1
|
Hegazy R, Cristobal JR, Richard JP. Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces. Biochemistry 2024; 63:2878-2891. [PMID: 39319842 PMCID: PMC11542618 DOI: 10.1021/acs.biochem.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Glycerol 3-phosphate dehydrogenase catalyzes reversible hydride transfer from glycerol 3-phosphate (G3P) to NAD+ to form dihydroxyacetone phosphate; from the truncated substrate ethylene glycol to NAD+ in a reaction activated by the phosphite dianion substrate fragment; and from G3P to the truncated nicotinamide riboside cofactor in a reaction activated by adenosine 5'-diphosphate, adenosine 5'-monophosphate, and ribose 5-phosphate cofactor fragments. The sum of the stabilization of the transition state for GPDH-catalyzed hydride transfer reactions of the whole substrates by the phosphodianion fragment of G3P and the ADP fragment of NAD+ is 25 kcal/mol. Fourteen kcal/mol of this transition state stabilization is recovered as phosphite dianion and AMP activation of the reactions of the substrate and cofactor fragments. X-ray crystal structures for unliganded GPDH, for a binary GPDH·NAD+ complex, and for a nonproductive ternary GPDH·NAD+·DHAP complex show that the ligand binding energy is utilized to drive an extensive protein conformational change that creates a caged complex for these ligands. The phosphite dianion and AMP fragments are proposed to activate GPDH for the catalysis of hydride transfer by stabilization of this active caged complex. The closure of a conserved loop [292-LNGQKL-297] during substrate binding stabilizes the G3P and NAD+ complexes by interactions, respectively, with the Q295 and K296 loop side chains. The appearance and apparent conservation of two side chains that interact with the hydride donor and acceptor to stabilize the active closed enzyme are proposed to represent a significant improvement in the catalytic performance of GPDH.
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
2
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
3
|
Cristobal J, Hegazy R, Richard JP. Glycerol 3-Phosphate Dehydrogenase: Role of the Protein Conformational Change in Activation of a Readily Reversible Enzyme-Catalyzed Hydride Transfer Reaction. Biochemistry 2024; 63:1016-1025. [PMID: 38546289 PMCID: PMC11025551 DOI: 10.1021/acs.biochem.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants Keq. Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CH2R keto substituent. The kinetic data show that the phosphite dianion provides the same 7.6 ± 0.1 kcal/mol stabilization of the transition states for enzyme-catalyzed reactions in the forward [reduction of NAD by EtG] and reverse [oxidation of NADH by glycolaldehyde] directions. The experimental evidence that supports a role for phosphite dianion in stabilizing the active closed form of the GPDH (EC) relative to the ca. 6 kcal/mol more unstable open form (EO) is summarized.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Rania Hegazy
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
4
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
5
|
Cristobal J, Nagorski RW, Richard JP. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces. Biochemistry 2023; 62:2314-2324. [PMID: 37463347 PMCID: PMC10399567 DOI: 10.1021/acs.biochem.3c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Richard W. Nagorski
- Department
of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
6
|
Cristobal JR, Richard JP. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces. Methods Enzymol 2023; 685:95-126. [PMID: 37245916 PMCID: PMC10251411 DOI: 10.1016/bs.mie.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
7
|
Fernandez P, Richard JP. Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites. Biochemistry 2022; 61:2766-2775. [PMID: 36413937 PMCID: PMC9731266 DOI: 10.1021/acs.biochem.2c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol-1 to the total ≥14.7 kcal mol-1 adenosine stabilization of the transition state for AK-catalyzed phosphoryl transfer to AMP. The relative third-order rate constants for activation of adenylate kinase, by the C-5 truncated adenosine 1-(β-d-erythrofuranosyl)adenine (EA), for catalysis of phosphoryl transfer from ATP to phosphite dianion (HP, kcat/KHPKAct = 260 M-2 s-1), fluorophosphate (47 M-2 s-1), and phosphate (9.6 M-2 s-1), show that substitution of -F for -H and of -OH for -H at HP results, respectively, in decreases in the reactivity of AK for catalysis of phosphoryl transfer due to polar and steric effects of the -F and -OH substituents. The addition of a 5'-CH2OH to the EA activator results in a 3.0 kcal mol-1 destabilization of the transition state for AK-activated phosphoryl transfer to HP due to a steric effect. This is smaller than the 8.3 kcal mol-1 steric effect of the 5'-CH2OH substituent at OMP on HP-activated OMPDC-catalyzed decarboxylation of 1-(β-d-erythrofuranosyl)orotate. The 2'-OH ribosyl substituent shows significant interactions with the transition states for AK-catalyzed phosphoryl transfer from ATP to AMP and for adenosine-activated AK-catalyzed phosphoryl transfer from ATP to HP.
Collapse
Affiliation(s)
- Patrick
L. Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| |
Collapse
|
8
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
9
|
Cristobal JR, Brandão TAS, Reyes AC, Richard JP. Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis. Biochemistry 2021; 60:3362-3373. [PMID: 34726391 DOI: 10.1021/acs.biochem.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(β-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|