1
|
Mitchell-White JI, Briggs DA, Mistry SJ, Mbiwan HA, Kellam B, Holliday ND, Briddon SJ, Kerr ID. A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2. Arch Biochem Biophys 2024; 753:109915. [PMID: 38307314 DOI: 10.1016/j.abb.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
The human ATP-binding cassette (ABC) transporter, ABCG2, is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider pharmacokinetics. The binding of substrates and inhibitors is a key stage in the transport cycle of ABCG2. Here, we describe a novel binding assay using a high affinity fluorescent inhibitor based on Ko143 and time-resolved Förster resonance energy transfer (TR-FRET) to measure saturation binding to ABCG2. This binding is displaced by Ko143 and other known ABCG2 ligands, and is sensitive to the addition of AMP-PNP, a non-hydrolysable ATP analogue. This assay complements the arsenal of methods for determining drug:ABCG2 interactions and has the possibility of being adaptable for other multidrug pumps.
Collapse
Affiliation(s)
- James I Mitchell-White
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Sarah J Mistry
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Hannah A Mbiwan
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; School of Pharmacy, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Barrie Kellam
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicholas D Holliday
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Stephen J Briddon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
3
|
Gyöngy Z, Mocsár G, Hegedűs É, Stockner T, Ritter Z, Homolya L, Schamberger A, Orbán TI, Remenyik J, Szakacs G, Goda K. Nucleotide binding is the critical regulator of ABCG2 conformational transitions. eLife 2023; 12:83976. [PMID: 36763413 PMCID: PMC9917445 DOI: 10.7554/elife.83976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.
Collapse
Affiliation(s)
- Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Éva Hegedűs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecenHungary
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary,Institute of Cancer Research, Medical University of ViennaViennaAustria
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Inoue Y, Yamaguchi T, Otsuka T, Utsunomiya Y, Pan D, Ogawa H, Kato H. Structure-based alteration of tryptophan residues of the multidrug transporter CmABCB1 to assess substrate binding using fluorescence spectroscopy. Protein Sci 2022; 31:e4331. [PMID: 35634783 PMCID: PMC9123602 DOI: 10.1002/pro.4331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 09/17/2023]
Abstract
ABCB1, also known as P-glycoprotein, is an essential component of many physiological barriers and extrudes a variety of hydrophobic chemicals out of the cell. Structures of ABCB1 provided insights into the structural changes that occur upon ATP binding and the characteristic architecture of the substrate binding site. Yet, the structure-function relationship between substrate binding and transporting still remains largely obscured because there is no robust method for accurately measuring substrate binding constants. The methods currently used cannot identify whether the bound substrates are located in the inner chamber of the molecule in the transmembrane region or not because of the low spatial resolution. Here, we report a system for measuring the affinity of substrate binding to the Cyanidioschyzon merolae ABCB1 (CmABCB1) using site-specific tryptophan (Trp) fluorescence quenching. We designed a CmABCB1 mutant with an extrinsic Trp residue introduced into the inner chamber. Trp fluorescence was quenched by three substrates and one inhibitor, including rhodamine 6G, in a saturable fashion, allowing for accurate estimation of the dissociation constant (KD ) for each molecule. The KD for rhodamine 6G is similar to that determined using a reciprocal fluorescence quenching assay using rhodamine 6G fluorescence, suggesting that Trp fluorescence of the mutant was quenched by the interaction between the extrinsic Trp and substrates bound in the inner chamber. Structural comparison of the ABCB1 structures suggests that the system presented in this study could be ideal method of choice to determine the substrate binding affinities of compounds bound to the chamber of mammalian ABCB1.
Collapse
Affiliation(s)
- Yoshiki Inoue
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tomohiro Yamaguchi
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tetsuo Otsuka
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yuto Utsunomiya
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Advanced Photon Technology DivisionRIKEN Harima Institute at SPring‐8Sayo‐gunHyogoJapan
| |
Collapse
|
5
|
Stoddart LA, Goulding J, Briddon SJ. Advances in the application of fluorescence correlation spectroscopy to study detergent purified and encapsulated membrane proteins. Int J Biochem Cell Biol 2022; 146:106210. [PMID: 35390493 DOI: 10.1016/j.biocel.2022.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a quantitative spectroscopy technique which could potentially increase throughput and sensitivity of screening for ligand, substrate and inhibitor binding to membrane proteins in solution. However, the purification of membrane proteins in their active forms is complex, as the lipid bilayer provides stability and its removal often causes the protein to become conformationally unstable. This has limited the application of biophysical techniques such as FCS to study the function of membrane proteins. The recent application of native extraction techniques such as styrene maleic acid lipid particles (SMALPs) has resolved this issue and FCS has emerged as a powerful option for studying proteins extracted in this way. This review will discuss the application of FCS to study purified membrane proteins in detergent micelles, nanodiscs and SMALPs and its potential to be used routinely in membrane protein drug discovery.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Joëlle Goulding
- Cell Signalling and Pharmacology Research Group, Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
6
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
7
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
8
|
Clouser AF, Alam YH, Atkins WM. Cholesterol Asymmetrically Modulates the Conformational Ensemble of the Nucleotide-Binding Domains of P-Glycoprotein in Lipid Nanodiscs. Biochemistry 2020; 60:85-94. [PMID: 33350827 DOI: 10.1021/acs.biochem.0c00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates its activity. An understanding of structural or dynamic changes due to the lipid environment is lacking. We aimed to determine the effects of cholesterol in a membrane on the conformational behavior of P-gp in lipid nanodiscs. The presence of cholesterol stimulates ATP hydrolysis and alters lipid order and fluidity. Hydrogen/deuterium exchange mass spectrometry demonstrates that cholesterol in the membrane induces asymmetric, long-range changes in the distributions and exchange kinetics of conformations of the nucleotide-binding domains, correlating the effects of lipid composition on activity with specific changes in the P-gp conformational landscape.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - Yasmine H Alam
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States.,Department of Biological Sciences, MARC Program, California State University, Fullerton, California 92834-6850, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
9
|
Li MJ, Atkins WM, McClary WD. Preparation of Lipid Nanodiscs with Lipid Mixtures. ACTA ACUST UNITED AC 2020; 98:e100. [PMID: 31746556 DOI: 10.1002/cpps.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid nanodiscs provide a native-like lipid environment for membrane proteins, and they have become a valuable platform for the study of membrane biophysics. A range of biophysical and biochemical analyses are enabled when membrane proteins are captured in lipid nanodiscs. Two parameters that can be controlled when capturing membrane proteins in lipid nanodiscs are the radius, and hence the surface area of the lipid surface, and the composition of the lipid bilayer. Despite their emergence as a versatile tool, most studies with lipid nanodiscs in the literature have focused on nanodiscs of a single radius with a single lipid. In light of the complexity of biological membranes, it is likely that nanodiscs with multiple membrane components would be more sophisticated models for membrane research. It is possible to prepare nanodiscs with more complex lipid mixtures to probe the effects of lipid composition on several aspects of membrane biochemistry. Detailed protocols are described here for the preparation of nanodiscs with mixtures of phospholipids, incorporation of cholesterol, and incorporation of a spectroscopic lipid probe. These protocols provide starting points for the construction of nanodiscs with more physiological membrane compositions or with useful biophysical probes. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Assembly of mixed lipid nanodiscs Basic Protocol 2: Assembly of nanodiscs with cholesterol Basic Protocol 3: Incorporation of laurdan into nanodiscs for membrane fluidity measurements.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Wynton D McClary
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Jiang Y, Wang Z, Duan W, Liu L, Si M, Chen X, Fang CJ. The critical size of gold nanoparticles for overcoming P-gp mediated multidrug resistance. NANOSCALE 2020; 12:16451-16461. [PMID: 32790812 PMCID: PMC7430045 DOI: 10.1039/d0nr03226c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multidrug resistance (MDR) remains a huge obstacle during cancer treatment. One of the most studied MDR mechanisms is P-glycoprotein (P-gp) mediated drug efflux. Based on the three-dimensional structural characteristics of P-gp, gold nanoparticles (AuNPs) with average sizes of 4.1 nm and 5.4 nm were designed for the construction of nanodrug delivery systems (NanoDDSs), with the anticancer molecules 2-(9-anthracenylmethylene)-hydrazinecarbothioamide (ANS) and 6-mercaptopurine (6-MP) modified on the AuNP surfaces through the thiol group. In vitro cytotoxicity results suggested that the larger sized AuNPs can effectively decrease the drug resistance index of MCF-7/ADR cells to ∼2. Verapamil and P-gp antibody competitive experiments, combined with the cellular uptake of AuNPs, indicated that larger NanoDDSs were more conducive to intracellular drug accumulation and thus had improved anticancer activities, due to a size mismatch between the nanoparticles and the active site of P-gp, and, therefore, reduced drug efflux was seen. Measurements of ATPase activity and intracellular ATP levels indicated that the larger nanoparticles do not bind well to P-gp, thus avoiding effective recognition by P-gp. This was further evidenced by the observation that 4.1 nm and 5.4 nm NanoDDS-treated MCF-7/ADR cells showed remarkable differences in energy-related metabolic pathways. Therefore, the critical size of AuNPs for overcoming MDR was identified to be between 4.1 nm and 5.4 nm. This provides a more accurate description of the composite dimension requirements for NanoDDSs that are designed to overcome MDR.
Collapse
Affiliation(s)
- Yuqian Jiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Horsey AJ, Briggs DA, Holliday ND, Briddon SJ, Kerr ID. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183218. [PMID: 32057756 PMCID: PMC7156912 DOI: 10.1016/j.bbamem.2020.183218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
ABCG2 is one of a trio of human ATP binding cassette transporters that have the ability to bind and transport a diverse array of chemical substrates out of cells. This so-called "multidrug" transport has numerous physiological consequences including effects on how drugs are absorbed into and eliminated from the body. Understanding how ABCG2 is able to interact with multiple drug substrates remains an important goal in transporter biology. Most drugs are believed to interact with ABCG2 through the hydrophobic lipid bilayer and experimental systems for ABCG2 study need to incorporate this. We have exploited styrene maleic acid to solubilise ABCG2 from HEK293T cells overexpressing the transporter, and confirmed by dynamic light scattering and fluorescence correlation spectroscopy (FCS) that this results in the extraction of SMA lipid copolymer (SMALP) particles that are uniform in size and contain a dimer of ABCG2, which is the predominant physiological state. FCS was further employed to measure the diffusion of a fluorescent ABCG2 substrate (BODIPY-prazosin) in the presence and absence of SMALP particles of purified ABCG2. Autocorrelation analysis of FCS traces enabled the mathematical separation of free BODIPY-prazosin from drug bound to ABCG2 and allowed us to show that combining SMALP extraction with FCS can be used to study specific drug: transporter interactions.
Collapse
Affiliation(s)
- Aaron J Horsey
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicholas D Holliday
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Stephen J Briddon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
12
|
Kopcho N, Chang G, Komives EA. Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Sci Rep 2019; 9:15092. [PMID: 31641149 PMCID: PMC6805939 DOI: 10.1038/s41598-019-50578-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4−3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation.
Collapse
Affiliation(s)
- Noah Kopcho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA
| | - Geoffrey Chang
- School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA.,Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA.
| |
Collapse
|
13
|
Sajid A, Raju N, Lusvarghi S, Vahedi S, Swenson RE, Ambudkar SV. Synthesis and Characterization of Bodipy-FL-Cyclosporine A as a Substrate for Multidrug Resistance-Linked P-Glycoprotein (ABCB1). Drug Metab Dispos 2019; 47:1013-1023. [PMID: 31371421 PMCID: PMC6744393 DOI: 10.1124/dmd.119.087734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
Fluorescent conjugates of drugs can be used to study cellular functions and pharmacology. These compounds interact with proteins as substrates or inhibitors, helping in the development of unique fluorescence-based methods to study in vivo localization and molecular mechanisms. P-glycoprotein (P-gp, ABCB1) is an ATP-binding cassette (ABC) transporter that effluxes most anticancer drugs from cells, contributing to the development of drug resistance. To study the transport function of P-gp, we synthesized a Bodipy-labeled fluorescent conjugate of cyclosporine A (BD-CsA). After synthesis and characterization of its chemical purity, BD-CsA was compared with the commonly used 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-CsA probe. In flow cytometry assays, the fluorescence intensity of BD-CsA was almost 10 times greater than that of NBD-CsA, enabling us to use significantly lower concentrations of BD-CsA to achieve the same fluorescence levels. We found that BD-CsA is recognized as a transport substrate by both human and mouse P-gp. The rate of efflux of BD-CsA by human P-gp is comparable to that of NBD-CsA. The transport of BD-CsA was inhibited by tariquidar, with similar IC50 values to those for NBD-CsA. BD-CsA and NBD-CsA both partially inhibited the ATPase activity of P-gp with similar IC50 values. In silico docking of BD-CsA and NBD-CsA to the human P-gp structure indicates that they both bind in the drug-binding pocket with similar docking scores and possibly interact with similar residues. Thus, we demonstrate that BD-CsA is a sensitive fluorescent substrate of P-gp that can be used to efficiently study the transporter's localization and function in vitro and in vivo. SIGNIFICANCE STATEMENT: The goal of this study was to develop an effective probe to study drug transport by P-glycoprotein (P-gp). Fluorophore-conjugated substrates are useful to study the P-gp transport mechanism, structural characteristics, and development of its inhibitors. Cyclosporine A (CsA), a cyclic peptide comprising 11 amino acids, is a known substrate of P-gp. P-gp affects CsA pharmacokinetics and interactions with other coadministered drugs, especially during transplant surgeries and treatment of autoimmune disorders, when CsA is given as an immunosuppressive agent. We synthesized and characterized Bodipy-FL-CsA as an avid fluorescent substrate that can be used to study the function of P-gp both in vitro and in vivo. We demonstrate that Bodipy-FL-conjugation does not affect the properties of CsA as a P-gp substrate.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| | - Natarajan Raju
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| | - Shahrooz Vahedi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| | - Rolf E Swenson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (A.S., S.L., S.V., S.V.A.), and Imaging Probe Development Center, National Heart, Lung and Blood Institute (N.R., R.E.S.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Zhang YT, Yu YQ, Yan XX, Wang WJ, Tian XT, Wang L, Zhu WL, Gong LK, Pan GY. Different structures of berberine and five other protoberberine alkaloids that affect P-glycoprotein-mediated efflux capacity. Acta Pharmacol Sin 2019; 40:133-142. [PMID: 30442987 DOI: 10.1038/s41401-018-0183-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022]
Abstract
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
Collapse
|
15
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
16
|
Briddon SJ, Kilpatrick LE, Hill SJ. Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends Pharmacol Sci 2017; 39:158-174. [PMID: 29277246 DOI: 10.1016/j.tips.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are organised within the cell membrane into highly ordered macromolecular complexes along with other receptors and signalling proteins. Understanding how heterogeneity in these complexes affects the pharmacology and functional response of these receptors is crucial for developing new and more selective ligands. Fluorescence correlation spectroscopy (FCS) and related techniques such as photon counting histogram (PCH) analysis and image-based FCS can be used to interrogate the properties of GPCRs in these membrane microdomains, as well as their interaction with fluorescent ligands. FCS analyses fluorescence fluctuations within a small-defined excitation volume to yield information about their movement, concentration and molecular brightness (aggregation). These techniques can be used on live cells with single-molecule sensitivity and high spatial resolution. Once the preserve of specialist equipment, FCS techniques can now be applied using standard confocal microscopes. This review describes how FCS and related techniques have revealed novel insights into GPCR biology.
Collapse
Affiliation(s)
- Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|