1
|
Fredenburgh JC, Weitz JI. Exosite crosstalk in thrombin. J Thromb Haemost 2025; 23:1160-1168. [PMID: 39842513 DOI: 10.1016/j.jtha.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site. These exosites bind substrates, inhibitors, cofactors, and receptors, which coordinate to direct thrombin to the appropriate location and modulate catalytic activity. Thus, the exosites are essential to the activity and regulation of thrombin. In addition to acting as binding sites, the exosites modulate the active site allosterically. Furthermore, the exosites impact each other, whereby the binding of ligands to one exosite impacts the function of the opposing exosite. Given the integral role that exosites play in the regulation of thrombin, they are attractive targets for the regulation of thrombin and for the development of new anticoagulants.
Collapse
Affiliation(s)
- James C Fredenburgh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Dai Y, Kretz CA, Kim PY, Gross PL. A specific fluorescence resonance energy quenching-based biosensor for measuring thrombin activity in whole blood. J Thromb Haemost 2024; 22:1627-1639. [PMID: 38382740 DOI: 10.1016/j.jtha.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND At sites of vessel injury, thrombin acts as the central mediator of coagulation by catalyzing fibrin clot formation and platelet activation. Thrombin generation is most frequently measured in plasma samples using small-molecule substrates; however, these have low specificity for thrombin and limited utility in whole blood. Plasma assays are limited because they ignore the hemostatic contributions of blood cells and require anticoagulation and the addition of supraphysiological concentrations of calcium. OBJECTIVES To overcome these limitations, we designed and characterized a fluorescence resonance energy quenching-based thrombin sensor (FTS) protein. METHODS The fluorescence resonance energy quenching pair of mAmetrine and tTomato, separated by a thrombin recognition sequence, was developed. The protein was expressed using Escherichia coli, and purity was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cleavage of FTS was monitored by fluorescence using excitation at 406 nm and emission at 526 nm and 581 nm. RESULTS Compared with small-molecule substrates, the FTS demonstrated high specificity for thrombin; it is not cleaved by thrombin or inhibited by α2-macroglobulin and interacts with thrombin's anion-binding exosite I. The FTS can effectively measure thrombin generation in plasma and in finger-prick whole blood, which allows it to be developed into a point-of-care test of thrombin generation. The FTS does not inhibit standard thrombin-generation assays. Lastly, FTS-based thrombin generation in nonanticoagulated finger-prick blood was delayed but enhanced compared with that in citrated plasma. CONCLUSION The FTS will broaden our understanding of thrombin generation in ways that are not attainable with current methods.
Collapse
Affiliation(s)
- Ying Dai
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y Kim
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Peter L Gross
- Hamilton Health Sciences and Departments of Medicine and Medical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Acquasaliente L, Pierangelini A, Pagotto A, Pozzi N, De Filippis V. From haemadin to haemanorm: Synthesis and characterization of full-length haemadin from the leech Haemadipsa sylvestris and of a novel bivalent, highly potent thrombin inhibitor (haemanorm). Protein Sci 2023; 32:e4825. [PMID: 37924304 PMCID: PMC10683372 DOI: 10.1002/pro.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 μM) and its potency was enhanced by 10-fold after Phe3 → β-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 μM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Anna Pagotto
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Nicola Pozzi
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research CenterSaint Louis UniversitySt. LouisMissouriUSA
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| |
Collapse
|
4
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
5
|
Allosteric modulation of exosite 1 attenuates polyphosphate-catalyzed activation of factor XI by thrombin. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:83-93. [PMID: 36695400 DOI: 10.1016/j.jtha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Polyphosphate (polyP) promotes feedback activation of factor (F) XI by thrombin by serving as a template. The contribution of thrombin's exosites to these interactions is unclear. OBJECTIVES To determine the contribution of thrombin exosites 1 and 2 to polyP-induced potentiation of FXI activation by thrombin. METHODS The affinities of α-thrombin; K109E/110E-thrombin, an exosite 1 variant, or R93E-thrombin, an exosite 2 variant; FXI; and FXIa for polyP-70 were quantified using surface plasmon resonance in the absence or presence of exosite ligands. FXI was activated with α-thrombin or thrombin variants in the absence or presence of polyP-70 and exosite ligands. RESULTS α-Thrombin, K109/110E-thrombin, FXI, and FXIa bound polyP-70, whereas R93E-thrombin exhibited minimal binding. Exosite 1 and exosite 2 ligands attenuated thrombin binding to polyP-70. PolyP-70 accelerated the rate of FXI activation by α-thrombin and K109E/110E-thrombin but not R93E-thrombin up to 1500-fold in a bell-shaped, concentration-responsive manner. Exosite 1 and exosite 2 ligands had no impact on FXI activation by thrombin in the absence of polyP-70; however, in its presence, they attenuated activation by 40% to 65%. CONCLUSION PolyP-70 binds FXI and thrombin and promotes their interaction. Exosite 2 ligands attenuate activation because thrombin binds polyP-70 via exosite 2. Attenuation of FXI activation by exosite 1 ligands likely reflects allosteric modulation of exosite 2 and/or the active site of thrombin because exosite 1 is not directly involved in FXI activation. Therefore, allosteric modulation of thrombin's exosites may represent a novel strategy for downregulating FXI activation.
Collapse
|
6
|
Screening of the Promising Direct Thrombin Inhibitors from Haematophagous Organisms. Part I: Recombinant Analogues and Their Antithrombotic Activity In Vitro. Biomedicines 2021; 10:biomedicines10010011. [PMID: 35052692 PMCID: PMC8772750 DOI: 10.3390/biomedicines10010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The success in treatment of venous thromboembolism and acute coronary syndromes using direct thrombin inhibitors has stimulated research aimed at finding a new anticoagulant from haematophagous organisms. This study deals with the comparison between hirudin-1 from Hirudomedicinalis(desirudin), being the first-known and most well-studied natural anticoagulant, along with recombinant analogs of haemadin from the leech Haemadipsa sylvestris, variegin from the tick Amblyomma variegatum, and anophelin from Anopheles albimanus. These polypeptides were chosen due to their high specificity and affinity for thrombin, as well as their distinctive inhibitory mechanisms. We have developed a universal scheme for the biotechnological production of these recombinant peptides as pharmaceutical substances. The anticoagulant activities of these peptides were compared using the thrombin amidolytic activity assay and prolongation of coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time) in mouse and human plasma. The preliminary results obtained suggest haemadin as the closest analog of recombinant hirudin-1, the active substance of the medicinal product Iprivask (Aventis Pharmaceuticals, USA) for the prevention of deep venous thrombosis in patients undergoing elective hip or knee replacement surgery. In contrast, variegin can be regarded as a natural analog of bivalirudin (Angiomax, The Medicines Company), a synthetic hirudin-1 derivative certified for the treatment of patients undergoing percutaneous coronary intervention and of patients with unstable angina pectoris after percutaneous transluminal coronary angioplasty.
Collapse
|
7
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
8
|
Komarevtsev SK, Evseev PV, Shneider MM, Popova EA, Tupikin AE, Stepanenko VN, Kabilov MR, Shabunin SV, Osmolovskiy AA, Miroshnikov KA. Gene Analysis, Cloning, and Heterologous Expression of Protease from a Micromycete Aspergillus ochraceus Capable of Activating Protein C of Blood Plasma. Microorganisms 2021; 9:1936. [PMID: 34576831 PMCID: PMC8471544 DOI: 10.3390/microorganisms9091936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Micromycetes are known to secrete numerous enzymes of biotechnological and medical potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary for proper folding and maturation. The recombinant protease was identical to the native enzyme from micromycete in terms of its biological properties, including an ability to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in medicine, veterinary science, diagnostics, and other applications.
Collapse
Affiliation(s)
- Sergei K. Komarevtsev
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Elizaveta A. Popova
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Vasiliy N. Stepanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.T.); (M.R.K.)
| | - Sergei V. Shabunin
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Alexander A. Osmolovskiy
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.P.); (A.A.O.)
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
| | - Konstantin A. Miroshnikov
- All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy, 394087 Voronezh, Russia; (S.V.S.); (K.A.M.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (M.M.S.); (V.N.S.)
| |
Collapse
|
9
|
Komarevtsev SK, Timorshina SN, Leontieva MR, Shabunin SV, Lobakova ES, Osmolovskiy AA. Effect of Immobilization of the Micromycete Aspergillus ochraceus VKM-F4104D in Polymeric Carriers on the Production of the Fibrinolytic Protease Activator of Blood Plasma Protein C. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
11
|
Gadi I, Fatima S, Elwakiel A, Nazir S, Al-Dabet MM, Rana R, Bock F, Manhoran J, Gupta D, Biemann R, Nieswand B, Braun-Dullaeus R, Besler C, Scholz M, Geffers R, Griffin JH, Esmon CT, Kohli S, Isermann B, Shahzad K. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res 2021; 128:513-529. [PMID: 33353373 PMCID: PMC8293866 DOI: 10.1161/circresaha.120.317219] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1β, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.
Collapse
Affiliation(s)
- Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Moh’d Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
- Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman 11821, Jordan
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Fabian Bock
- Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jaykumar Manhoran
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Bernhard Nieswand
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Germany
| | | | - Christian Besler
- Cardiology, Leipzig-Heart Center, University of Leipzig, Germany
| | - Markus Scholz
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Robert Geffers
- RG Genome Analytics, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - John H. Griffin
- Molecular Medicine, The Scripps Research Institute, La Jolla, CA, US 92037, United States
| | - Charles T. Esmon
- Laboratory of Coagulation Biology, Oklahoma Medical Research Foundation, 73104 Oklahoma City, United States
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| |
Collapse
|
12
|
Troisi R, Balasco N, Vitagliano L, Sica F. Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. J Biomol Struct Dyn 2020; 39:2199-2209. [PMID: 32202471 DOI: 10.1080/07391102.2020.1746693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human α-thrombin (thrombin) is a multifunctional enzyme that plays a pivotal role in the coagulation pathway. Thrombin activity can be effectively modulated by G-quadruplex-based oligonucleotide aptamers that specifically interact with the two positively charged regions (exosites I and II) on the protein surface. Although insightful atomic-level snapshots of the recognition between thrombin and aptamers have been recently achieved through crystallographic analyses, some dynamic aspects of this interaction have not been fully characterized. We here report molecular dynamics simulations of thrombin in different association states: ligand-free and binary/ternary complexes with the aptamers TBA (at exosite I) and HD22_27mer (at exosite II). The simulations carried out on the binary and ternary complexes formed by thrombin with these aptamers provide a dynamic view of the interactions that stabilize them in a crystal-free environment. Interestingly, the analysis of the dynamics of the exosites in different thrombin binding states clearly indicates that the HD22_27mer binding at the exosite II favours conformations of exosite I that are prone to the TBA binding. Similar effects are observed upon the binding of TBA to the exosite I. These observations provide an atomic-level picture of the exosite inter-communication in thrombin and explain the experimentally detected cooperativity of the TBA/HD22_27mer binding.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
13
|
Billur R, Sabo TM, Maurer MC. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I. Biochemistry 2019; 58:1048-1060. [PMID: 30672691 DOI: 10.1021/acs.biochem.8b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombin, derived from zymogen prothrombin (ProT), is a serine protease involved in procoagulation, anticoagulation, and platelet activation. Thrombin's actions are regulated through anion-binding exosites I and II (ABE I and ABE II) that undergo maturation during activation. Mature ABEs can utilize exosite-based communication to fulfill thrombin functions. However, the conformational basis behind such long-range communication and the resultant ligand binding affinities are not well understood. Protease activated receptors (PARs), involved in platelet activation and aggregation, are known to target thrombin ABE I. Unexpectedly, PAR3 (44-56) can already bind to pro-ABE I of ProT. Nuclear magnetic resonance (NMR) ligand-enzyme titrations were used to characterize how individual PAR1 (49-62) residues interact with pro-ABE I and mature ABE I. 1D proton line broadening studies demonstrated that binding affinities for native PAR1P (49-62, P54) and for the weak binding variant PAR1G (49-62, P54G) increased as ProT was converted to mature thrombin. 1H,15N-HSQC titrations revealed that PAR1G residues K51, E53, F55, D58, and E60 exhibited less affinity to pro-ABE I than comparable residues in PAR3G (44-56, P51G). Individual PAR1G residues then displayed tighter binding upon exosite maturation. Long-range communication between thrombin exosites was examined by saturating ABE II with phosphorylated GpIbα (269-282, 3Yp) and monitoring the binding of PAR1 and PAR3 peptides to ABE I. Individual PAR residues exhibited increased affinities in this dual-ligand environment supporting the presence of interexosite allostery. Exosite maturation and beneficial long-range allostery are proposed to help stabilize an ABE I conformation that can effectively bind PAR ligands.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center , University of Louisville , Louisville , Kentucky 40202 , United States
| | - Muriel C Maurer
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
14
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|