1
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Hall I, O'Steen M, Gold S, C Keane S, Weidmann CA. Template switching enables chemical probing of native RNA structures. RNA (NEW YORK, N.Y.) 2024; 31:113-125. [PMID: 39438135 DOI: 10.1261/rna.079926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
RNAs are often studied in nonnative sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods-a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added postprobing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5' and 3' ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced nonnative interactions in the full-length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to nonnative sequence elements.
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin O'Steen
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sophie Gold
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Waldern JM, Taylor C, Giannetti CA, Irving PS, Allen SR, Zhu M, Backofen R, Mathews D, Weeks KM, Laederach A. Structural determinants of inverted Alu-mediated backsplicing revealed by -MaP and -JuMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628372. [PMID: 39713457 PMCID: PMC11661277 DOI: 10.1101/2024.12.13.628372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Biogenesis of circular RNA usually involves a backsplicing reaction where the downstream donor site is ligated to the upstream acceptor site by the spliceosome. For this reaction to occur, it is hypothesized that these sites must be in proximity. Inverted repeat sequences, such as Alu elements, in the upstream and downstream introns are predicted to base-pair and represent one mechanism for inducing proximity. Here, we investigate the pre-mRNA structure of the human HIPK3 gene at exon 2, which forms a circular RNA via backsplicing. We leverage multiple chemical probing techniques, including the recently developed SHAPE- JuMP strategy, to characterize secondary and tertiary interactions in the pre- mRNA that govern backsplicing. Our data confirm that the antisense Alu elements, AluSz(-) and AluSq2(+) in the upstream and downstream introns, form a highly- paired interaction. Circularization requires formation of long-range Alu-mediated base pairs but does not require the full-length AluSq2(+). In addition to confirming long-range base pairs, our SHAPE-JuMP data identified multiple long-range interactions between non-pairing nucleotides. Genome-wide analysis of inverted repeats flanking circular RNAs confirm that their presence favors circularization, but the overall effect is modest. Together these results suggest that secondary structure considerations alone cannot fully explain backsplicing and additional interactions are key.
Collapse
|
4
|
Wu T, Cheng AY, Zhang Y, Xu J, Wu J, Wen L, Li X, Liu B, Dou X, Wang P, Zhang L, Fei J, Li J, Ouyang Z, He C. KARR-seq reveals cellular higher-order RNA structures and RNA-RNA interactions. Nat Biotechnol 2024; 42:1909-1920. [PMID: 38238480 PMCID: PMC11255127 DOI: 10.1038/s41587-023-02109-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
RNA fate and function are affected by their structures and interactomes. However, how RNA and RNA-binding proteins (RBPs) assemble into higher-order structures and how RNA molecules may interact with each other to facilitate functions remain largely unknown. Here we present KARR-seq, which uses N3-kethoxal labeling and multifunctional chemical crosslinkers to covalently trap and determine RNA-RNA interactions and higher-order RNA structures inside cells, independent of local protein binding to RNA. KARR-seq depicts higher-order RNA structure and detects widespread intermolecular RNA-RNA interactions with high sensitivity and accuracy. Using KARR-seq, we show that translation represses mRNA compaction under native and stress conditions. We determined the higher-order RNA structures of respiratory syncytial virus (RSV) and vesicular stomatitis virus (VSV) and identified RNA-RNA interactions between the viruses and the host RNAs that potentially regulate viral replication.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Anthony Youzhi Cheng
- Department of Genetics and Genome Sciences and Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuexiu Zhang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jinjun Wu
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Li Wen
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Xiao Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Bei Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Xiaoyang Dou
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Linda Zhang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
6
|
Cao X, Zhang Y, Ding Y, Wan Y. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol 2024; 25:784-801. [PMID: 38926530 DOI: 10.1038/s41580-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Collapse
Affiliation(s)
- Xinang Cao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Shioi R, Kool ET. Chemical diversity of reagents that modify RNA 2'-OH in water: a review. Chem Sci 2024:d4sc05317f. [PMID: 39309104 PMCID: PMC11412305 DOI: 10.1039/d4sc05317f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Electrophilic water-soluble compounds have proven versatile in reacting selectively with 2'-OH groups in RNA, enabling structure mapping, probing, caging, labeling, crosslinking, and conjugation of RNAs in vitro and in living cells. While early work focused on one or two types of reagents with limited properties, recent studies have greatly diversified the structure, properties, and applications of these reagents. Here we review the scope of documented RNA hydroxyl-reactive species reported to date, with an eye to the effects of chemical structure on reactivity with RNA and other useful properties. Multiple forms of carbonyl electrophiles are now known to react at the 2'-OH, and recently, sulfonyl and aryl electrophiles have also been documented to form bonds there in high yields as well. In addition to electrophilicity, data also point to significant effects of reagent stability, steric bulk, and chirality on reaction yields and selectivity. Finally, we outline reagent properties and principles that define utility in applications with RNA, with an eye to the design of future reagents.
Collapse
Affiliation(s)
- Ryuta Shioi
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Eric T Kool
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
8
|
Sha CM, Wang J, Dokholyan NV. Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks. Biophys J 2024; 123:2671-2681. [PMID: 37838833 PMCID: PMC11393712 DOI: 10.1016/j.bpj.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Fast and accurate 3D RNA structure prediction remains a major challenge in structural biology, mostly due to the size and flexibility of RNA molecules, as well as the lack of diverse experimentally determined structures of RNA molecules. Unlike DNA structure, RNA structure is far less constrained by basepair hydrogen bonding, resulting in an explosion of potential stable states. Here, we propose a convolutional neural network that predicts all pairwise distances between residues in an RNA, using a recently described smooth parametrization of Euclidean distance matrices. We achieve high-accuracy predictions on RNAs up to 100 nt in length in fractions of a second, a factor of 107 faster than existing molecular dynamics-based methods. We also convert our coarse-grained machine learning output into an all-atom model using discrete molecular dynamics with constraints. Our proposed computational pipeline predicts all-atom RNA models solely from the nucleotide sequence. However, this method suffers from the same limitation as nucleic acid molecular dynamics: the scarcity of available RNA crystal structures for training.
Collapse
Affiliation(s)
- Congzhou M Sha
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Nikolay V Dokholyan
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Chemistry, Penn State University, State College, Pennsylvania; Department of Biomedical Engineering, Penn State University, State College, Pennsylvania.
| |
Collapse
|
9
|
Li T, Cheng C, Liu J. Chemical and Enzyme-Mediated Chemical Reactions for Studying Nucleic Acids and Their Modifications. Chembiochem 2024; 25:e202400220. [PMID: 38742371 DOI: 10.1002/cbic.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nucleic acids are genetic information-carrying molecules inside cells. Apart from basic nucleotide building blocks, there exist various naturally occurring chemical modifications on nucleobase and ribose moieties, which greatly increase the encoding complexity of nuclei acids, contribute to the alteration of nucleic acid structures, and play versatile regulation roles in gene expression. To study the functions of certain nucleic acids in various biological contexts, robust tools to specifically label and identify these macromolecules and their modifications, and to illuminate their structures are highly necessary. In this review, we summarize recent technique advances of using chemical and enzyme-mediated chemical reactions to study nucleic acids and their modifications and structures. By highlighting the chemical principles of these techniques, we aim to present a perspective on the advancement of the field as well as to offer insights into developing specific chemical reactions and precise enzyme catalysis utilized for nucleic acids and their modifications.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Chongguang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
10
|
Irving PS, Weeks KM. RNAvigate: efficient exploration of RNA chemical probing datasets. Nucleic Acids Res 2024; 52:2231-2241. [PMID: 38348910 PMCID: PMC10954457 DOI: 10.1093/nar/gkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical probing technologies enable high-throughput examination of diverse structural features of RNA, including local nucleotide flexibility, RNA secondary structure, protein and ligand binding, through-space interaction networks, and multistate structural ensembles. Deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multilayered relationships. Current platforms lack the broad accessibility, flexibility and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library that automatically parses 21 standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs 18 plot types. RNAvigate enables efficient exploration of nuanced relationships between multiple layers of RNA structure information and across multiple experimental conditions. Compatibility with Jupyter notebooks enables nonburdensome, reproducible, transparent and organized sharing of multistep analyses and data visualization strategies. RNAvigate simplifies and accelerates discovery and characterization of RNA-centric functions in biology.
Collapse
Affiliation(s)
- Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
11
|
Jolley EA, Bevilacqua PC. Single-cell probing of RNA structure. Nat Methods 2024; 21:377-378. [PMID: 38321343 DOI: 10.1038/s41592-024-02178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Xiao L, Fang L, Kool ET. 2'-OH as a universal handle for studying intracellular RNAs. Cell Chem Biol 2024; 31:110-124. [PMID: 37992716 PMCID: PMC10841764 DOI: 10.1016/j.chembiol.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
RNA plays pivotal roles in most cellular processes, serving as both the traditional carrier of genetic information and as a key regulator of cellular functions. The advent of chemical technologies has contributed critically to the analysis of cellular RNA structures, functions, and interactions. Many of these methods and molecules involve the utilization of chemically reactive handles in RNAs, either introduced externally or inherent within the polymer itself. Among these handles, the 2'-hydroxyl (2'-OH) group has emerged as an exceptionally well-suited and general chemical moiety for the modification and profiling of RNAs in intracellular studies. In this review, we provide an overview of the recent advancements in intracellular applications of acylation at the 2'-OH group of RNA. We outline progress made in probing RNA structure and interactomes, controlling RNA function, RNA imaging, and analyzing RNA-small molecule interactions, all achieved in living cells through this simple chemical handle on the biopolymer.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Shioi R, Xiao L, Kool ET. Aqueous Activation of RNA 2'-OH for Conjugation with Amines and Thiols. Bioconjug Chem 2024; 35:43-50. [PMID: 38150592 DOI: 10.1021/acs.bioconjchem.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Strategies for covalent modification of RNA are important for enabling biological studies of the biopolymer and for enhancing properties of therapeutic RNAs. While a number of electrophiles have been observed to react with RNA, few methods exist for reaction with nucleophiles. Here, we describe new reagents that enable efficient conjugation of amines and other nucleophiles to unmodified RNA postsynthetically via transient activation of 2'-OH groups. Reaction of single-stranded RNA in aqueous solution with phenolic imidazolecarbamates at room temperature results in stoichiometric and superstoichiometric yields of imidazolecarbonyl group adducts, and control experiments with DNA confirm the site of reaction in RNA as 2'-OH. Subsequent incubation of imidazolecarbonyl-activated RNAs with primary or selected secondary amines results in rapid, high-yield conversion to carbamate conjugates. The activation and subsequent nucleophile reaction can be carried out either stepwise or in a one-pot reaction. Thiols and phenol species react to yield (thio)carbonate adducts, and amino acid sidechains also react, suggesting possible future utility for protein conjugates and analysis of protein-RNA interactions. The activation method is found to be selective to unpaired regions of RNA, and can be directed to a specific location in a strand by use of a loop-inducing helper DNA. The results establish novel and efficient reagents and methods for modifying RNA postsynthetically with nucleophiles.
Collapse
Affiliation(s)
- Ryuta Shioi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lu Xiao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Irving PS, Weeks KM. RNAvigate: Efficient exploration of RNA chemical probing datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538311. [PMID: 37162917 PMCID: PMC10168276 DOI: 10.1101/2023.04.25.538311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical probing technologies enable high-throughput examination of diverse structural features of RNA including local nucleotide flexibility, RNA secondary structure, protein- and ligand-binding, through-space interaction networks, and multi-state structural ensembles. Performing these experiments, by themselves, does not directly lead to biological insight. Instead, deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multi-layered relationships. Current platforms lack the broad accessibility, flexibility, and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library. RNAvigate currently automatically parses twenty-one standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs eighteen plot types. These features enable efficient exploration of nuanced relationships between chemical probing data, RNA structure, and motif annotations across multiple experimental samples. Compatibility with Jupyter Notebooks enables non-burdensome, reproducible, transparent and organized sharing of multi-step analyses and data visualization strategies. RNAvigate simplifies examination of multi-layered RNA structure information and accelerates discovery and characterization of RNA-centric functions in biology.
Collapse
Affiliation(s)
- Patrick S. Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
15
|
Langeberg CJ, Kieft JS. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res 2023; 51:e100. [PMID: 37791881 PMCID: PMC10639074 DOI: 10.1093/nar/gkad784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
16
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
17
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
18
|
Langeberg CJ, Kieft JS. A Generalizable Scaffold-Based Approach for Structure Determination of RNAs by Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547879. [PMID: 37461535 PMCID: PMC10350027 DOI: 10.1101/2023.07.06.547879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules remain challenging targets due to their intrinsic low signal to noise ratio. Methods to resolve small proteins have been applied but development of similar approaches for small structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5 - 5.0 Å. While lacking the detail of true high-resolution maps, these are suitable for model building and preliminary structure determination. We demonstrate this method faithfully recovers the structure of several RNA elements of known structure, and it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a system for RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
|
19
|
Abstract
RNA is a key regulator of almost every cellular process, and the structures adopted by RNA molecules are thought to be central to their functions. The recent fast-paced evolution of high-throughput sequencing-based RNA structure mapping methods has enabled the rapid in vivo structural interrogation of entire cellular transcriptomes. Collectively, these studies are shedding new light on the long underestimated complexity of the structural organization of the transcriptome - the RNA structurome. Moreover, recent analyses are challenging the view that the RNA structurome is a static entity by revealing how RNA molecules establish intricate networks of alternative intramolecular and intermolecular interactions and that these ensembles of RNA structures are dynamically regulated to finely tune RNA functions in living cells. This new understanding of how RNA can shape cell phenotypes has important implications for the development of RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
20
|
Velema WA, Lu Z. Chemical RNA Cross-Linking: Mechanisms, Computational Analysis, and Biological Applications. JACS AU 2023; 3:316-332. [PMID: 36873678 PMCID: PMC9975857 DOI: 10.1021/jacsau.2c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
In recent years, RNA has emerged as a multifaceted biomolecule that is involved in virtually every function of the cell and is critical for human health. This has led to a substantial increase in research efforts to uncover the many chemical and biological aspects of RNA and target RNA for therapeutic purposes. In particular, analysis of RNA structures and interactions in cells has been critical for understanding their diverse functions and druggability. In the last 5 years, several chemical methods have been developed to achieve this goal, using chemical cross-linking combined with high-throughput sequencing and computational analysis. Applications of these methods resulted in important new insights into RNA functions in a variety of biological contexts. Given the rapid development of new chemical technologies, a thorough perspective on the past and future of this field is provided. In particular, the various RNA cross-linkers and their mechanisms, the computational analysis and challenges, and illustrative examples from recent literature are discussed.
Collapse
Affiliation(s)
- Willem A. Velema
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Zhipeng Lu
- Department
of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
21
|
Wang J, Sha CM, Dokholyan NV. Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology. Methods Mol Biol 2023; 2709:51-64. [PMID: 37572272 PMCID: PMC10680996 DOI: 10.1007/978-1-0716-3417-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Precise RNA tertiary structure prediction can aid in the design of RNA nanoparticles. However, most existing RNA tertiary structure prediction methods are limited to small RNAs with relatively simple secondary structures. Large RNA molecules usually have complex secondary structures, including multibranched loops and pseudoknots, allowing for highly flexible RNA geometries and multiple stable states. Various experiments and bioinformatics analyses can often provide information about the distance between atoms (or residues) in RNA, which can be used to guide the prediction of RNA tertiary structure. In this chapter, we will introduce a platform, iFoldNMR, that can incorporate non-exchangeable imino protons resonance data from NMR as restraints for RNA 3D structure prediction. We also introduce an algorithm, DVASS, which optimizes distance restraints for better RNA 3D structure prediction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Congzhou M Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State University, State College, PA, USA.
- Department of Biomedical Engineering, Penn State University, State College, PA, USA.
| |
Collapse
|
22
|
Klotz K, Radwan Y, Chakrabarti K. Dissecting Functional Biological Interactions Using Modular RNA Nanoparticles. Molecules 2022; 28:228. [PMID: 36615420 PMCID: PMC9821959 DOI: 10.3390/molecules28010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid nanoparticles (NANPs) are an exciting and innovative technology in the context of both basic and biomedical research. Made of DNA, RNA, or their chemical analogs, NANPs are programmed for carrying out specific functions within human cells. NANPs are at the forefront of preventing, detecting, and treating disease. Their nucleic acid composition lends them biocompatibility that provides their cargo with enhanced opportunity for coordinated delivery. Of course, the NANP system of targeting specific cells and tissues is not without its disadvantages. Accumulation of NANPs outside of the target tissue and the potential for off-target effects of NANP-mediated cargo delivery present challenges to research and medical professionals and these challenges must be effectively addressed to provide safe treatment to patients. Importantly, development of NANPs with regulated biological activities and immunorecognition becomes a promising route for developing versatile nucleic acid therapeutics. In a basic research context, NANPs can assist investigators in fine-tuning the structure-function relationship of final formulations and in this review, we explore the practical applications of NANPs in laboratory and clinical settings and discuss how we can use established nucleic acid research techniques to design effective NANPs.
Collapse
Affiliation(s)
- Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Yasmine Radwan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
23
|
Zhang J, Fei Y, Sun L, Zhang QC. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods 2022; 19:1193-1207. [PMID: 36203019 DOI: 10.1038/s41592-022-01623-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs' specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions. Here, we summarize the state-of-the-art experimental and computational technologies developed to evaluate RNA secondary and tertiary structures. We also highlight how the rapid increase of experimental data facilitates the integrative modeling approaches for better resolving RNA structures. Finally, we provide our thoughts on the latest advances and challenges in RNA structure determination methods, as well as on future directions for both experimental approaches and artificial intelligence-based computational tools to model RNA structure. Ultimately, we hope the technological advances will deepen our understanding of RNA biology and facilitate RNA structure-based biomedical research such as designing specific RNA structures for therapeutics and deploying RNA-targeting small-molecule drugs.
Collapse
Affiliation(s)
- Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lei Sun
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
24
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Aviran S, Incarnato D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J Mol Biol 2022; 434:167635. [PMID: 35595163 DOI: 10.1016/j.jmb.2022.167635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
RNA structure probing experiments have emerged over the last decade as a straightforward way to determine the structure of RNA molecules in a number of different contexts. Although powerful, the ability of RNA to dynamically interconvert between, and to simultaneously populate, alternative structural configurations, poses a nontrivial challenge to the interpretation of data derived from these experiments. Recent efforts aimed at developing computational methods for the reconstruction of coexisting alternative RNA conformations from structure probing data are paving the way to the study of RNA structure ensembles, even in the context of living cells. In this review, we critically discuss these methods, their limitations and possible future improvements.
Collapse
Affiliation(s)
- Sharon Aviran
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
26
|
Marcia M. The multiple molecular dimensions of long noncoding RNAs that regulate gene expression and tumorigenesis. Curr Opin Oncol 2022; 34:141-147. [PMID: 35025816 DOI: 10.1097/cco.0000000000000813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW LncRNAs are emerging as key regulators of gene expression and they ensure homeostasis during cell differentiation and development, replication, and adaptation to the environment. Because of their key central role in regulating the biology of living cells, it is crucial to characterize how lncRNAs function at the genetic, transcriptomic, and mechanistic level. RECENT FINDINGS The low endogenous abundance and high molecular complexity of lncRNAs pose unique challenges for their characterization but new methodological advances in biochemistry, biophysics and cell biology have recently made it possible to characterize an increasing number of these transcripts, including oncogenic and tumor suppressor lncRNAs. These recent studies specifically address important issues that had remained controversial, such as the selectivity of lncRNA mechanisms of action, the functional importance of lncRNA sequences, secondary and tertiary structures, and the specificity of lncRNA interactions with proteins. SUMMARY These recent achievements, coupled to population-wide medical and genomic approaches that connect lncRNAs with human diseases and to recent advances in RNA-targeted drug development, open unprecedented new perspectives for exploiting lncRNAs as pharmacological targets or biomarkers to monitor and cure cancer, in addition to metabolic, developmental and cardiovascular diseases.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
27
|
Wienecke A, Laederach A. A novel algorithm for ranking RNA structure candidates. Biophys J 2022; 121:7-10. [PMID: 34896370 PMCID: PMC8758412 DOI: 10.1016/j.bpj.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
RNA research is advancing at an ever increasing pace. The newest and most state-of-the-art instruments and techniques have made possible the discoveries of new RNAs, and they have carried the field to new frontiers of disease research, vaccine development, therapeutics, and architectonics. Like proteins, RNAs show a marked relationship between structure and function. A deeper grasp of RNAs requires a finer understanding of their elaborate structures. In pursuit of this, cutting-edge experimental and computational structure-probing techniques output several candidate geometries for a given RNA, each of which is perfectly aligned with experimentally determined parameters. Identifying which structure is the most accurate, however, remains a major obstacle. In recent years, several algorithms have been developed for ranking candidate RNA structures in order from most to least probable, though their levels of accuracy and transparency leave room for improvement. Most recently, advances in both areas are demonstrated by rsRNASP, a novel algorithm proposed by Tan et al. rsRNASP is a residue-separation-based statistical potential for three-dimensional structure evaluation, and it outperforms the leading algorithms in the field.
Collapse
Affiliation(s)
- Anastacia Wienecke
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
28
|
Identifying proximal RNA interactions from cDNA-encoded crosslinks with ShapeJumper. PLoS Comput Biol 2021; 17:e1009632. [PMID: 34905538 PMCID: PMC8670686 DOI: 10.1371/journal.pcbi.1009632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
SHAPE-JuMP is a concise strategy for identifying close-in-space interactions in RNA molecules. Nucleotides in close three-dimensional proximity are crosslinked with a bi-reactive reagent that covalently links the 2'-hydroxyl groups of the ribose moieties. The identities of crosslinked nucleotides are determined using an engineered reverse transcriptase that jumps across crosslinked sites, resulting in a deletion in the cDNA that is detected using massively parallel sequencing. Here we introduce ShapeJumper, a bioinformatics pipeline to process SHAPE-JuMP sequencing data and to accurately identify through-space interactions, as observed in complex JuMP datasets. ShapeJumper identifies proximal interactions with near-nucleotide resolution using an alignment strategy that is optimized to tolerate the unique non-templated reverse-transcription profile of the engineered crosslink-traversing reverse-transcriptase. JuMP-inspired strategies are now poised to replace adapter-ligation for detecting RNA-RNA interactions in most crosslinking experiments.
Collapse
|
29
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|