1
|
Vascon F, De Felice S, Gasparotto M, Huber ST, Catalano C, Chinellato M, Mezzetti R, Grinzato A, Filippini F, Maso L, Jakobi AJ, Cendron L. Snapshots of Pseudomonas aeruginosa SOS response reveal structural requisites for LexA autoproteolysis. iScience 2025; 28:111726. [PMID: 39898034 PMCID: PMC11787620 DOI: 10.1016/j.isci.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Antimicrobial resistance poses a severe threat to human health and Pseudomonas aeruginosa stands out among the pathogens responsible for this emergency. The SOS response to DNA damage is crucial in bacterial evolution, influencing resistance development and adaptability in challenging environments, especially under antibiotic exposure. Recombinase A (RecA) and the transcriptional repressor LexA are the key players that orchestrate this process, determining either the silencing or the active transcription of the genes under their control. By integrating state-of-the-art structural approaches with in vitro binding and functional assays, we elucidated the molecular events activating the SOS response in P. aeruginosa, focusing on the RecA-LexA interaction. Our findings identify the conserved determinants and strength of the interactions that allow RecA to trigger LexA autocleavage and inactivation. These results provide the groundwork for designing novel antimicrobial strategies and exploring the potential translation of Escherichia coli-derived approaches, to address the implications of P. aeruginosa infections.
Collapse
Affiliation(s)
- Filippo Vascon
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Sofia De Felice
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Matteo Gasparotto
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Department of Translational Brain Research, Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Stefan T. Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CD Delft, the Netherlands
| | - Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Monica Chinellato
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Department of Medicine, University of Padua, Via Giustiniani 2, 35121 Padova, Italy
| | - Riccardo Mezzetti
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Alessandro Grinzato
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- CM01 Beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Francesco Filippini
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Aethon Therapeutics, Long Island City, NY 11101, USA
| | - Arjen J. Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CD Delft, the Netherlands
| | - Laura Cendron
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
2
|
Marmorstein JG, Pagar VV, Hummingbird E, Saleh IG, Phan HAT, Chang Y, Shaffer KD, Venkatesh Y, Dmochowski IJ, Stebe KJ, Petersson EJ. Improved Large-Scale Synthesis of Acridonylalanine for Diverse Peptide and Protein Applications. Bioconjug Chem 2024; 35:1913-1922. [PMID: 39531540 DOI: 10.1021/acs.bioconjchem.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluorescent unnatural amino acids give biochemists, biophysicists, and bioengineers new ways to probe the properties of proteins and peptides. Here, the synthesis of acridon-2-ylalanine (Acd) is optimized for large-scale production to enable ribosomal incorporation through genetic code expansion (GCE), and fluorenylmethoxycarbonyl (Fmoc)-protected Acd is prepared for solid-phase peptide synthesis (SPPS). We demonstrate the utility of Acd in several applications: first, Acd quenching by Tyr is used in the design of fluorescent protease sensors made by SPPS. Second, we demonstrate Acd incorporation into a lanthanide-binding peptide that is generated either by GCE or by SPPS and demonstrate the utility of Acd for sensitizing the emission of Eu3+. Finally, Acd is inserted into the intrinsically disordered protein, α-synuclein, using GCE and used to study ion binding and aggregation.
Collapse
Affiliation(s)
- Jason G Marmorstein
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Vinayak V Pagar
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eshe Hummingbird
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ibrahim G Saleh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yanan Chang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Cory MB, Li A, Hurley CM, Carman PJ, Pumroy RA, Hostetler ZM, Perez RM, Venkatesh Y, Li X, Gupta K, Petersson EJ, Kohli RM. The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation. Nat Struct Mol Biol 2024; 31:1522-1531. [PMID: 38755298 PMCID: PMC11521096 DOI: 10.1038/s41594-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Michael B Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina M Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth A Pumroy
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rahul M Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Skutel M, Yanovskaya D, Demkina A, Shenfeld A, Musharova O, Severinov K, Isaev A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res 2024; 52:5195-5208. [PMID: 38567730 PMCID: PMC11109961 DOI: 10.1093/nar/gkae243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.
Collapse
Affiliation(s)
- Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Yanovskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Olga Musharova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
5
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|