was significantly worse at low frequencies compared to wild-type (WT) mice starting at 3 months of age (3M), with progressive deterioration. Using confocal microscopy and scanning electron microscopy, various stereociliary deformities were identified in the cochleae of DIA1KIΔv3/KIΔv3 mice. Platelet counts in DIA1KIΔv3/KIΔv3, but not DIA1KIΔv3/+ mice, were significantly lower than those in WT mice at 12M, but not at 6M. Furthermore, in a cohort of eight patients with DFNA1 harboring the p.R1213X mutation, HL preceded thrombocytopenia in three individuals. Thus, in both mice and humans, though HL and thrombocytopenia are progressive, HL manifests earlier than thrombocytopenia. Unlike myosin heavy chain 9 (MYH9)-related diseases, thrombocytopenia cannot be a predictive marker for HL in DFNA1. Nevertheless, monitoring platelet counts could provide insights into the progression of the hearing impairments in patients with DFNA1.
Collapse
Affiliation(s)
- Shunkou Kurasawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Akira Ganaha
- Department of Otolaryngology-Head and Neck Surgery, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Fumiya Kawama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Shota Kitayama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | | | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
3
|
Wang M, Zhang B, Jin F, Li G, Cui C, Feng S. Exosomal MicroRNAs: Biomarkers of moyamoya disease and involvement in vascular cytoskeleton reconstruction. Heliyon 2024; 10:e32022. [PMID: 38868045 PMCID: PMC11168404 DOI: 10.1016/j.heliyon.2024.e32022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Moyamoya disease currently lacks a suitable method for early clinical screening.This study aimed to identify a simple and feasible clinical screening index by investigating microRNAs carried by peripheral blood exosomes. Experimental subjects participated in venous blood collection, and exosomes were isolated using Exquick-related technology. Sequencing was performed on the extracted exosomal ribonucleic acids (RNAs) to identify differential microRNAs. Verification of the results involved selecting relevant samples from the genetic database. The study successfully pinpointed a potential marker for early screening, hsa-miR-328-3p + hsa-miR-200c-3p carried by peripheral blood exosomes. Enrichment analysis of target genes revealed associations with intercellular junctions, impaired cytoskeletal regulation, and increased fibroblast proliferation, leading to bilateral internal carotid artery neointimal expansion and progressive stenosis. These findings establish the diagnostic value of hsa-miR-328-3p+hsa-miR-200c-3p in screening moyamoya disease, while also contributing to a deeper understanding of its underlying pathophysiology. Significant differences in microRNA expressions derived from peripheral blood exosomes were observed between moyamoya disease patients and control subjects. Consequently, the utilization of peripheral blood exosomes, specifically hsa-miR-328-3p + hsa-miR-200c-3p, holds potential for diagnostic screening purposes.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Bin Zhang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| | - Genhua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| |
Collapse
|
4
|
Phua DY, Sun X, Alushin GM. Force-activated zyxin assemblies coordinate actin nucleation and crosslinking to orchestrate stress fiber repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594765. [PMID: 38798419 PMCID: PMC11118565 DOI: 10.1101/2024.05.17.594765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIM-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin's force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin's LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multi-valent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin depleted regions are rapidly restored. Thus, zyxin's force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.
Collapse
Affiliation(s)
- Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Theophall GG, Ramirez LMS, Premo A, Reverdatto S, Manigrasso MB, Yepuri G, Burz DS, Ramasamy R, Schmidt AM, Shekhtman A. Disruption of the productive encounter complex results in dysregulation of DIAPH1 activity. J Biol Chem 2023; 299:105342. [PMID: 37832872 PMCID: PMC10656230 DOI: 10.1016/j.jbc.2023.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.
Collapse
Affiliation(s)
- Gregory G Theophall
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Lisa M S Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Michaele B Manigrasso
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Ravichandran Ramasamy
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA.
| |
Collapse
|
7
|
Lakha R, Hachicho C, Mehlenbacher MR, Wilcox DE, Austin RN, Vizcarra CL. Metallothionein-3 attenuates the effect of Cu 2+ ions on actin filaments. J Inorg Biochem 2023; 242:112157. [PMID: 36801620 DOI: 10.1016/j.jinorgbio.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Metallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound. None of these forms of MT-3 accelerated actin filament polymerization in vitro, either with or without the actin binding protein profilin. Furthermore, using a co-sedimentation assay, we did not observe Zn-bound MT-3 in complex with actin filaments. Cu2+ ions on their own induced rapid actin polymerization, an effect that we attribute to filament fragmentation. This effect of Cu2+ is reversed by adding either EGTA or Zn-bound MT-3, indicating that either molecule can chelate Cu2+ from actin. Altogether, our data indicate that purified recombinant MT-3 does not directly bind actin but it does attenuate the Cu-induced fragmentation of actin filaments.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | |
Collapse
|
8
|
Gan NS, Oziębło D, Skarżyński H, Ołdak M. Monogenic Causes of Low-Frequency Non-Syndromic Hearing Loss. Audiol Neurootol 2023; 28:327-337. [PMID: 37121227 DOI: 10.1159/000529464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Low-frequency non-syndromic hearing loss (LFNSHL) is a rare form of hearing loss (HL). It is defined as HL at low frequencies (≤2,000 Hz) resulting in a characteristic ascending audiogram. LFNSHL is usually diagnosed postlingually and is progressive, leading to HL affecting other frequencies as well. Sometimes it occurs with tinnitus. Around half of the diagnosed prelingual HL cases have a genetic cause and it is usually inherited in an autosomal recessive mode. Postlingual HL caused by genetic changes generally has an autosomal dominant pattern of inheritance and its incidence remains unknown. SUMMARY To date, only a handful of genes have been found as causing LFNSHL: well-established WFS1 and, reported in some cases, DIAPH1, MYO7A, TNC, and CCDC50 (respectively, responsible for DFNA6/14/38, DFNA1, DFNA11, DFNA56, and DFNA44). In this review, we set out audiological phenotypes, causative genetic changes, and molecular mechanisms leading to the development of LFNSHL. KEY MESSAGES LFNSHL is most commonly caused by pathogenic variants in the WFS1 gene, but it is also important to consider changes in other HL genes, which may result in similar audiological phenotype.
Collapse
Affiliation(s)
- Nina Sara Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
9
|
Orman M, Landis M, Oza A, Nambiar D, Gjeci J, Song K, Huang V, Klestzick A, Hachicho C, Liu SQ, Kamm JM, Bartolini F, Vadakkan JJ, Rojas CM, Vizcarra CL. Alterations to the broad-spectrum formin inhibitor SMIFH2 modulate potency but not specificity. Sci Rep 2022; 12:13520. [PMID: 35941181 PMCID: PMC9360399 DOI: 10.1038/s41598-022-17685-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022] Open
Abstract
SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.
Collapse
Affiliation(s)
- Marina Orman
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Maya Landis
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Aisha Oza
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Joana Gjeci
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Kristen Song
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Vivian Huang
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Su Qing Liu
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Judith M Kamm
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
11
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
12
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|