1
|
Garner P, Davis AC, Bigley AN. PHP-Family Diesterase from Novosphingobium with Broad Specificity and High Catalytic Efficiency against Organophosphate Flame-Retardant Derived Diesters. Biochemistry 2024; 63:3189-3193. [PMID: 39622000 PMCID: PMC11656708 DOI: 10.1021/acs.biochem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Organophosphate flame retardants have been widely used in plastic products since the early 2000s. Unfortunately, these compounds leach out of the plastics over time and are carcinogenic, developmental toxins, and endocrine disruptors. Due to the high usage levels and stable nature of the compounds, widespread contamination of the environment has now been observed. Despite their recent introduction into the environment, bacteria from the Sphingomonadaceae family have evolved a three-step hydrolytic pathway to utilize these compounds. The second step in this pathway in Sphingobium sp. TCM1 is catalyzed by Sb-PDE, which is a member of the polymerase and histidinol phosphatase (PHP) family of phosphatases. This enzyme is only the second case of a PHP-family enzyme capable of hydrolyzing phosphodiesters. Bioinformatics analysis has now been used to identify a second PHP diesterase from Novosphingobium sp. EMRT-2 (No-PDE). Kinetic characterization of Sb-PDE and No-PDE with authentic organophosphate flame-retardant diesters demonstrates that these enzymes are true diesterases with more than 1000-fold selectivity for the diesterase activity seen in some cases. Synthesis of a wide array of authentic flame-retardant diesters has allowed the substrate specificity of these enzymes to be determined, and mutagenic analysis of the active site residues has identified key residues that give rise to the high levels of diesterase activity. Despite high sequence identity, No-PDE is found to have a broader substrate specificity against flame-retardant derived diesters, and kcat/Km values greater than 104 M-1 s-1 are seen with the best substrates.
Collapse
Affiliation(s)
- Preston Garner
- Department of Chemistry and
Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Andrew C. Davis
- Department of Chemistry and
Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Andrew N. Bigley
- Department of Chemistry and
Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| |
Collapse
|
2
|
Yu J, Fu Y, Cao Z. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. J Phys Chem B 2023; 127:7462-7471. [PMID: 37584503 DOI: 10.1021/acs.jpcb.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Characterization of the phosphotriesterase capable of hydrolyzing aryl-organophosphate flame retardants. Appl Microbiol Biotechnol 2022; 106:6493-6504. [DOI: 10.1007/s00253-022-12127-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
|
4
|
Fu Y, Zhang Y, Fan F, Wang B, Cao Z. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations. Phys Chem Chem Phys 2022; 24:687-696. [PMID: 34927643 DOI: 10.1039/d1cp05034f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis by phosphotriesterase (PTE) is one of the most effective ways of degrading organophosphorus pesticides, but the catalytic efficiency depends on the structural features of substrates. Here the enzymatic degradation of diazinon (DIN) and diazoxon (DON), characterized by PS and PO, respectively, have been investigated by QM/MM calculations and MM MD simulations. Our calculations demonstrate that the hydrolysis of DON (with PO) is inevitably initiated by the nucleophilic attack of the bridging-OH- on the phosphorus center, while for DIN (with PS), we proposed a new degradation mechanism, initiated by the nucleophilic attack of the Znα-bound water molecule, for its low-energy pathway. For both DIN and DON, the hydrolytic reaction is predicted to be the rate-limiting step, with energy barriers of 18.5 and 17.7 kcal mol-1, respectively. The transportation of substrates to the active site, the release of the leaving group and the degraded product are generally verified to be favorable by MD simulations via umbrella sampling, both thermodynamically and dynamically. The side-chain residues Phe132, Leu271 and Tyr309 play the gate-switching role to manipulate substrate delivery and product release. In comparison with the DON-enzyme system, the degraded product of DIN is more easily released from the active site. These new findings will contribute to the comprehensive understanding of the enzymatic degradation of toxic organophosphorus compounds by PTE.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Mota DCAM, Cardoso IA, Mori RM, Batista MRB, Basso LGM, Nonato MC, Costa-Filho AJ, Mendes LFS. Structural and thermodynamic analyses of human TMED1 (p24γ1) Golgi dynamics. Biochimie 2021; 192:72-82. [PMID: 34634369 DOI: 10.1016/j.biochi.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
The transmembrane emp24 domain-containing (TMED) proteins, also called p24 proteins, are members of a family of sorting receptors present in all representatives of the Eukarya and abundantly present in all subcompartments of the early secretory pathway, namely the endoplasmic reticulum (ER), the Golgi, and the intermediate compartment. Although essential during the bidirectional transport between the ER and the Golgi, there is still a lack of information regarding the TMED's structure across different subfamilies. Besides, although the presence of a TMED homo-oligomerization was suggested previously based on crystallographic contacts observed for the isolated Golgi Dynamics (GOLD) domain, no further analyses of its presence in solution were done. Here, we describe the first high-resolution structure of a TMED1 GOLD representative and its biophysical characterization in solution. The crystal structure showed a dimer formation that is also present in solution in a salt-dependent manner, suggesting that the GOLD domain can form homodimers in solution even in the absence of the TMED1 coiled-coil region. A molecular dynamics description of the dimer stabilization, with a phylogenetic analysis of the residues important for the oligomerization and a model for the orientation towards the lipid membrane, are also presented.
Collapse
Affiliation(s)
- Danielly C A M Mota
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Iara A Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renan M Mori
- Laboratório de Cristalografia de Proteínas, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana R B Batista
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis G M Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy, Campos dos Goytacazes, RJ, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Luis F S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Wang J, Hlaing TS, Nwe MT, Aung MM, Ren C, Wu W, Yan Y. Primary biodegradation and mineralization of aryl organophosphate flame retardants by Rhodococcus-Sphingopyxis consortium. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125238. [PMID: 33550123 DOI: 10.1016/j.jhazmat.2021.125238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In this study, the biodegradation towards aryl organophosphate flame retardants (aryl-OPFRs) was investigated by the Rhodococcus-Sphingopyxis consortium, mixture of strain Rhodococcus sp. YC-JH2 and Sphingopyxis sp. YC-JH3. The optimal ratio between the two composition strains was determined as 1:1. Under the optimum condition (pH 8, 35 °C and 0% salinity), the consortium could utilize aryl-OPFRs as sole carbon source and degrade them rapidly with half-life of 4.53, 21.11 and 23.0 h for triphenyl phosphate (TPhP), tricresyl phosphate (TCrP) and 2-ethylhexyl diphenyl phosphate (EHDPP) respectively. The consortium maintained high degrading efficiency under a wide of range of pH (6-10), temperature (20-40 °C) and salinity (0-6%). Besides, the consortium could rapidly degrade high concentration of TPhP and no inhibitory effect towards degradation speed was observed up to 500 mg/L. The effect of metal ions and surfactants was estimated. Most metal ions exhibited significant inhibition, except Zn2+ and Pb2+, which showed no effect or slight promotion. Ionic surfactants could severely reduce the degrading capacity, while nonionic surfactants showed no effect. With abundant inoculation of the consortium, mineralization higher than 75% could be achieved within a week. This study provides efficient microorganisms for bioremediation of aryl-OPFRs contamination.
Collapse
Affiliation(s)
- Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Thet Su Hlaing
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; Biotechnology Research Department, Department of Research and Innovation, Kyaukse, Myanmar.
| | - May Thet Nwe
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; Biotechnology Research Department, Department of Research and Innovation, Kyaukse, Myanmar.
| | - Mar Mar Aung
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Biotechnology, Mandalay Technological University, Mandalay, Myanmar.
| | - Chao Ren
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Dubovetskyi A, Cherukuri KP, Ashani Y, Meshcheriakova A, Reuveny E, Ben-Nissan G, Sharon M, Fumagalli L, Tawfik DS. Quinone Methide-Based Organophosphate Hydrolases Inhibitors: Trans Proximity Labelers versus Cis Labeling Activity-Based Probes. Chembiochem 2020; 22:894-903. [PMID: 33105515 DOI: 10.1002/cbic.202000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Indexed: 11/05/2022]
Abstract
Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzyme-mediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QM-based inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QM-based inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolate-to-QM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cis-acting QM-based substrates could be used as activity-based probes to identify various phospho- and phosphono-ester hydrolases, and potentially other hydrolases.
Collapse
Affiliation(s)
- Artem Dubovetskyi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | | | - Yacov Ashani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Anna Meshcheriakova
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di, via Mangiagalli 25, 20133, Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| |
Collapse
|
8
|
Xiang DF, Narindoshvili T, Raushel FM. Atropselective Hydrolysis of Chiral Binol-Phosphate Esters Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2020; 59:4463-4469. [PMID: 33167613 DOI: 10.1021/acs.biochem.0c00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphotriesterase from Sphingobium sp. TCM1 (Sb-PTE) is notable for its ability to hydrolyze a broad spectrum of organophosphate triesters, including organophosphorus flame retardants and plasticizers such as triphenyl phosphate and tris(2-chloroethyl) phosphate that are not substrates for other enzymes. This enzyme is also capable of hydrolyzing any one of the three ester groups attached to the central phosphorus core. The enantiomeric isomers of 1,1'-bi-2-naphthol (BINOL) have become among the most widely used chiral auxiliaries for the chemical synthesis of chiral carbon centers. PTE was tested for its ability to hydrolyze a series of biaryl phosphate esters, including mono- and bis-phosphorylated BINOL derivatives and cyclic phosphate triesters. Sb-PTE was shown to be able to catalyze the hydrolysis of the chiral phosphate triesters with significant stereoselectivity. The catalytic efficiency, kcat/Km, of Sb-PTE toward the test phosphate triesters ranged from ∼10 to 105 M-1 s-1. The product ratios and stereoselectivities were determined for four pairs of phosphorylated BINOL derivatives.
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Bigley AN, Narindoshvili T, Xiang DF, Raushel FM. Stereoselective Formation of Multiple Reaction Products by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2020; 59:1273-1288. [PMID: 32167750 DOI: 10.1021/acs.biochem.0c00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organophosphate flame retardants are used to inhibit combustion and increase plasticity in plastics and durable foams. While not neurotoxic, these compounds are potential carcinogens, endocrine disrupters, and developmental toxins. The phosphotriesterase from Sphingobium sp. TCM1 (Sb-PTE) is unique among phosphotriesterase enzymes for its ability to hydrolyze these compounds and its ability to hydrolyze any one of the three different ester bonds within a given substrate. In some cases, the extent of hydrolysis of a methyl ester exceeds that of a p-nitrophenyl ester within a single substrate. There is a stereochemical component to this hydrolysis where the two enantiomers of chiral substrates give different product ratios. To investigate the stereoselectivity for the product distribution of Sb-PTE, a series of 24 phosphotriesters were synthesized with all possible combinations of methyl, cyclohexyl, phenyl, and p-nitrophenyl esters. Prochiral compounds were made chiral by differential isotopic labeling using a chemo/enzymatic strategy, which allowed the differentiation of hydrolysis for each ester in all but two compounds. The rate equations for this unique enzymatic mechanism were derived; the product ratios were determined for each substrate, and the individual kinetic constants for hydrolysis of each ester within each substrate were measured. The findings are consistent with the rate-limiting step for substrate hydrolysis catalyzed by Sb-PTE being the formation of a phosphorane-like intermediate and the kinetic constants and product ratios being dictated by a combination of transition state energies, inductive effects, and stereochemical constraints.
Collapse
Affiliation(s)
- Andrew N Bigley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dao Feng Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 88743, United States
| |
Collapse
|
10
|
Bigley AN, Xiang DF, Narindoshvili T, Burgert CW, Hengge AC, Raushel FM. Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2019; 58:1246-1259. [PMID: 30730705 DOI: 10.1021/acs.biochem.9b00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organophosphorus flame retardants are stable toxic compounds used in nearly all durable plastic products and are considered major emerging pollutants. The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is one of the few enzymes known to be able to hydrolyze organophosphorus flame retardants such as triphenyl phosphate and tris(2-chloroethyl) phosphate. The effectiveness of Sb-PTE for the hydrolysis of these organophosphates appears to arise from its ability to hydrolyze unactivated alkyl and phenolic esters from the central phosphorus core. How Sb-PTE is able to catalyze the hydrolysis of the unactivated substituents is not known. To interrogate the catalytic hydrolysis mechanism of Sb-PTE, the pH dependence of the reaction and the effects of changing the solvent viscosity were determined. These experiments were complemented by measurement of the primary and secondary 18-oxygen isotope effects on substrate hydrolysis and a determination of the effects of changing the p Ka of the leaving group on the magnitude of the rate constants for hydrolysis. Collectively, the results indicated that a single group must be ionized for nucleophilic attack and that a separate general acid is not involved in protonation of the leaving group. The Brønsted analysis and the heavy atom kinetic isotope effects are consistent with an early associative transition state with subsequent proton transfers not being rate limiting. A novel binding mode of the substrate to the binuclear metal center and a catalytic mechanism are proposed to explain the unusual ability of Sb-PTE to hydrolyze unactivated esters from a wide range of organophosphate substrates.
Collapse
Affiliation(s)
- Andrew N Bigley
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Dao Feng Xiang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Charlie W Burgert
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
11
|
Davidi D, Longo LM, Jabłońska J, Milo R, Tawfik DS. A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. Chem Rev 2018; 118:8786-8797. [DOI: 10.1021/acs.chemrev.8b00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bigley AN, Narindoshvili T, Xiang DF, Raushel FM. Multiple Reaction Products from the Hydrolysis of Chiral and Prochiral Organophosphate Substrates by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2018. [PMID: 29513982 DOI: 10.1021/acs.biochem.8b00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is notable for its ability to hydrolyze organophosphates that are not substrates for other enzymes. In an attempt to determine the catalytic properties of Sb-PTE for hydrolysis of chiral phosphotriesters, we discovered that multiple phosphodiester products are formed from a single substrate. For example, Sb-PTE catalyzes the hydrolysis of the RP-enantiomer of methyl cyclohexyl p-nitrophenyl phosphate with exclusive formation of methyl cyclohexyl phosphate. However, the enzyme catalyzes hydrolysis of the SP-enantiomer of this substrate to an equal mixture of methyl cyclohexyl phosphate and cyclohexyl p-nitrophenyl phosphate products. The ability of this enzyme to catalyze the hydrolysis of a methyl ester at the same rate as the hydrolysis of a p-nitrophenyl ester contained within the same substrate is remarkable. The overall scope of the stereoselective properties of this enzyme is addressed with a library of chiral and prochiral substrates.
Collapse
Affiliation(s)
- Andrew N Bigley
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Dao Feng Xiang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
13
|
Alvarenga N, Birolli WG, Meira EB, Lucas SC, de Matos IL, Nitschke M, Romão LP, Porto AL. Biotransformation and biodegradation of methyl parathion by Brazilian bacterial strains isolated from mangrove peat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Purg M, Elias M, Kamerlin SCL. Similar Active Sites and Mechanisms Do Not Lead to Cross-Promiscuity in Organophosphate Hydrolysis: Implications for Biotherapeutic Engineering. J Am Chem Soc 2017; 139:17533-17546. [PMID: 29113434 PMCID: PMC5724027 DOI: 10.1021/jacs.7b09384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 01/27/2023]
Abstract
Organophosphate hydrolases are proficient catalysts of the breakdown of neurotoxic organophosphates and have great potential as both biotherapeutics for treating acute organophosphate toxicity and as bioremediation agents. However, proficient organophosphatases such as serum paraoxonase 1 (PON1) and the organophosphate-hydrolyzing lactonase SsoPox are unable to hydrolyze bulkyorganophosphates with challenging leaving groups such as diisopropyl fluorophosphate (DFP) or venomous agent X, creating a major challenge for enzyme design. Curiously, despite their mutually exclusive substrate specificities, PON1 and diisopropyl fluorophosphatase (DFPase) have essentially identical active sites and tertiary structures. In the present work, we use empirical valence bond simulations to probe the catalytic mechanism of DFPase as well as temperature, pH, and mutational effects, demonstrating that DFPase and PON1 also likely utilize identical catalytic mechanisms to hydrolyze their respective substrates. However, detailed examination of both static structures and dynamical simulations demonstrates subtle but significant differences in the electrostatic properties and solvent penetration of the two active sites and, most critically, the role of residues that make no direct contact with either substrate in acting as "specificity switches" between the two enzymes. Specifically, we demonstrate that key residues that are structurally and functionally critical for the paraoxonase activity of PON1 prevent it from being able to hydrolyze DFP with its fluoride leaving group. These insights expand our understanding of the drivers of the evolution of divergent substrate specificity in enzymes with identical active sites and guide the future design of organophosphate hydrolases that hydrolyze compounds with challenging leaving groups.
Collapse
Affiliation(s)
- Miha Purg
- Science for Life
Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics &
Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Shina Caroline Lynn Kamerlin
- Science for Life
Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
15
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|