1
|
Campbell ME, Ohler AR, McGill MJ, Buller AR. Promiscuity Guided Evolution of Decarboxylative Aldolases for Synthesis of Tertiary γ-Hydroxy Amino Acids. Angew Chem Int Ed Engl 2025; 64:e202422109. [PMID: 39874202 PMCID: PMC11976203 DOI: 10.1002/anie.202422109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate. We show how to intentionally guide UstD towards generality through multi-generational directed evolution using substrate-multiplexed screening (SUMS). Mutations outside of the active site that impact catalytic function were immediately revealed by shifts in promiscuity, even when the overall activity was lower. By re-targeting these distal residues that couple to the active site with saturation mutagenesis, broadly activating mutations were readily identified. When analyzing active site mutants, SUMS identified both specialist enzymes that would have more limited utility as well as generalist enzymes with complementary activity on diverse substrates. These new UstD enzymes catalyze convergent synthesis of non-canonical amino acids bearing tertiary alcohol side chains. This methodology is easy to implement and enables the rapid and effective evolution of enzymes to catalyze desirable new functions.
Collapse
Affiliation(s)
- Meghan E. Campbell
- Department of ChemistryUniversity of Wisconsin-MadisonUSAMadisonWI 53706
| | - Amanda R. Ohler
- Department of ChemistryUniversity of Wisconsin-MadisonUSAMadisonWI 53706
| | - Matthew J. McGill
- Department of ChemistryUniversity of Wisconsin-MadisonUSAMadisonWI 53706
| | - Andrew R. Buller
- Department of ChemistryUniversity of Wisconsin-MadisonUSAMadisonWI 53706
| |
Collapse
|
2
|
Duran C, Casadevall G, Osuna S. Harnessing conformational dynamics in enzyme catalysis to achieve nature-like catalytic efficiencies: the shortest path map tool for computational enzyme redesign. Faraday Discuss 2024; 252:306-322. [PMID: 38910409 PMCID: PMC11389851 DOI: 10.1039/d3fd00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Enzymes exhibit diverse conformations, as represented in the free energy landscape (FEL). Such conformational diversity provides enzymes with the ability to evolve towards novel functions. The challenge lies in identifying mutations that enhance specific conformational changes, especially if located in distal sites from the active site cavity. The shortest path map (SPM) method, which we developed to address this challenge, constructs a graph based on the distances and correlated motions of residues observed in nanosecond timescale molecular dynamics (MD) simulations. We recently introduced a template based AlphaFold2 (tAF2) approach coupled with 10 nanosecond MD simulations to quickly estimate the conformational landscape of enzymes and assess how the FEL is shifted after mutation. In this study, we evaluate the potential of SPM when coupled with tAF2-MD in estimating conformational heterogeneity and identifying key conformationally-relevant positions. The selected model system is the beta subunit of tryptophan synthase (TrpB). We compare how the SPM pathways differ when integrating tAF2 with different MD simulation lengths from as short as 10 ns until 50 ns and considering two distinct Amber forcefield and water models (ff14SB/TIP3P versus ff19SB/OPC). The new methodology can more effectively capture the distal mutations found in laboratory evolution, thus showcasing the efficacy of tAF2-MD-SPM in rapidly estimating enzyme dynamics and identifying the key conformationally relevant hotspots for computational enzyme engineering.
Collapse
Affiliation(s)
- Cristina Duran
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Guillem Casadevall
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Sílvia Osuna
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
3
|
Zmich A, Perkins LJ, Bingman C, Buller AR. Elucidation of the stereochemical mechanism of cystathionine γ-lyase reveals how substrate specificity constrains catalysis. ACS Catal 2024; 14:11196-11204. [PMID: 39391268 PMCID: PMC11464002 DOI: 10.1021/acscatal.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes play essential roles in metabolism and have found applications for organic synthesis and as enzyme therapeutics. The vinylglycine ketimine (VGK) subfamily hosts a growing set of enzymes that play diverse roles in primary and secondary metabolism. However, the molecular determinates of substrate specificity and the complex acid-base chemistry that enables VGK catalysis remain enigmatic. We use a recently discovered amino acid γ-lyase as a model system to probe catalysis in this enzyme family. We discovered that two stereochemically distinct proton transfer pathways occur. Combined kinetic and spectroscopic analysis revealed that progression through the catalytic cycle is correlated with the presence of an H-bond donor after Cγ of an amino acid substrate, suggesting substrate binding is kinetically coupled to a conformational change. High-resolution X-ray crystallography shows that cystathionine-γ-lyases generate an s-trans intermediate and that this geometry is likely conserved throughout the VGK family. An H-bond acceptor in the active site templates substrate binding but does so by pre-organizing substrates away from catalytically productive orientations. Mutagenesis eliminates this pre-organization, such that there is a relaxation of the substrate specificity, but an increase in k cat for diverse substrates. We exploit this information to perform preparative scale α,β,β-tri-deuteration of polar amino acids. Together, these data untangle a complex mode of substrate specificity and provide a foundation for the future study and applications of VGK enzymes.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Martins NF, Viana MJA, Maigret B. Fungi Tryptophan Synthases: What Is the Role of the Linker Connecting the α and β Structural Domains in Hemileia vastatrix TRPS? A Molecular Dynamics Investigation. Molecules 2024; 29:756. [PMID: 38398508 PMCID: PMC10893352 DOI: 10.3390/molecules29040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αββα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and β entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the β one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αβ dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.
Collapse
Affiliation(s)
- Natália F Martins
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Marcos J A Viana
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Bernard Maigret
- LORIA, UMR 7504 CNRS, Université de Lorraine, 54000 Vandoeuvre les Nancy, France
| |
Collapse
|
5
|
Zmich A, Perkins LJ, Bingman C, Acheson JF, Buller AR. Multiplexed Assessment of Promiscuous Non-Canonical Amino Acid Synthase Activity in a Pyridoxal Phosphate-Dependent Protein Family. ACS Catal 2023; 13:11644-11655. [PMID: 37720819 PMCID: PMC10501158 DOI: 10.1021/acscatal.3c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes afford access to a variety of non-canonical amino acids (ncAAs), which are premier buildings blocks for the construction of complex bioactive molecules. The vinylglycine ketimine (VGK) subfamily of PLP-dependent enzymes plays a critical role in sulfur metabolism and is home to a growing set of secondary metabolic enzymes that synthesize γ-substituted ncAAs. Identification of VGK enzymes for biocatalysis faces a distinct challenge because the subfamily contains both desirable synthases as well as lyases that break down ncAAs. Some enzymes have both activities, which may contribute to pervasive mis-annotation. To navigate this complex functional landscape, we used a substrate multiplexed screening approach to rapidly measure the substrate promiscuity of 40 homologs in the VGK subfamily. We found that enzymes involved in transsulfuration are less likely to have promiscuous activities and often possess undesirable lyase activity. Enzymes from direct sulfuration and secondary metabolism generally had a high degree of substrate promiscuity. From this cohort, we identified an exemplary γ-synthase from Caldicellulosiruptor hydrothermalis (CahyGS). This enzyme is thermostable and has high expression (~400 mg protein per L culture), enabling preparative scale synthesis of thioether containing ncAAs. When assayed with l-allylglycine, CahyGS catalyzes a stereoselective γ-addition reaction to afford access to a unique set of γ-methyl branched ncAAs. We determined high-resolution crystal structures of this enzyme that define an open-close transition associated with ligand binding and set the stage for future engineering within this enzyme subfamily.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Thoma B, Powner MW. Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water. J Am Chem Soc 2023; 145:3121-3130. [PMID: 36700882 PMCID: PMC9912261 DOI: 10.1021/jacs.2c12497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise N-to-C terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) N-to-C-terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.
Collapse
|
8
|
Casadevall G, Duran C, Estévez‐Gay M, Osuna S. Estimating conformational heterogeneity of tryptophan synthase with a template-based Alphafold2 approach. Protein Sci 2022; 31:e4426. [PMID: 36173176 PMCID: PMC9601780 DOI: 10.1002/pro.4426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of the enzymes provides very relevant information on the arrangement of the catalytic machinery and structural elements gating the active site pocket. The recent success of the neural network Alphafold2 in predicting the folded structure of proteins from the primary sequence with high levels of accuracy has revolutionized the protein design field. However, the application of Alphafold2 for understanding and engineering function directly from the obtained single static picture is not straightforward. Indeed, understanding enzymatic function requires the exploration of the ensemble of thermally accessible conformations that enzymes adopt in solution. In the present study, we evaluate the potential of Alphafold2 in assessing the effect of the mutations on the conformational landscape of the beta subunit of tryptophan synthase (TrpB). Specifically, we develop a template-based Alphafold2 approach for estimating the conformational heterogeneity of several TrpB enzymes, which is needed for enhanced stand-alone activity. Our results show the potential of Alphafold2, especially if combined with molecular dynamics simulations, for elucidating the changes induced by mutation in the conformational landscapes at a rather reduced computational cost, thus revealing its plausible application in computational enzyme design.
Collapse
Affiliation(s)
- Guillem Casadevall
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Cristina Duran
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Miquel Estévez‐Gay
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
- Present address:
ICREA, Pg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
9
|
Maria-Solano MA, Kinateder T, Iglesias-Fernández J, Sterner R, Osuna S. In Silico Identification and Experimental Validation of Distal Activity-Enhancing Mutations in Tryptophan Synthase. ACS Catal 2021; 11:13733-13743. [PMID: 34777912 PMCID: PMC8576815 DOI: 10.1021/acscatal.1c03950] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Allostery is a central mechanism for the regulation of multi-enzyme complexes. The mechanistic basis that drives allosteric regulation is poorly understood but harbors key information for enzyme engineering. In the present study, we focus on the tryptophan synthase complex that is composed of TrpA and TrpB subunits, which allosterically activate each other. Specifically, we develop a rational approach for identifying key amino acid residues of TrpB distal from the active site. Those residues are predicted to be crucial for shifting the inefficient conformational ensemble of the isolated TrpB to a productive ensemble through intra-subunit allosteric effects. The experimental validation of the conformationally driven TrpB design demonstrates its superior stand-alone activity in the absence of TrpA, comparable to those enhancements obtained after multiple rounds of experimental laboratory evolution. Our work evidences that the current challenge of distal active site prediction for enhanced function in computational enzyme design has become within reach.
Collapse
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Javier Iglesias-Fernández
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
- Nostrum Biodiscovery, Carrer de Baldiri Reixac, 10-12, Barcelona 08028, Spain
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
10
|
Shenshin VA, Lescanne C, Gines G, Rondelez Y. A small-molecule chemical interface for molecular programs. Nucleic Acids Res 2021; 49:7765-7774. [PMID: 34223901 PMCID: PMC8287923 DOI: 10.1093/nar/gkab470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
In vitro molecular circuits, based on DNA-programmable chemistries, can perform an increasing range of high-level functions, such as molecular level computation, image or chemical pattern recognition and pattern generation. Most reported demonstrations, however, can only accept nucleic acids as input signals. Real-world applications of these programmable chemistries critically depend on strategies to interface them with a variety of non-DNA inputs, in particular small biologically relevant chemicals. We introduce here a general strategy to interface DNA-based circuits with non-DNA signals, based on input-translating modules. These translating modules contain a DNA response part and an allosteric protein sensing part, and use a simple design that renders them fully tunable and modular. They can be repurposed to either transmit or invert the response associated with the presence of a given input. By combining these translating-modules with robust and leak-free amplification motifs, we build sensing circuits that provide a fluorescent quantitative time-response to the concentration of their small-molecule input, with good specificity and sensitivity. The programmability of the DNA layer can be leveraged to perform DNA based signal processing operations, which we demonstrate here with logical inversion, signal modulation and a classification task on two inputs. The DNA circuits are also compatible with standard biochemical conditions, and we show the one-pot detection of an enzyme through its native metabolic activity. We anticipate that this sensitive small-molecule-to-DNA conversion strategy will play a critical role in the future applications of molecular-level circuitry.
Collapse
Affiliation(s)
- Vasily A Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Camille Lescanne
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
11
|
Hoffarth ER, Kong S, He HY, Ryan KS. An engineered biosynthetic-synthetic platform for production of halogenated indolmycin antibiotics. Chem Sci 2021; 12:8817-8821. [PMID: 34257882 PMCID: PMC8246080 DOI: 10.1039/d0sc05843b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/15/2021] [Indexed: 11/21/2022] Open
Abstract
Indolmycin is an antibiotic from Streptomyces griseus ATCC 12648 with activity against Helicobacter pylori, Plasmodium falciparum, and methicillin-resistant Staphylococcus aureus. Here we describe the use of the indolmycin biosynthetic genes in E. coli to make indolmycenic acid, a chiral intermediate in indolmycin biosynthesis, which can then be converted to indolmycin through a three-step synthesis. To expand indolmycin structural diversity, we introduce a promiscuous tryptophanyl-tRNA synthetase gene (trpS) into our E. coli production system and feed halogenated indoles to generate the corresponding indolmycenic acids, ultimately allowing us to access indolmycin derivatives through synthesis. Bioactivity testing against methicillin-resistant Staphylococcus aureus showed modest antibiotic activity for 5-, 6-, and 7-fluoro-indolmycin.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, The University of British Columbia Vancouver Canada
| | - Sunnie Kong
- Department of Chemistry, The University of British Columbia Vancouver Canada
| | - Hai-Yan He
- Department of Chemistry, The University of British Columbia Vancouver Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia Vancouver Canada
| |
Collapse
|
12
|
Wang L, Song W, Wang B, Zhang Y, Xu X, Wu J, Gao C, Liu J, Chen X, Chen J, Liu L. One-Pot Enzymatic–Chemical Cascade Route for Synthesizing Aromatic α-Hydroxy Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
13
|
Watkins-Dulaney E, Straathof S, Arnold F. Tryptophan Synthase: Biocatalyst Extraordinaire. Chembiochem 2021; 22:5-16. [PMID: 32677310 PMCID: PMC7935429 DOI: 10.1002/cbic.202000379] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Tryptophan synthase (TrpS) has emerged as a paragon of noncanonical amino acid (ncAA) synthesis and is an ideal biocatalyst for synthetic and biological applications. TrpS catalyzes an irreversible, C-C bond-forming reaction between indole and serine to make l-tryptophan; native TrpS complexes possess fairly broad specificity for indole analogues, but are difficult to engineer to extend substrate scope or to confer other useful properties due to allosteric constraints and their heterodimeric structure. Directed evolution freed the catalytically relevant TrpS β-subunit (TrpB) from allosteric regulation by its TrpA partner and has enabled dramatic expansion of the enzyme's substrate scope. This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.
Collapse
Affiliation(s)
- Ella Watkins-Dulaney
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Sabine Straathof
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Frances Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
McDonald AD, Perkins LJ, Buller AR. Facile in Vitro Biocatalytic Production of Diverse Tryptamines. Chembiochem 2019; 20:1939-1944. [PMID: 30864270 PMCID: PMC6800669 DOI: 10.1002/cbic.201900069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Indexed: 01/01/2023]
Abstract
Tryptamines are a medicinally important class of small molecules that serve as precursors to more complex, clinically used indole alkaloid natural products. Typically, tryptamine analogues are prepared from indoles through multistep synthetic routes. In the natural world, the desirable tryptamine synthon is produced in a single step by l-tryptophan decarboxylases (TDCs). However, no TDCs are known to combine high activity and substrate promiscuity, which might enable a practical biocatalytic route to tryptamine analogues. We have now identified the TDC from Ruminococcus gnavus as the first highly active and promiscuous member of this enzyme family. RgnTDC performs up to 96 000 turnovers and readily accommodates tryptophan analogues with substituents at the 4, 5, 6, and 7 positions, as well as alternative heterocycles, thus enabling the facile biocatalytic synthesis of >20 tryptamine analogues. We demonstrate the utility of this enzyme in a two-step biocatalytic sequence with an engineered tryptophan synthase to afford an efficient, cost-effective route to tryptamines from commercially available indole starting materials.
Collapse
Affiliation(s)
- Allwin D McDonald
- Department of Chemistry, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Lydia J Perkins
- Department of Chemistry, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin, Madison, Madison, WI, 53705, USA
| |
Collapse
|
16
|
Maria-Solano MA, Iglesias-Fernández J, Osuna S. Deciphering the Allosterically Driven Conformational Ensemble in Tryptophan Synthase Evolution. J Am Chem Soc 2019; 141:13049-13056. [DOI: 10.1021/jacs.9b03646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Javier Iglesias-Fernández
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Sílvia Osuna
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
Almhjell PJ, Boville CE, Arnold FH. Engineering enzymes for noncanonical amino acid synthesis. Chem Soc Rev 2018; 47:8980-8997. [PMID: 30280154 PMCID: PMC6434697 DOI: 10.1039/c8cs00665b] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The standard proteinogenic amino acids grant access to a myriad of chemistries that harmonize to create life. Outside of these twenty canonical protein building blocks are countless noncanonical amino acids (ncAAs), either found in nature or created by man. Interest in ncAAs has grown as research has unveiled their importance as precursors to natural products and pharmaceuticals, biological probes, and more. Despite their broad applications, synthesis of ncAAs remains a challenge, as poor stereoselectivity and low functional-group compatibility stymie effective preparative routes. The use of enzymes has emerged as a versatile approach to prepare ncAAs, and nature's enzymes can be engineered to synthesize ncAAs more efficiently and expand the amino acid alphabet. In this tutorial review, we briefly outline different enzyme engineering strategies and then discuss examples where engineering has generated new 'ncAA synthases' for efficient, environmentally benign production of a wide and growing collection of valuable ncAAs.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
18
|
Boville CE, Scheele RA, Koch P, Brinkmann-Chen S, Buller AR, Arnold FH. Engineered Biosynthesis of β-Alkyl Tryptophan Analogues. Angew Chem Int Ed Engl 2018; 57:14764-14768. [PMID: 30215880 DOI: 10.1002/anie.201807998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 11/12/2022]
Abstract
Noncanonical amino acids (ncAAs) with dual stereocenters at the α and β positions are valuable precursors to natural products and therapeutics. Despite the potential applications of such bioactive β-branched ncAAs, their availability is limited due to the inefficiency of the multistep methods used to prepare them. Herein we report a stereoselective biocatalytic synthesis of β-branched tryptophan analogues using an engineered variant of Pyrococcus furiosus tryptophan synthase (PfTrpB), PfTrpB7E6 . PfTrpB7E6 is the first biocatalyst to synthesize bulky β-branched tryptophan analogues in a single step, with demonstrated access to 27 ncAAs. The molecular basis for the efficient catalysis and broad substrate tolerance of PfTrpB7E6 was explored through X-ray crystallography and UV/Vis spectroscopy, which revealed that a combination of active-site and remote mutations increase the abundance and persistence of a key reactive intermediate. PfTrpB7E6 provides an operationally simple and environmentally benign platform for the preparation of β-branched tryptophan building blocks.
Collapse
Affiliation(s)
- Christina E Boville
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Remkes A Scheele
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Philipp Koch
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| |
Collapse
|
19
|
Boville CE, Scheele RA, Koch P, Brinkmann-Chen S, Buller AR, Arnold FH. Engineered Biosynthesis of β-Alkyl Tryptophan Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807998] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christina E. Boville
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Remkes A. Scheele
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Philipp Koch
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| | - Andrew R. Buller
- Department of Chemistry; University of Wisconsin; 1101 University Avenue Madison WI 53706 USA
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41; California Institute of Technology; 1200 East California Boulevard Pasadena California 91125 USA
| |
Collapse
|
20
|
Buller AR, van Roye P, Cahn JK, Scheele RA, Herger M, Arnold FH. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble. J Am Chem Soc 2018; 140:7256-7266. [PMID: 29712420 PMCID: PMC5999571 DOI: 10.1021/jacs.8b03490] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric enzymes contain a wealth of catalytic diversity that remains distinctly underutilized for biocatalysis. Tryptophan synthase is a model allosteric system and a valuable enzyme for the synthesis of noncanonical amino acids (ncAA). Previously, we evolved the β-subunit from Pyrococcus furiosus, PfTrpB, for ncAA synthase activity in the absence of its native partner protein PfTrpA. However, the precise mechanism by which mutation activated TrpB to afford a stand-alone catalyst remained enigmatic. Here, we show that directed evolution caused a gradual change in the rate-limiting step of the catalytic cycle. Concomitantly, the steady-state distribution of the intermediates shifts to favor covalently bound Trp adducts, which have increased thermodynamic stability. The biochemical properties of these evolved, stand-alone TrpBs converge on those induced in the native system by allosteric activation. High-resolution crystal structures of the wild-type enzyme, an intermediate in the lineage, and the final variant, encompassing five distinct chemical states, show that activating mutations have only minor structural effects on their immediate environment. Instead, mutation stabilizes the large-scale motion of a subdomain to favor an otherwise transiently populated closed conformational state. This increase in stability enabled the first structural description of Trp covalently bound in a catalytically active TrpB, confirming key features of catalysis. These data combine to show that sophisticated models of allostery are not a prerequisite to recapitulating its complex effects via directed evolution, opening the way to engineering stand-alone versions of diverse allosteric enzymes.
Collapse
Affiliation(s)
- Andrew R. Buller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul van Roye
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jackson K.B. Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Remkes A. Scheele
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael Herger
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|