1
|
Phan L, Owji AP, Yang T, Crain J, Sansom MS, Tucker SJ. Electronic Polarizability Tunes the Function of the Human Bestrophin 1 Cl - Channel. J Chem Theory Comput 2025; 21:933-942. [PMID: 39754290 PMCID: PMC11780730 DOI: 10.1021/acs.jctc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl- channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable force field AMOEBA in MD simulations on different conformations of hBest1. This force field models multipole moments up to the quadrupole. Using this approach, we model key biophysical properties of the channel that can only be simulated when electronic polarization is included in the molecular models and show that Cl- permeation through the neck of the pore is achieved through hydrophobic solvation concomitant with partial ion dehydration. Furthermore, we demonstrate how such polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures and demonstrate that neglecting polarization places Cl- at positions that do not correspond to their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems, especially channels and pores that selectively permeate anions.
Collapse
Affiliation(s)
- Linda
X. Phan
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Oxford OX1 3PU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Aaron P. Owji
- Department
of Ophthalmology, Columbia University, New York, New York 10032, United States
- Department
of Pharmacology, Columbia University, New York, New York 10032, United States
- Simons
Electron Microscopy Center, New York Structural Biology Center, New York, New York 10027, United States
| | - Tingting Yang
- Department
of Ophthalmology, Columbia University, New York, New York 10032, United States
| | - Jason Crain
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
- IBM
Research
Europe, Hartree Centre, Daresbury WA4 4AD, U.K.
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Stephen J. Tucker
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Oxford OX1 3PU, U.K.
- Kavli
Institute for Nanoscience Discovery, University
of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
2
|
Qu X, Ma Z, Wu X, Lv L. Recent Advances of Processing and Detection Techniques on Crustacean Allergens: A Review. Foods 2025; 14:285. [PMID: 39856951 PMCID: PMC11764718 DOI: 10.3390/foods14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Crustaceans are delicious and highly nutritional food. However, crustaceans are one of the main food allergens, causing severe public health issues. Thus, it is important to increase the knowledge on crustacean allergens and protect the health of sensitized individuals. This review systematically summarizes the basic information on major crustacean allergens' characteristics, structures, and function. It also summarizes the latest evaluation and detection methods of crustacean allergens. In addition, various processing techniques to alleviate crustacean's allergenicity are discussed and compared. A host of multiplex approaches as innovative research is attractive to decrease crustacean allergenicity. In addition, the strategies to address the risk of crustacean allergens are also reviewed and discussed in detail. This review provides updates and new findings on crustacean allergens, which helps better understand crustacean allergy and provide novel strategies for its prevention and management.
Collapse
Affiliation(s)
- Xin Qu
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road Shibei District, Qingdao 266033, China;
| | - Zekun Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
3
|
Yamamoto R, Segawa R, Kato H, Niino Y, Sato T, Hiratsuka M, Hirasawa N. Identification of amino acids in transmembrane domains of mutated cytokine receptor-like factor 2 and interleukin-7 receptor α required for constitutive signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184359. [PMID: 38862034 DOI: 10.1016/j.bbamem.2024.184359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Cytokine receptor-like factor 2 (CRLF2) and interleukin-7 receptor α (IL-7Rα) form a receptor for thymic stromal lymphopoietin (TSLP). A somatic mutation consisting of the substitution of five amino acids (SLLLL) in the transmembrane domain of CRLF2 with three amino acids, including glutamic acid, isoleucine, and methionine (insEIM), which has been identified in acute lymphocytic leukemia, causes the TSLP-independent dimerization with IL-7Rα and activation. However, the dimerization mechanism remains unclear. In this study, we examined the involvement of the amino acids in the transmembrane domains of EIM CRLF2 and IL-7Rα in TSLP-independent activation. HEK293 cells were transfected with vectors encoding CRLF2 and IL-7Rα, or their mutants, in which the amino acid of the transmembrane domain was replaced with alanine. STAT5 phosphorylation was detected using western blotting, and receptor dimerization was analyzed using the NanoBiT assay. The substitution of glutamic acid within the insEIM mutation for alanine failed to cause the STAT5 phosphorylation in the absence of TSLP. Moreover, the alanine substation of the specific leucine residues in the transmembrane domains of both CRLF2 and IL-7Rα abrogated the TSLP-independent signal transduction and dimerization. The mutation of IL-7Rα W264 partially reduced the phosphorylation of STAT5 without affecting receptor dimerization. These results suggest that the amino acids in the transmembrane domains of EIM CRLF2 and IL-7Rα play at least three possible functions: interaction through hydrogen bonds, hydrophobic interaction, and signal transduction. Our findings contribute to a better understanding of the function of the transmembrane domains of cytokine receptors in their dimerization and signal transduction.
Collapse
Affiliation(s)
- Rio Yamamoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Hiyori Kato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Yuya Niino
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, 607-8414 Kyoto, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
4
|
Phan LX, Owji AP, Yang T, Crain J, Sansom MS, Tucker SJ. Electronic Polarizability Tunes the Function of the Human Bestrophin 1 Cl - Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567055. [PMID: 38014257 PMCID: PMC10680768 DOI: 10.1101/2023.11.14.567055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl- channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable forcefield AMOEBA in MD simulations on different conformations of hBest1. This forcefield models multipole moments up to the quadrupole; therefore, it captures induced dipole and anion-π interactions. We show that key biophysical properties of the channel can only be simulated when electronic polarization is included in the molecular models and that Cl- permeation through the neck of the pore is achieved through hydrophobic solvation concomitant with partial ion dehydration. Furthermore, we demonstrate how such polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures and that neglecting polarization places Cl- at positions that do not correspond with their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems, especially channels and pores that selectively permeate anions.
Collapse
Affiliation(s)
- Linda X. Phan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Aaron P. Owji
- Department of Opthalmology, Columbia University, New York, NY, USA
- Department of Pharmacology, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Tingting Yang
- Department of Opthalmology, Columbia University, New York, NY, USA
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- IBM Research Europe, Hartree Centre, Daresbury, WA4 4AD, UK
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
6
|
Basu S, Subedi U, Tonelli M, Afshinpour M, Tiwari N, Fuentes EJ, Chakravarty S. Assessing the functional roles of coevolving PHD finger residues. Protein Sci 2024; 33:e5065. [PMID: 38923615 PMCID: PMC11201814 DOI: 10.1002/pro.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Although in silico folding based on coevolving residue constraints in the deep-learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well-known histone reader with distinct subtypes containing subtype-specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model-based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.
Collapse
Affiliation(s)
- Shraddha Basu
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Ujwal Subedi
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Nitija Tiwari
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Ernesto J. Fuentes
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
7
|
Straus SK. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184260. [PMID: 38113954 DOI: 10.1016/j.bbamem.2023.184260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
With the increasing prevalence of multidrug resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are effective and selective for bacteria, i.e. non-toxic to mammalian cells. One design strategy, namely the use of tryptophan- and arginine-rich AMPs, is rooted in the study of natural AMPs that are composed mainly of these amino acids, such as lactoferricin, tritrpticin, and puroindoline. A number of important studies on these AMPs by the Vogel group are reviewed here. More recent work on W-/R-rich peptides is also presented. The examples show that these peptides represent anti-infectives with great potential.
Collapse
Affiliation(s)
- Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
8
|
Afshinpour M, Smith LA, Chakravarty S. AQcalc: A web server that identifies weak molecular interactions in protein structures. Protein Sci 2023; 32:e4762. [PMID: 37596782 PMCID: PMC10503417 DOI: 10.1002/pro.4762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Weak molecular interactions play an important role in protein structure and function. Computational tools that identify weak molecular interactions are, therefore, valuable for the study of proteins. Here, we present AQcalc, a web server (https://aqcalcbiocomputing.com/) that can be used to identify anion-quadrupole (AQ) interactions, which are weak interactions involving aromatic residue (Trp, Tyr, and Phe) ring edges and anions (Asp, Glu, and phosphate ion) both within proteins and at their interfaces (protein-protein, protein-nucleic acids, and protein-lipid bilayer). AQcalc identifies AQ interactions as well as clusters involving AQ, cation-π, and salt bridges, among others. Utilizing AQcalc we analyzed weak interactions in protein models, even in the absence of experimental structures, to understand the contributions of weak interactions to deleterious structural changes, including those associated with oncogenic and germline disease variants. We identified several deleterious variants with disrupted AQ interactions (comparable in frequency to cation-π disruptions). Amyloid fibrils utilize AQ to bury anions at frequencies that far exceed those observed for globular proteins. AQ interactions were detected three and five times more frequently than the hydrogen-bonded AQ (HBAQ) in fibril structures and protein-lipid bilayer interfaces, respectively. By contrast, AQ and HBAQ interactions were detected with similar frequencies in globular proteins. Collectively, these findings suggest AQcalc will be effective in facilitating fine structural analysis. As other web utilities designed to identify protein residue interaction networks do not report AQ interactions, wide use of AQcalc will enrich our understanding of residue interaction networks and facilitate hypothesis testing by identifying and experimentally characterizing these comparably weak but important interactions.
Collapse
Affiliation(s)
- Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Logan A. Smith
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
9
|
Triestram L, Falcioni F, Popelier PLA. Interacting Quantum Atoms and Multipolar Electrostatic Study of XH···π Interactions. ACS OMEGA 2023; 8:34844-34851. [PMID: 37779962 PMCID: PMC10535255 DOI: 10.1021/acsomega.3c04149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
The interaction energies of nine XH···π (X = C, N, and O) benzene-containing van der Waals complexes were analyzed, at the atomic and fragment levels, using QTAIM multipolar electrostatics and the energy partitioning method interacting quantum atoms/fragment (IQA/IQF). These descriptors were paired with the relative energy gradient method, which solidifies the connection between quantum mechanical properties and chemical interpretation. This combination provides a precise understanding, both qualitative and quantitative, of the nature of these interactions, which are ubiquitous in biochemical systems. The formation of the OH···π and NH···π systems is electrostatically driven, with the Qzz component of the quadrupole moment of the benzene carbons interacting with the charges of X and H in XH. There is the unexpectedly intramonomeric role of X-H (X = O, N) where its electrostatic energy helps the formation of the complex and its covalent energy thwarts it. However, the CH···π interaction is governed by exchange-correlation energies, thereby establishing a covalent character, as opposed to the literature's designation as a noncovalent interaction. Moreover, dispersion energy is relevant, statically and in absolute terms, but less relevant compared to other energy components in terms of the formation of the complex. Multipolar electrostatics are similar across all systems.
Collapse
Affiliation(s)
- Lena Triestram
- Department of Chemistry, University
of Manchester, Manchester M13 9PL, Great
Britain
| | - Fabio Falcioni
- Department of Chemistry, University
of Manchester, Manchester M13 9PL, Great
Britain
| | - Paul L. A. Popelier
- Department of Chemistry, University
of Manchester, Manchester M13 9PL, Great
Britain
| |
Collapse
|
10
|
Rosokha SV. Anion-π Interactions: What's in the Name? Chempluschem 2023; 88:e202300350. [PMID: 37526504 DOI: 10.1002/cplu.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
The studies of the anion-π interactions advanced during the last two decades from the discussion of the mere existence of this counter-intuitive bonding to its utilization for anion recognition and transport, catalysis, and other applications. Yet, there are substantial differences in the interpretation of nature and the driving forces of anion-π bonding. Most surprisingly, there are still different opinions about the meaning of this term (i. e., which associations can be considered anion-π complexes). After a brief overview of the studies in this area (including early examples of such complexes), we suggested that anion-π bonding occurs when there is evidence of a net attraction between a (close-shell) anion and the face of an electrophilic π-system. This definition encompasses fundamentally similar supramolecular complexes comprising diverse π-systems and anions and its general acceptance would facilitate a discussion of the nature and distinct driving forces of this fascinating interaction.
Collapse
Affiliation(s)
- Sergiy V Rosokha
- Chemistry Department, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
11
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
12
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
13
|
Nandi S, Sarkar R, Jaiswar A, Roy S, Haldar D. Miniature β-Hairpin Mimetic by Intramolecular Hydrogen Bond and C-H···π Interactions. ACS OMEGA 2022; 7:17245-17252. [PMID: 35647431 PMCID: PMC9134230 DOI: 10.1021/acsomega.2c01168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Canonically, protein β-hairpin motifs are stabilized by intramolecular hydrogen bonds. Here, we attempt to develop a rational design recipe for a miniature hairpin structure stabilized by hydrogen bonding as well as C-H···π interaction and try to understand how such a stabilization effect varies with different functional groups at each terminus. Database analysis shows that the α-amino acids with an aromatic side chain will not favor that kind of C-H···π stabilized hairpin structure. However, hybrid tripeptides with an N-terminal Boc-Trp-Aib corner residue and C-terminal aromatic ω-amino acids fold into the hairpin conformation with a central β-turn/open-turn that is reinforced by a C-H···π interaction. The CCDC database analysis further confirms that this C-H···π stabilized hairpin motif is general for Boc-protected tripeptides containing Aib in the middle and aromatic functionality at the C-terminus. The different α-amino acids like Leu/Ala/Phe/Pro/Ser at the N-terminus have a minor influence on the C-H···π interaction and stabilities of the folded structures in solid-state. However, the hybrid peptides exhibit different degrees of conformational heterogeneity both in the solid and solution phase, which is common for this kind of flexible small molecule. Conformational heterogeneity in the solution phase including the C-H···π stabilized β-hairpin structures are characterized by the molecular dynamics (MD) simulations explaining their plausible origin at an atomistic level.
Collapse
Affiliation(s)
- Sujay
Kumar Nandi
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Raju Sarkar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Akhilesh Jaiswar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Susmita Roy
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Debasish Haldar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| |
Collapse
|
14
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
15
|
He X, Ewing AG. Anionic Species Regulate Chemical Storage in Nanometer Vesicles and Amperometrically Detected Exocytotic Dynamics. J Am Chem Soc 2022; 144:4310-4314. [PMID: 35254807 PMCID: PMC8931764 DOI: 10.1021/jacs.2c00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hofmeister effects have often been ignored in living organisms, although they affect the activity and functions of biological molecules. Herein, amperometry has been applied to show that the vesicular content, dynamics of exocytosis and vesicles opening, depend on the anionic species treatment. Compared to 100 μM Cl- treated chromaffin cells, a similar number of catecholamine molecules is released after chaotropic anions (ClO4- and SCN-) treatment, even though the vesicular catecholamine content significantly increases, suggesting a lower release fraction. In addition, there are opposite effects on the dynamics of vesicles release (shorter duration) and vesicle opening (longer duration) for chaotropic anions treated cells. Our results show anion-dependent vesicle release, vesicle opening, and vesicular content, providing understanding of the pharmacological and pathological processes induced by inorganic ions.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Ion permeation, selectivity, and electronic polarization in fluoride channels. Biophys J 2022; 121:1336-1347. [PMID: 35151630 PMCID: PMC9034187 DOI: 10.1016/j.bpj.2022.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fluoride channels (Flucs) export toxic F- from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the permeation mechanism at the molecular level has remained elusive. Herein, we have applied constant-pH molecular dynamics and free-energy-sampling methods to investigate fluoride permeation through a Fluc protein from Escherichia coli. We find that fluoride is facile to permeate in its charged form, i.e., F-, by traversing through a non-bonded network. The extraordinary F- selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F- permeation rate calculated using an electronically polarizable force field is significantly more accurate compared with the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F--Fluc interactions.
Collapse
|
17
|
Kuzniak-Glanowska E, Glanowski M, Kurczab R, Bojarski AJ, Podgajny R. Mining anion-aromatic interactions in the Protein Data Bank. Chem Sci 2022; 13:3984-3998. [PMID: 35440982 PMCID: PMC8985504 DOI: 10.1039/d2sc00763k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Mutual positioning and non-covalent interactions in anion–aromatic motifs are crucial for functional performance of biological systems. In this context, regular, comprehensive Protein Data Bank (PDB) screening that involves various scientific points of view and individual critical analysis is of utmost importance. Analysis of anions in spheres with radii of 5 Å around all 5- and 6-membered aromatic rings allowed us to distinguish 555 259 unique anion–aromatic motifs, including 92 660 structures out of the 171 588 structural files in the PDB. The use of a scarcely exploited (x, h) coordinate system led to (i) identification of three separate areas of motif accumulation: A – over the ring, B – over the ring-substituent bonds, and C – roughly in the plane of the aromatic ring, and (ii) unprecedented simultaneous comparative description of various anion–aromatic motifs located in these areas. Of the various residues considered, i.e. aminoacids, nucleotides, and ligands, the latter two exhibited a considerable tendency to locate in region Avia archetypal anion–π contacts. The applied model not only enabled statistical quantitative analysis of space around the ring, but also enabled discussion of local intermolecular arrangements, as well as detailed sequence and secondary structure analysis, e.g. anion–π interactions in the GNRA tetraloop in RNA and protein helical structures. As a purely practical issue of this work, the new code source for the PDB research was produced, tested and made freely available at https://github.com/chemiczny/PDB_supramolecular_search. The comprehensive analysis of non-redundant PDB macromolecular structures investigating anion distributions around all aromatic molecules in available biosystems is presented.![]()
Collapse
Affiliation(s)
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8 30-239 Kraków Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences Smętna 12 31-343 Kraków Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences Smętna 12 31-343 Kraków Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
18
|
Simultaneous Interaction of Graphene Nanoflakes with Cations and Anions: A Cooperativity Study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Tryptophan, an Amino-Acid Endowed with Unique Properties and Its Many Roles in Membrane Proteins. CRYSTALS 2021. [DOI: 10.3390/cryst11091032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners.
Collapse
|
20
|
Sarwar Z, Wang MX, Lundgren BR, Nomura CT. MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2021; 166:867-879. [PMID: 32553056 DOI: 10.1099/mic.0.000943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The C5-dicarboxylate α-ketoglutarate (α-KG) is a preferred nutrient source for the opportunistic pathogen Pseudomonas aeruginosa. However, very little is known about how P. aeruginosa detects and responds to α-KG in the environment. Our laboratory has previously shown that the MifS/MifR two-component signal transduction system regulates α-KG assimilation in P. aeruginosa PAO1. In an effort to better understand how this bacterium detects α-KG, we characterized the MifS sensor histidine kinase. In this study we show that although MifS is a homologue of the C4-dicarboxylate sensor DctB, it specifically responds to the C5-dicarboxylate α-KG. MifS activity increased >10-fold in the presence of α-KG, while the related C5-dicarboxylate glutarate caused only a 2-fold increase in activity. All other dicarboxylates tested did not show any significant effect on MifS activity. Homology modelling of the MifS sensor domain revealed a substrate binding pocket for α-KG. Using protein modelling and mutational analysis, we identified nine residues that are important for α-KG response, including one residue that determines the substrate specificity of MifS. Further, we found that MifS has a novel cytoplasmic linker domain that is required for α-KG response and is probably involved in signal transduction from the sensor domain to the cytoplasmic transmitter domain. Until this study, DctB family histidine kinases were known to only respond to C4-dicarboxylates. Our work shows that MifS is a novel member of the DctB family histidine kinase that specifically responds to α-KG.
Collapse
Affiliation(s)
- Zaara Sarwar
- Department of Biology, The College of New Jersey, Ewing, New Jersey, USA
| | - Michael X Wang
- Present address: Biomedical Sciences Graduate Program, University of California, San Diego, California, USA.,Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Benjamin R Lundgren
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Christopher T Nomura
- Center for Applied Microbiology, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.,Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| |
Collapse
|
21
|
Khedr S, Klotzsche‐von Ameln A, Khedr M, Elsayed MH, Sudha T, Mousa SA, Deussen A, Martin M. Characterization of tryptophan-containing dipeptides for anti-angiogenic effects. Acta Physiol (Oxf) 2021; 231:e13556. [PMID: 32894635 DOI: 10.1111/apha.13556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
AIMS In the pathogenesis of several diseases, neo-angiogenesis is increased (e.g. tumour growth). The peptide L-glutamyl-L-tryptophan (EW/IM862) has been claimed to exhibit inhibitory effects on tumour growth in vivo. However, the potential role of natural peptides with respect to anti-angiogenic properties is unsettled. The current study explores anti-angiogenic effects of the dipeptides WL, EW, IW and WE. METHODS AND RESULTS Using a bottom-up strategy, we first evaluated the effects of the peptides on VEGFR-2 signalling and quantified their effects in different angiogenesis assays. WL consistently had the strongest effects on phosphorylation of VEGFR-2 and downstream signalling. Therefore, this peptide was chosen in comparison with EW to further assess anti-angiogenic properties. However, sprout formation in three-dimensional (3D) fibrin gel bead assay was significantly inhibited by EW only. Furthermore, vessel sprouting in the mouse aortic ring assay was decreased by the presence of WL and EW compared to control. Results from a chorioallantoic membrane assay showed that under vascular endothelial growth factor (VEGF) stimulation WL and EW decreased the number of blood vessels versus control. These results were in line with those obtained in a matrigel plug assay. The VEGF-induced increase in the haemoglobin content was nearly abolished when treatment was combined with either WL or EW application. In the murine model of oxygen-induced retinopathy, WL exhibited a small albeit significant anti-angiogenic effect. CONCLUSION Comprehensive screening of WL suggests an anti-angiogenic effect, demonstrated in in vitro, ex vivo and in vivo models. Thus, WL is a dipeptide with potential anti-angiogenic effects and is worthy for further exploration.
Collapse
Affiliation(s)
- Sherif Khedr
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
- Physiology Department Faculty of Medicine Ain Shams University Cairo Egypt
| | | | - Maha Khedr
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
- Division of Clinical Chemistry and Laboratory Medicine Department of Clinical Pathology Ain Shams University Cairo Egypt
| | - Mohamed H. Elsayed
- Physiology Department Faculty of Medicine Ain Shams University Cairo Egypt
| | - Thangirala Sudha
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
| | - Shaker A. Mousa
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
| | - Andreas Deussen
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
| | - Melanie Martin
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
| |
Collapse
|
22
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
23
|
Lin FY, MacKerell AD. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. J Comput Chem 2020; 41:439-448. [PMID: 31518010 PMCID: PMC7322827 DOI: 10.1002/jcc.26067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/15/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Cation-π interactions are noncovalent interactions between a π-electron system and a positively charged ion that are regarded as a strong noncovalent interaction and are ubiquitous in biological systems. Similarly, though less studied, anion-ring interactions are present in proteins along with in-plane interactions of anions with aromatic rings. As these interactions are between a polarizing ion and a polarizable π system, the accuracy of the treatment of these interactions in molecular dynamics (MD) simulations using additive force fields (FFs) may be limited. In the present work, to allow for a better description of ion-π interactions in proteins in the Drude-2013 protein polarizable FF, we systematically optimized the parameters for these interactions targeting model compound quantum mechanical (QM) interaction energies with atom pair-specific Lennard-Jones parameters along with virtual particles as selected ring centroids introduced to target the QM interaction energies and geometries. Subsequently, MD simulations were performed on a series of protein structures where ion-π pairs occur to evaluate the optimized parameters in the context of the Drude-2013 FF. The resulting FF leads to a significant improvement in reproducing the ion-π pair distances observed in experimental protein structures, as well as a smaller root-mean-square differences and fluctuations of the overall protein structures from experimental structures. Accordingly, the optimized Drude-2013 protein polarizable FF is suggested for use in MD simulations of proteins where cation-π and anion-ring interactions are critical. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Raja M, Kinne RKH. Mechanistic Insights into Protein Stability and Self-aggregation in GLUT1 Genetic Variants Causing GLUT1-Deficiency Syndrome. J Membr Biol 2020; 253:87-99. [PMID: 32025761 PMCID: PMC7150661 DOI: 10.1007/s00232-020-00108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
Human sodium-independent glucose cotransporter 1 (hGLUT1) has been studied for its tetramerization and multimerization at the cell surface. Homozygous or compound heterozygous mutations in hGLUT1 elicit GLUT1-deficiency syndrome (GLUT1-DS), a metabolic disorder, which results in impaired glucose transport into the brain. The reduced cell surface expression or loss of function have been shown for some GLUT1 mutants. However, the mechanism by which deleterious mutations affect protein structure, conformational stability and GLUT1 oligomerization is not known and require investigation. In this review, we combined previous knowledge of GLUT1 mutations with hGLUT1 crystal structure to analyze native interactions and several natural single-point mutations. The modeling of native hGLUT1 structure confirmed the roles of native residues in forming a range of side-chain interactions. Interestingly, the modeled mutants pointed to the formation of a variety of non-native novel interactions, altering interaction networks and potentially eliciting protein misfolding. Self-aggregation of the last part of hGLUT1 was predicted using protein aggregation prediction tool. Furthermore, an increase in aggregation potential in the aggregation-prone regions was estimated for several mutants suggesting increased aggregation of misfolded protein. Protein stability change analysis predicted that GLUT1 mutant proteins are unstable. Combining GLUT1 oligomerization behavior with our modeling, aggregation prediction, and protein stability analyses, this work provides state-of-the-art view of GLUT1 genetic mutations that could destabilize native interactions, generate novel interactions, trigger protein misfolding, and enhance protein aggregation in a disease state.
Collapse
Affiliation(s)
- Mobeen Raja
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Algonquin College, 1385 Woodroffe Avenue, Ottawa, ON K2G 1V8 Canada
| | - Rolf K. H. Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| |
Collapse
|
25
|
Savastano M, García-Gallarín C, López de la Torre MD, Bazzicalupi C, Bianchi A, Melguizo M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Neumann J, Schnurr A, Wegner HA. Perspective isomorphs - a new classification of molecular structures based on artistic and chemical concepts. Beilstein J Org Chem 2019; 15:2319-2326. [PMID: 31666866 PMCID: PMC6808190 DOI: 10.3762/bjoc.15.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
Models are a quintessential part in research as well as for scientific communication in general. A special challenge is the visualization of the invisible, such as atoms and molecules. Visualizations are also deeply rooted in the discipline of art offering in the respect untapped potential in cross-fertilization with natural sciences. Here we show a new classification of molecular structures, so-called perspective isomorphs, applying an interdisciplinary crossing of epistemological concepts between chemistry and art. The idea is based on the notion that molecules can be classified, if they appear equivalent from one standpoint in a specific orientation. We termed such a group of such molecules perspective isomorphs. The general concept is outlined together with a nomenclature system. Furthermore, this concept has been visualized by artistic representations of molecules. The concept of perspective isomorphs and its discussions herein will extend current models and stimulate the discourse about the nature of atoms and molecules and especially their models.
Collapse
Affiliation(s)
- Jannis Neumann
- Justus-Liebig-Universität Gießen, Institut für Kunstpädagogik, Karl-Glöckner-Str. 21, 35394 Gießen, Germany
| | - Ansgar Schnurr
- Justus-Liebig-Universität Gießen, Institut für Kunstpädagogik, Karl-Glöckner-Str. 21, 35394 Gießen, Germany
| | - Hermann A Wegner
- Justus-Liebig-Universität Gießen, Institut für Organische Chemie, Heinrich-Buff-Ring 17, 35392 Gießen
| |
Collapse
|
27
|
Zeng H, Liu P, Feng G, Huang F. π-Metalated [15]Paracyclophanes: Synthesis and Binding to Oxo-Anions via Anion−π Interactions. J Am Chem Soc 2019; 141:16501-16511. [DOI: 10.1021/jacs.9b09582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hong Zeng
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Guoqin Feng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
28
|
Mbaye MN, Hou Q, Basu S, Teheux F, Pucci F, Rooman M. A comprehensive computational study of amino acid interactions in membrane proteins. Sci Rep 2019; 9:12043. [PMID: 31427701 PMCID: PMC6700154 DOI: 10.1038/s41598-019-48541-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/07/2019] [Indexed: 01/26/2023] Open
Abstract
Transmembrane proteins play a fundamental role in a wide series of biological processes but, despite their importance, they are less studied than globular proteins, essentially because their embedding in lipid membranes hampers their experimental characterization. In this paper, we improved our understanding of their structural stability through the development of new knowledge-based energy functions describing amino acid pair interactions that prevail in the transmembrane and extramembrane regions of membrane proteins. The comparison of these potentials and those derived from globular proteins yields an objective view of the relative strength of amino acid interactions in the different protein environments, and their role in protein stabilization. Separate potentials were also derived from α-helical and β-barrel transmembrane regions to investigate possible dissimilarities. We found that, in extramembrane regions, hydrophobic residues are less frequent but interactions between aromatic and aliphatic amino acids as well as aromatic-sulfur interactions contribute more to stability. In transmembrane regions, polar residues are less abundant but interactions between residues of equal or opposite charges or non-charged polar residues as well as anion-π interactions appear stronger. This shows indirectly the preference of the water and lipid molecules to interact with polar and hydrophobic residues, respectively. We applied these new energy functions to predict whether a residue is located in the trans- or extramembrane region, and obtained an AUC score of 83% in cross validation, which demonstrates their accuracy. As their application is, moreover, extremely fast, they are optimal instruments for membrane protein design and large-scale investigations of membrane protein stability.
Collapse
Affiliation(s)
- Mame Ndew Mbaye
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Mathematics and Informatics, Cheikh Anta Diop University, Dakar-Fann, Senegal
| | - Qingzhen Hou
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sankar Basu
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabian Teheux
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.,John von Neumann Institute for Computing, Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, Germany
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
29
|
Arooj M, Arrigan DWM, Mancera RL. Characterization of Protein-Facilitated Ion-Transfer Mechanism at a Polarized Aqueous/Organic Interface. J Phys Chem B 2019; 123:7436-7444. [PMID: 31379167 DOI: 10.1021/acs.jpcb.9b04746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein electrochemistry studies at a polarized interface between two immiscible electrolyte solutions (ITIES) indicate that the detection mechanism of a protein at the interface involves a combination of protein-anion complexation and interfacial adsorption processes. A detailed characterization of the protein-facilitated mechanism of ion transfer at the ITIES will allow the development of new label-free biomolecular detection tools. Molecular dynamics simulations were performed to describe the mechanism of transfer of the hydrophobic anion tetraphenylborate (TPB-) from a 1,2-dichloroethane (organic) phase to an aqueous phase mediated by lysozyme as a model protein under the action of an external electric field. The anion migrated to the protein at the interface and formed multiple contacts. The side chains of positively charged Lys and Arg residues formed electrostatic interactions with the anion. Nonpolar residues like Trp, Met, and Val formed hydrophobic contacts with the anion as it moved along the protein surface. During this process, lysozyme adopted multiple, partially unfolded conformations at the interface, all involving various anion-protein complexes with small free-energy barriers between them. The general mechanism of protein-facilitated ion transfer at a polarized liquid-liquid interface thus likely involves the movement of a hydrophobic anion along the protein surface through a combination of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Mahreen Arooj
- Department of Chemistry, College of Sciences , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | | | | |
Collapse
|
30
|
Abstract
A complete inventory of the forces governing protein folding is critical for productive protein modeling, including structure prediction and de novo design, as well as understanding protein misfolding diseases of clinical significance. The dominant contributors to protein folding include the hydrophobic effect and conventional hydrogen bonding, along with Coulombic and van der Waals interactions. Over the past few decades, important additional contributors have been identified, including C-H···O hydrogen bonding, n→π* interactions, C5 hydrogen bonding, chalcogen bonding, and interactions involving aromatic rings (cation-π, X-H···π, π-π, anion-π, and sulfur-arene). These secondary contributions fall into two general classes: (1) weak but abundant interactions of the protein main chain and (2) strong but less frequent interactions involving protein side chains. Though interactions with high individual energies play important roles in specifying nonlocal molecular contacts and ligand binding, we estimate that weak but abundant interactions are likely to make greater overall contributions to protein folding, particularly at the level of secondary structure. Further research is likely to illuminate additional roles of these noncanonical interactions and could also reveal contributions yet unknown.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Anstöter CS, Rogers JP, Verlet JRR. Spectroscopic Determination of an Anion−π Bond Strength. J Am Chem Soc 2019; 141:6132-6135. [DOI: 10.1021/jacs.9b01345] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Joshua P. Rogers
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
32
|
Pandey AK, Usman M, Rath SP. A counter ion triggers stabilization of two geometrical isomers of a Ni(ii) dication diradical porphyrin dimer: the role of anion–π interactions. Chem Commun (Camb) 2019; 55:7926-7929. [DOI: 10.1039/c9cc02902h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers of a nickel(ii)porphyrinato dication diradical, isolated selectively in pure form, are stabilized exclusively by anion–π interactions, have unique and distinct electronic and spectroscopic features and display an anion-induced charge/electron transfer phenomenon.
Collapse
Affiliation(s)
- Anjani Kumar Pandey
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Mohammad Usman
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| |
Collapse
|