1
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
2
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, Caiyin Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering (Basel) 2022; 9:bioengineering9060251. [PMID: 35735494 PMCID: PMC9219921 DOI: 10.3390/bioengineering9060251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Nisin, a typical lantibiotic, has robust antimicrobial activity combined with limited cytotoxicity, and the development of resistance to it is slow. These properties make nisin a promising antimicrobial agent to control pathogenic microorganisms in dairy foods. However, its low solubility, poor stability and short half-life at neutral pH limit its application within the dairy industry. Protein engineering technology has revealed the potential of modifying nisin to improve its properties, and many valuable variants have emerged. This review summarizes progress in the generation of nisin variants for the dairy industry and for other purposes. These nisin variants with additional modification have improved properties and can even expand the inhibition spectrum range of nisin. Nisin, as the most thoroughly studied lantibiotic, and its variants can also guide the modification of other lantibiotics.
Collapse
Affiliation(s)
- Yue Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
7
|
Weixler D, Berghoff M, Ovchinnikov KV, Reich S, Goldbeck O, Seibold GM, Wittmann C, Bar NS, Eikmanns BJ, Diep DB, Riedel CU. Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microb Cell Fact 2022; 21:11. [PMID: 35033086 PMCID: PMC8760817 DOI: 10.1186/s12934-022-01739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.
Collapse
Affiliation(s)
- Dominik Weixler
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max Berghoff
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kirill V Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sebastian Reich
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Nadav S Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Analysis of cross-functionality within LanBTC synthetase complexes from different bacterial sources with respect to production of fully modified lanthipeptides. Appl Environ Microbiol 2021; 88:e0161821. [PMID: 34788067 DOI: 10.1128/aem.01618-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lanthipeptides belong to a family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing (methyl)lanthionine residues. Commonly, class I lanthipeptides are synthesized by a gene cluster encoding a precursor peptide (LanA), a biosynthetic machinery (LanBTC), a protease (LanP), a two-component regulatory system (LanRK), and an immunity system (LanI and LanFEG). Although nisin and subtilin are highly similar class I lanthipeptides, the cross-regulation by LanRK and the cross-immunity by LanI and LanFEG between the nisin and subtilin systems have been proven very low. Here, the possibility of the cross-functionality by LanBTC to modify and transport nisin precursor (NisA) and subtilin precursor (SpaS) was evaluated in Bacillus subtilis and Lactococcus lactis. Interestingly, we found that a promiscuous NisBC-SpaT complex is able to synthesize and export nisin precursor, as efficiently as the native nisin biosynthetic machinery NisBTC, in L. lactis, but not in B. subtilis. The assembly of the NisBC-SpaT complex at a single microdomain, close to the old cell pole, was observed by fluorescence microscopy in L. lactis. In contrast, such a complex was not formed in B. subtilis. Furthermore, the isolation of the NisBC-SpaT complex and its subcomplexes from the cytoplasmic membrane of L. lactis by pull-down assays was successfully conducted. Our work demonstrates that the association of LanBC with LanT is critical for the efficient biosynthesis and secretion of the lanthipeptide precursor with complete modifications, and suggests a cooperative mechanism between LanBC and LanT in the modification and transport processes. IMPORTANCE A multimeric synthetase LanBTC complex has been proposed for the in vivo production of class I lanthipeptides. However, it has been demonstrated that LanB, LanC, and LanT can perform their functionality in vivo and in vitro, independently of other Lan proteins. The role of protein-protein interactions, especially between the modification complex LanBC and the transport system LanT, in the biosynthesis process of lanthipeptides is still unclear. In this study, the importance of the presence of a well-installed LanBTC complex in the cell membrane for lanthipeptide biosynthesis and transport was reinforced. In L. lactis, the recruitment of SpaT from the peripheral cell membrane to the cell poles by the NisBC complex was observed, which may explain the mechanism by which secretion of premature peptide is prevented.
Collapse
|
9
|
Grigoreva A, Andreeva J, Bikmetov D, Rusanova A, Serebryakova M, Garcia AH, Slonova D, Nair SK, Lippens G, Severinov K, Dubiley S. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience 2021; 24:102480. [PMID: 34113822 PMCID: PMC8169954 DOI: 10.1016/j.isci.2021.102480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Lanthipeptides, ribosomally synthesized and post-translationally modified peptides (RiPPs), can be divided into five classes based on their structures and biosynthetic pathways. Class I and II lanthipeptides have been well characterized, whereas less is known about members of the other three classes. Here, we describe a new family of class III lanthipeptides from Firmicutes. Members of the family are distinguished by the presence of a single carboxy-terminal labionin. We identified and characterized andalusicin, a representative of this family. Andalusicin bears two methyl groups at the α-amino terminus, a post-translational modification that has not previously been identified in class III lanthipeptides. Mature andalusicin A shows bioactivity against various Gram-positive bacteria, an activity that is highly dependent on the α-N dimethylation.
Collapse
Affiliation(s)
- Anastasiia Grigoreva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia Andreeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry Bikmetov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Anastasiia Rusanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina Serebryakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrea Hernandez Garcia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, IL 61801 USA
| | - Darya Slonova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, IL 61801 USA
| | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Waksman Institute for Microbiology, Piscataway, NJ 08854-8020, USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
10
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
11
|
Suzuki A, Suzuki M. Antimicrobial Activity of Lactococcus lactis subsp. lactis Isolated from a Stranded Cuvier's Beaked Whale ( Ziphius cavirostris) against Gram-Positive and -Negative Bacteria. Microorganisms 2021; 9:microorganisms9020243. [PMID: 33503966 PMCID: PMC7911499 DOI: 10.3390/microorganisms9020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
In the present study, we isolated and characterized Lactococcus lactis (L. lactis) subsp. lactis from a female Cuvier’s beaked whale (Ziphius cavirostris) stranded in Shizuoka, Japan. Only five isolates (CBW1-5), grown on Lactobacilli de Man Rogosa Sharpe (MRS) agar plates prepared using 50% artificial seawater, were positive in L. lactis species-specific primer PCR. Their 16S rRNA sequences were highly similar to those of L. lactis subsp. lactis JCM 5805T. The Gram reaction, motility, gas production from glucose, catalase production, and growth conditions were consistent with those of the type strain. Additionally, carbohydrate utilization of the strains was consistent with previously reported marine organism-derived strains. The pH-neutralized cell-free culture supernatant of strain CBW2 inhibited the growth of Bacillus subtilis subsp. subtilis ATCC 6051 and Vibrio alginolyticus ATCC 17749, whereas protease treatment eliminated or diminished its inhibitory activity. The strain possesses a precursor of the nisin structural gene (nisA), which showed 100% homology with nisin Z, and nisin biosynthesis-related genes (nisB, nisC, nisT, nisP, nisF, nisI, and nisRK), suggesting that the strain produces a nisin-like substance. This study provides fundamental information on whale-derived L. lactis subsp. lactis which may be useful for reducing the carriage of B. subtilis subsp. subtilis and V. alginolyticus.
Collapse
|
12
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 484] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
13
|
Reiners J, Lagedroste M, Gottstein J, Adeniyi ET, Kalscheuer R, Poschmann G, Stühler K, Smits SHJ, Schmitt L. Insights in the Antimicrobial Potential of the Natural Nisin Variant Nisin H. Front Microbiol 2020; 11:573614. [PMID: 33193179 PMCID: PMC7606277 DOI: 10.3389/fmicb.2020.573614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Lantibiotics are a growing class of antimicrobial peptides, which possess antimicrobial activity against mainly Gram-positive bacteria including the highly resistant strains such as methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci. In the last decades numerous lantibiotics were discovered in natural habitats or designed with bioengineering tools. In this study, we present an insight in the antimicrobial potential of the natural occurring lantibiotic nisin H from Streptococcus hyointestinalis as well as the variant nisin H F1I. We determined the yield of the heterologously expressed peptide and quantified the cleavage efficiency employing the nisin protease NisP. Furthermore, we analyzed the effect on the modification via mass spectrometry analysis. With standardized growth inhibition assays we benchmarked the activity of pure nisin H and the variant nisin H F1I, and their influence on the activity of the nisin immunity proteins NisI and NisFEG from Lactococcus lactis and the nisin resistance proteins SaNSR and SaNsrFP from Streptococcus agalactiae COH1. We further checked the antibacterial activity against clinical isolates of Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis via microdilution method. In summary, nisin H and the nisin H F1I variant possessed better antimicrobial potency than the natural nisin A.
Collapse
Affiliation(s)
- Jens Reiners
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcel Lagedroste
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Gottstein
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Emmanuel T Adeniyi
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis. mBio 2020; 11:mBio.02825-20. [PMID: 33173006 PMCID: PMC7667030 DOI: 10.1128/mbio.02825-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nisin is the model peptide for LanBC-modified lantibiotics that are commonly modified and exported by a putative synthetase complex. Although the mechanism of maturation, transport, immunity, and regulation is relatively well understood, and structural information is available for some of the proteins involved (B. Li, J. P. J. Yu, J. S. Brunzelle, G. N. Moll, et al., Science 311:1464–1467, 2006, https://doi.org/10.1126/science.1121422; M. A. Ortega, Y. Hao, Q. Zhang, M. C. Walker, et al., Nature 517:509–512, 2015, https://doi.org/10.1038/nature13888; C. Hacker, N. A. Christ, E. Duchardt-Ferner, S. Korn, et al., J Biol Chem 290:28869–28886, 2015, https://doi.org/10.1074/jbc.M115.679969; Y. Y. Xu, X. Li, R. Q. Li, S. S. Li, et al., Acta Crystallogr D Biol Crystallogr 70:1499–1505, 2014, https://doi.org/10.1107/S1399004714004234), the subcellular localization and assembly process of the biosynthesis complex remain to be elucidated. In this study, we determined the spatial distribution of nisin synthesis-related enzymes and the transporter, revealing that the modification and secretion of the precursor nisin mainly occur at the old cell poles of L. lactis and that the transporter NisT is probably recruited later to this spot after the completion of the modification reactions by NisB and NisC. Fluorescently labeled nisin biosynthesis machinery was visualized directly by fluorescence microscopy. To our knowledge, this is the first study to provide direct evidence of the existence of such a complex in vivo. Importantly, the elucidation of the “order of assembly” of the complex will facilitate future endeavors in the investigation of the nisin secretion mechanism and even the isolation and structural characterization of the complete complex. Nisin, a class I lantibiotic, is synthesized as a precursor peptide by a putative membrane-associated lanthionine synthetase complex consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT. Here, we characterize the subcellular localization and the assembly process of the nisin biosynthesis machinery in Lactococcus lactis by mutational analyses and fluorescence microscopy. Precursor nisin, NisB, and NisC were found to be mainly localized at the cell poles, with a preference for the old poles. They were found to be colocalized at the same spots in these old pole regions, functioning as a nisin modification complex. In contrast, the transporter NisT was found to be distributed uniformly and circumferentially in the membrane. When nisin secretion was blocked by mutagenesis of NisT, the nisin biosynthesis machinery was also visualized directly at a polar position using fluorescence microscopy. The interactions between NisB and other components of the machinery were further studied in vivo, and therefore, the “order of assembly” of the complex was revealed, indicating that NisB directly or indirectly plays the role of a polar “recruiter” in the initial assembly process. Additionally, a potential domain that is located at the surface of the elimination domain of NisB was identified to be crucial for the polar localization of NisB. Based on these data, we propose a model wherein precursor nisin is first completely modified by the nisin biosynthesis machinery, preventing the premature secretion of partially modified peptides, and subsequently secreted by recruited NisT, preferentially at the old pole regions.
Collapse
|
15
|
Pipiya SO, Terekhov SS, Mokrushina YA, Knorre VD, Smirnov IV, Gabibov AG. Engineering Artificial Biodiversity of Lantibiotics to Expand Chemical Space of DNA-Encoded Antibiotics. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1319-1334. [PMID: 33280576 DOI: 10.1134/s0006297920110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.
Collapse
Affiliation(s)
- S O Pipiya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S S Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yu A Mokrushina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V D Knorre
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Biosynthesis of lanthionine-constrained agonists of G protein-coupled receptors. Biochem Soc Trans 2020; 48:2195-2203. [PMID: 33125486 PMCID: PMC7609037 DOI: 10.1042/bst20200427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The conformation with which natural agonistic peptides interact with G protein-coupled receptor(s) (GPCR(s)) partly results from intramolecular interactions such as hydrogen bridges or is induced by ligand–receptor interactions. The conformational freedom of a peptide can be constrained by intramolecular cross-links. Conformational constraints enhance the receptor specificity, may lead to biased activity and confer proteolytic resistance to peptidic GPCR agonists. Chemical synthesis allows to introduce a variety of cross-links into a peptide and is suitable for bulk production of relatively simple lead peptides. Lanthionines are thioether bridged alanines of which the two alanines can be introduced at different distances in chosen positions in a peptide. Thioether bridges are much more stable than disulfide bridges. Biosynthesis of lanthionine-constrained peptides exploiting engineered Gram-positive or Gram-negative bacteria that contain lanthionine-introducing enzymes constitutes a convenient method for discovery of lanthionine-stabilized GPCR agonists. The presence of an N-terminal leader peptide enables dehydratases to dehydrate serines and threonines in the peptide of interest after which a cyclase can couple the formed dehydroamino acids to cysteines forming (methyl)lanthionines. The leader peptide also guides the export of the formed lanthionine-containing precursor peptide out of Gram-positive bacteria via a lanthipeptide transporter. An engineered cleavage site in the C-terminus of the leader peptide allows to cleave off the leader peptide yielding the modified peptide of interest. Lanthipeptide GPCR agonists are an emerging class of therapeutics of which a few examples have demonstrated high efficacy in animal models of a variety of diseases. One lanthipeptide GPCR agonist has successfully passed clinical Phase Ia.
Collapse
|
17
|
Liu R, Zhang Y, Zhai G, Fu S, Xia Y, Hu B, Cai X, Zhang Y, Li Y, Deng Z, Liu T. A Cell-Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001616. [PMID: 32995136 PMCID: PMC7507342 DOI: 10.1002/advs.202001616] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Indexed: 05/12/2023]
Abstract
Lanthipeptides have extensive therapeutic and industrial applications. However, because many are bactericidal, traditional in vivo platforms are limited in their capacity to discover and mass produce novel lanthipeptides as bacterial organisms are often critical components in these systems. Herein, the development of a cell-free protein synthesis (CFPS) platform that enables rapid genome mining, screening, and guided overproduction of lanthipeptides in vivo is described. For proof-of-concept studies, a type I lanthipeptide, nisin, is selected. Four novel lanthipeptides with antibacterial activity are identified among all nisin analogs in the National Center for Biotechnology Information (NCBI) database in a single day. Further, the CFPS platform is coupled with a screening assay for anti-gram-negative bacteria growth, resulting in the identification of a potent nisin mutant, M5. The titers of nisin and the nisin analog are found to be improved with CFPS platform guidance. Owing to the similarities in biosynthesis, the CFPS platform is broadly applicable to other lanthipeptides, thereby providing a universal method for lanthipeptide discovery and overproduction.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Guoqing Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Xuan Cai
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Li
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| |
Collapse
|
18
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
19
|
Fusieger A, Perin LM, Teixeira CG, de Carvalho AF, Nero LA. The ability of Lactococcus lactis subsp. lactis bv. diacetylactis strains in producing nisin. Antonie van Leeuwenhoek 2019; 113:651-662. [DOI: 10.1007/s10482-019-01373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
|
20
|
Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019; 27:3454-3462. [PMID: 31253534 DOI: 10.1016/j.bmc.2019.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.
Collapse
|
21
|
Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. Proc Natl Acad Sci U S A 2019; 116:8525-8534. [PMID: 30948631 DOI: 10.1073/pnas.1818275116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The rice immune receptor XA21 is activated by the sulfated microbial peptide required for activation of XA21-mediated immunity X (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Mutational studies and targeted proteomics revealed that the RaxX precursor peptide (proRaxX) is processed and secreted by the protease/transporter RaxB, the function of which can be partially fulfilled by a noncognate peptidase-containing transporter component B (PctB). proRaxX is cleaved at a Gly-Gly motif, yielding a mature peptide that retains the necessary elements for RaxX function as an immunogen and host peptide hormone mimic. These results indicate that RaxX is a prokaryotic member of a previously unclassified and understudied group of eukaryotic tyrosine sulfated ribosomally synthesized, posttranslationally modified peptides (RiPPs). We further demonstrate that sulfated RaxX directly binds XA21 with high affinity. This work reveals a complete, previously uncharacterized biological process: bacterial RiPP biosynthesis, secretion, binding to a eukaryotic receptor, and triggering of a robust host immune response.
Collapse
|
22
|
Helf MJ, Freeman MF, Piel J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. ACTA ACUST UNITED AC 2019; 46:551-563. [DOI: 10.1007/s10295-018-02129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.
Collapse
Affiliation(s)
- Maximilian J Helf
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 000000041936877X grid.5386.8 Boyce Thompson Institute Cornell University 533 Tower Road 14853 Ithaca USA
| | - Michael F Freeman
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 0000000419368657 grid.17635.36 Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute University of Minnesota-Twin Cities 55108 St. Paul MN USA
| | - Jörn Piel
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
23
|
Occurrence, function, and biosynthesis of mycofactocin. Appl Microbiol Biotechnol 2019; 103:2903-2912. [PMID: 30778644 DOI: 10.1007/s00253-019-09684-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Mycofactocin is a member of the rapidly growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Although the mycofactocin biosynthetic pathway is widely distributed among Mycobacterial species, the structure, function, and biosynthesis of the pathway product remain unknown. This mini-review will discuss the current state of knowledge regarding the mycofactocin biosynthetic pathway. In particular, we focus on the architecture and distribution of the mycofactocin biosynthetic cluster, mftABCDEF, among the Actinobacteria phylum. We discuss the potential molecular and physiological role of mycofactocin. We review known biosynthetic steps involving MftA, MftB, MftC, and MftE and relate them to pyrroloquinoline quinone biosynthesis. Lastly, we propose the function of the remaining putative biosynthetic enzymes, MftD and MftF.
Collapse
|
24
|
Lagedroste M, Reiners J, Smits SHJ, Schmitt L. Systematic characterization of position one variants within the lantibiotic nisin. Sci Rep 2019; 9:935. [PMID: 30700815 PMCID: PMC6353901 DOI: 10.1038/s41598-018-37532-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Lantibiotics are a growing class of natural compounds, which possess antimicrobial activity against a broad range of Gram-positive bacteria. Their high potency against human pathogenic strains such as MRSA and VRE makes them excellent candidates as substitutes for classic antibiotics in times of increasing multidrug resistance of bacterial strains. New lantibiotics are detected in genomes and can be heterologously expressed. The functionality of these novel lantibiotics requires a systematic purification and characterization to benchmark them against for example the well-known lantibiotic nisin. Here, we used a standardized workflow to characterize lantibiotics consisting of six individual steps. The expression and secretion of the lantibiotic was performed employing the promiscuous nisin modification machinery. We mutated the first amino acid of nisin into all proteinaceous amino acids and compared their bactericidal potency against sensitive strains as well as strains expressing nisin resistance proteins. Interestingly, we can highlight four distinct groups based on the residual activity of nisin against sensitive as well as resistant L. lactis strains.
Collapse
Affiliation(s)
- Marcel Lagedroste
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
25
|
Abstract
Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.
Collapse
Affiliation(s)
- Grace E Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
26
|
Nickling JH, Baumann T, Schmitt FJ, Bartholomae M, Kuipers OP, Friedrich T, Budisa N. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids. J Vis Exp 2018:57551. [PMID: 29781997 PMCID: PMC6101111 DOI: 10.3791/57551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nature has a variety of possibilities to create new protein functions by modifying the sequence of the individual amino acid building blocks. However, all variations are based on the 20 canonical amino acids (cAAs). As a way to introduce additional physicochemical properties into polypeptides, the incorporation of non-canonical amino acids (ncAAs) is increasingly used in protein engineering. Due to their relatively short length, the modification of ribosomally synthesized and post-translationally modified peptides by ncAAs is particularly attractive. New functionalities and chemical handles can be generated by specific modifications of individual residues. The selective pressure incorporation (SPI) method utilizes auxotrophic host strains that are deprived of an essential amino acid in chemically defined growth media. Several structurally and chemically similar amino acid analogs can then be activated by the corresponding aminoacyl-tRNA synthetase and provide residue-specific cAA(s) → ncAA(s) substitutions in the target peptide or protein sequence. Although, in the context of the SPI method, ncAAs are also incorporated into the host proteome during the phase of recombinant gene expression, the majority of the cell's resources are assigned to the expression of the target gene. This enables efficient residue-specific incorporation of ncAAs often accompanied with high amounts of modified target. The presented work describes the in vivo incorporation of six proline analogs into the antimicrobial peptide nisin, a lantibiotic naturally produced by Lactococcus lactis. Antimicrobial properties of nisin can be changed and further expanded during its fermentation and expression in auxotrophic Escherichia coli strains in defined growth media. Thereby, the effects of residue-specific replacement of cAAs with ncAAs can deliver changes in antimicrobial activity and specificity. Antimicrobial activity assays and fluorescence microscopy are used to test the new nisin variants for growth inhibition of a Gram-positive Lactococcus lactis indicator strain. Mass spectroscopy is used to confirm ncAA incorporation in bioactive nisin variants.
Collapse
Affiliation(s)
- Jessica H Nickling
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin
| | - Tobias Baumann
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin;
| | - Franz-Josef Schmitt
- Department of Bioenergetics, Institute of Chemistry, Technische Universität Berlin
| | - Maike Bartholomae
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen
| | - Thomas Friedrich
- Department of Bioenergetics, Institute of Chemistry, Technische Universität Berlin
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry, Technische Universität Berlin
| |
Collapse
|
27
|
Hetrick K, Walker MC, van der Donk WA. Development and Application of Yeast and Phage Display of Diverse Lanthipeptides. ACS CENTRAL SCIENCE 2018; 4:458-467. [PMID: 29721528 PMCID: PMC5920614 DOI: 10.1021/acscentsci.7b00581] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 05/09/2023]
Abstract
Peptide display has enabled identification and optimization of ligands to many targets. These ligands are usually linear or disulfide-containing peptides that are vulnerable to proteolysis or reduction. We report yeast surface and phage display of lanthipeptides, macrocyclic ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain multiple thioether cross-links that bestow their biological activities. We developed C-terminal yeast display of the class II lanthipeptides lacticin 481 and haloduracin β, and randomization of the C-ring of the former was used to select tight binders to αvβ3 integrin. This represents the first examples of bacterial RiPP production in Saccharomyces cerevisiae for identification of variants with new biological activities. We also report N-terminal phage display of the class I lanthipeptide nisin and randomization of its A- and B-rings to enrich binders to a small molecule, lipid II. The successful display and randomization of both class I and II lanthipeptides demonstrates the versatility and potential of RiPP display.
Collapse
Affiliation(s)
| | | | - Wilfred A. van der Donk
- 600
S. Mathews Avenue, Urbana,
Illinois 61801, United States. E-mail: . Phone: (217) 244-5360. Fax: (217) 244-8533
| |
Collapse
|
28
|
Bartholomae M, Baumann T, Nickling JH, Peterhoff D, Wagner R, Budisa N, Kuipers OP. Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics. Front Microbiol 2018; 9:657. [PMID: 29681891 PMCID: PMC5897534 DOI: 10.3389/fmicb.2018.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) into ribosomally synthesized and post-translationally modified peptides, e.g., nisin from the Gram-positive bacterium Lactococcus lactis, bears great potential to expand the chemical space of various antimicrobials. The ncAA Nε-Boc-L-lysine (BocK) was chosen for incorporation into nisin using the archaeal pyrrolysyl-tRNA synthetase–tRNAPyl pair to establish orthogonal translation in L. lactis for read-through of in-frame amber stop codons. In parallel, recombinant nisin production and orthogonal translation were combined in Escherichia coli cells. Both organisms synthesized bioactive nisin(BocK) variants. Screening of a nisin amber codon library revealed suitable sites for ncAA incorporation and two variants displayed high antimicrobial activity. Orthogonal translation in E. coli and L. lactis presents a promising tool to create new-to-nature nisin derivatives.
Collapse
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Tobias Baumann
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Jessica H Nickling
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Ongpipattanakul C, Nair SK. Biosynthetic Proteases That Catalyze the Macrocyclization of Ribosomally Synthesized Linear Peptides. Biochemistry 2018; 57:3201-3209. [PMID: 29553721 DOI: 10.1021/acs.biochem.8b00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circular peptides have long been sought after as scaffolds for drug design as they demonstrate protein-like properties in the context of small, constrained peptides. Traditional routes toward the production of cyclic peptides rely on synthesis or semisynthetic methods, which restrict their use as platforms for the production of large, structurally diverse chemical libraries. Here, we discuss the biosynthetic routes toward the N-C macrocyclization of linear peptide precursors, specifically, those transformations that are catalyzed by peptidases. While canonical peptidases catalyze the proteolysis of linear peptides, the biosynthetic macrocyclases couple proteolytic cleavage with cyclization to produce macrocyclic compounds. In this Perspective, we explore the different structural features that impart on each of these biosynthetic proteases the distinct ability to perform macrocyclization and focus on their potential use in biotechnology.
Collapse
|
30
|
Montalbán-López M, Deng J, van Heel AJ, Kuipers OP. Specificity and Application of the Lantibiotic Protease NisP. Front Microbiol 2018; 9:160. [PMID: 29479343 PMCID: PMC5812297 DOI: 10.3389/fmicb.2018.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.
Collapse
Affiliation(s)
| | - Jingjing Deng
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Auke J van Heel
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|